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Inflammation and oxidative stress contribute to the progression of acute lung injury (ALI). MicroRNA-23a-5p (miR-23a-5p) has
been reported to regulate inflammation and oxidative stress; however, its role in ALI is still poorly elucidated. Mice were
intravenously treated with the miR-23a-5p antagomir, agomir, or the negative controls for 3 consecutive days and then received
a single intratracheal injection of lipopolysaccharide (LPS, 5mg/kg) to induce ALI. Pulmonary function, bronchoalveolar lavage
fluids (BALFs), arterial blood gas, and molecular biomarkers associated with inflammation and oxidative stress were analyzed.
In addition, murine peritoneal macrophages were isolated and treated with LPS to verify the role of miR-23a-5p in vitro. We
detected an elevation of miR-23a-5p expression in the lungs from ALI mice. The miR-23a-5p antagomir was prevented, whereas
the miR-23a-5p agomir aggravated inflammation, oxidative stress, lung tissue injury, and pulmonary dysfunction in LPS-treated
mice. Besides, the miR-23a-5p antagomir also reduced the productions of proinflammatory cytokines and free radicals in LPS-
treated primary macrophages, which were further augmented in cells following the miR-23a-5p agomir treatment. Additional
findings demonstrated that the miR-23a-5p agomir exacerbated LPS-induced ALI via activating apoptosis signal-regulating
kinase 1 (ASK1), and that pharmacological or genetic inhibition of ASK1 significantly repressed the deleterious effects of the
miR-23a-5p agomir. Moreover, we proved that the miR-23a-5p agomir activated ASK1 via directly reducing heat shock protein
20 (HSP20) expression. miR-23a-5p is involved in the regulation of LPS-induced inflammation, oxidative stress, lung tissue
injury, and pulmonary dysfunction by targeting HSP20/ASK1, and it is a valuable therapeutic candidate for the treatment of ALI.

1. Introduction

Acute lung injury (ALI) is a life-threatening respiratory dis-
order for which effective therapeutic methods are lacking.
Thus, the disease is associated with poor prognosis and high
mortality, especially in critically ill patients [1, 2]. During
ALI, the pulmonary structure and alveolar-capillary barrier
are destroyed, allowing inflammatory cells (e.g., neutrophils
and macrophages) to penetrate the lung tissue, where they
secrete numerous cytokines that amplify local proinflamma-
tory networks [3, 4]. Overproduction of reactive oxygen spe-
cies (ROS), which causes severe oxidative damage to
intracellular biomacromolecules, including DNA, protein,

and lipid, is also implicated in the pathogenesis of ALI. Upon
increased ROS, thioredoxin-interacting protein (TXNIP)
detaches from thioredoxin and activates the nucleotide-
binding domain-like receptor protein 3 (NLRP3) inflamma-
some, which helps to accelerate the maturation and release
of proinflammatory cytokines, such as interleukin-1β (IL-
1β) and IL-18 [5–7]. These findings indicate that inhibiting
inflammation and oxidative stress may be potential strategies
for the treatment of ALI.

Apoptosis signal-regulating kinase 1 (ASK1) belongs to
the ubiquitously expressed mitogen-activated protein kinase
family and is involved in the regulation of inflammation
and oxidative stress [5, 8]. Recent studies have demonstrated
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that ASK1 activation contributes to ALI progression, and that
inhibitors of ASK1 have potential benefits for themanagement
of ALI [5]. Immanuel et al. found that ASK1 promotedNLRP3
inflammasome priming in macrophages, thereby aggravating
the proinflammatory response. Conversely, ASK1-deficient
mice had significantly less inflammation and lung injury upon
lipopolysaccharide (LPS) inhalation [9]. Besides, ASK1 dele-
tion also decreased hyperoxia-induced inflammation, oxida-
tive stress, and pulmonary dysfunction in mice [10]. These
studies identify ASK1 as a critical molecular target in ALI
development, indicating that the identification of novel
ASK1 inhibitors is greatly needed.

MicroRNAs are short (~22 nucleotides) noncoding
RNAs that negatively regulate gene expression at the post-
transcriptional level via binding to the 3′ untranslated region
(UTR) of target messenger RNAs [11, 12]. Emerging evi-
dence has demonstrated the importance and necessity of
microRNAs in pulmonary developmental and pathological
processes [11]. Results from Wei et al. indicated that
microRNA-377-3p (miR-377-3p) stimulated protective
autophagy and suppressed LPS-induced inflammation and
lung injury [13]. In addition, Chen and colleagues demon-
strated the beneficial role of miR-199a-3p against LPS-
induced ALI, showing that miR-199a-3p downregulation
aggravated intrapulmonary inflammation and pathological
injury [14]. miR-23a-5p exhibits multiple biological functions,
such as the modulation of cell proliferation, differentiation,
senescence, survival, and oncogenesis [15–17]. miR-23a-5p
also regulates inflammation and oxidative stress [18, 19].
Moreover, Liu et al. detected increased miR-23a-5p levels in
serum, lung tissues, and macrophages after LPS stimulation
and proposed miR-23a-5p as a potential biomarker for
sepsis-induced acute respiratory distress syndrome at early
stage [20]. However, its therapeutic role in inflammation,
oxidative stress, and ALI remains elusive. In the present
study, we established an LPS-induced ALI mouse model
and investigated the role and underlying mechanism of
miR-23a-5p in ALI.

2. Materials and Methods

2.1. Animals. Male C57BL/6 mice (~25 g) were provided by
Beijing HFK Bioscience Co., Ltd. and intratracheally injected
with 5mg/kg LPS (from E. coli O111: B4; Sigma-Aldrich,
USA) dissolved in 50μL sterile saline. Mice in the control
group received an equal volume of intratracheal sterile saline
[7]. To clarify the role of miR-23a-5p, mice were pretreated
with miR-23a-5p antagomir (80mg/kg/day), antagomir neg-
ative control (AntagNC), agomir (30mg/kg/day), or agomir
negative control (AgNC) via tail vein injection for 3 consec-
utive days prior to LPS exposure as previously described
[21]. Antagomir, agomir, and negative controls were pur-
chased from RiboBio Co., Ltd. (Guangzhou, China). All mice
were euthanized 12 h post-LPS treatment with an overdose of
sodium pentobarbital. In the survival study, mice were
injected with a lethal dose of LPS (25mg/kg), and the survival
rate was monitored every 12 h [7]. To inhibit endogenous
ASK1, mice were treated daily with selonsertib (4mg/kg; Sell-
eck, USA) for 7 consecutive days prior to LPS injection [22].

In addition, 1 week before LPS treatment, mice were intratra-
cheally treated with recombinant adenoviral vectors (1 × 108
PFU per mouse) carrying short hairpin RNA targeting
HSP20 (shHSP20) to knock down pulmonary HSP20 expres-
sion or scramble RNA (shScramble) [5, 23]. The mouse
HSP20 targeting sequences were obtained from Santa Cruz
and then packaged into adenoviral vectors by Vigene Biosci-
ence (Rockville, USA). All animal procedures were approved
by the Animal Experimentation Ethics Committee of
Zhongnan Hospital of Wuhan University and are in strict
accordance with the Guides for the Care and Use of Labora-
tory Animals published by the US National Institutes of
Health (8th Edition, 2011).

2.2. Pulmonary Function Measurements. Mice were anesthe-
tized, tracheostomized, and mechanically ventilated using
the FlexiVent device (SCIREQ Inc., Canada). Invasive pul-
monary functional parameters were collected using the
forced oscillation technique and the constant-phase model.
Respiratory system resistance (Rrs), elastance (Ers), tissue
damping (Gtis), and tissue elastance (Htis) were determined
in a blinded manner [24]. Pulmonary function was also non-
invasively evaluated using the Buxco system (Buxco Electron-
ics, USA). Respiratory rate, tidal volume, lung compliance,
and pulmonary ventilation were detected in anesthetized mice
as previously described [7].

2.3. Bronchoalveolar Lavage Fluids (BALFs) Collection and
Analysis. BALFs were obtained from 3 intratracheal injec-
tions of 1.0mL of cooled phosphate buffer saline (PBS),
which were then centrifuged at 200 g for 10min at 4°C with
the supernatants collected for total protein quantification
using a BCA protein assay kit (Sigma-Aldrich, USA) [25].
The cell pellet was resuspended in 1mL PBS. Total leukocytes
were counted using a hemocytometer, and differential cell
counts were calculated by Wright-Giemsa staining under
the standard hematology criteria [6, 13].

2.4. Lung Wet-to-Dry (W/D) Weight Ratio. Fresh lung sam-
ples were weighed immediately to obtain the wet lung weight
and then dehydrated in an 80°C oven for 48h to obtain the
dry lung weight. The W/D ratio was calculated as a reflection
of pulmonary edema [26].

2.5. Arterial Blood Gas Analysis. The right common carotid
artery was isolated and cannulated, and blood samples were
collected using a heparinized polyethylene catheter (PE10,
Clay Adams; Parsippany, NJ, USA). Partial pressure of oxy-
gen (PaO2), partial pressure of carbon dioxide (PaCO2),
and sodium bicarbonate (HCO3

-) were determined using
an automatic blood gas analyzer [27].

2.6. Cytokine Detection. The levels of inflammatory cytokines
in the lungs, BALFs, or cell culture supernatants were
detected by enzyme-linked immunosorbent assay (ELISA).
IL-6, tumor necrosis factor-α (TNF-α), IL-10, IL-1β, and
IL-18 levels were determined using commercial ELISA kits
(Abcam, UK) following the manufacturer’s instructions.
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2.7. Evans Blue Dye (EBD) Extravasation Assay. EBD leakage
was used to evaluate pulmonary injury as previously
described [28]. In brief, mice were intraperitoneally injected
with EBD (30mg/kg; Sigma, USA), which was then allowed
to circulate for an additional 2 h. Then, the lung tissue was
perfused via the right ventricle with PBS containing
5mmol/L EDTA-2Na to remove the intravascular dye from
the lung. Lung tissue was then collected and homogenized
in formamide for 16 h at 60°C, and the Evans blue absorbance
was measured spectrophotometrically at 620 nm.

2.8. Western Blot. Total proteins in whole cell lysate (WCL)
were extracted from fresh lungs or cells using RIPA lysis buffer
and quantified using a BCA protein assay kit [29–31]. Nuclear
extracts (NE) were fractionated with NE-PER™ Nuclear and
Cytoplasmic Extraction Reagents (Thermo Fisher Scientific,
USA) [32]. Samples were then separated on SDS-PAGE gels
and transferred to PVDF membranes. Next, the membranes
were blocked with 5% BSA at room temperature for 1.5 h,
incubated with primary antibodies overnight at 4°C, and then
incubated with peroxidase-conjugated secondary antibodies
for an additional 1h at room temperature. Protein bands were
then scanned and analyzed using Image Lab software (Bio-
Rad, USA). The following primary antibodies were used:
anti-p-p65 (#ab76302, Abcam), anti-t-p65 (#ab16502,
Abcam), antiproliferating cell nuclear antigen (PCNA;
#ab29, Abcam), antinuclear factor E2-related factor 2 (NRF2;
#ab62352, Abcam), antiglyceraldehyde-3-phosphate dehydro-
genase (GAPDH; #2118S, CST), antiapoptosis-associated
speck-like protein (ASC; #ab47092, Abcam), anti-NLRP3
(#ab214185, Abcam), anti-capase-1 p10 (#sc-56036, Santa
Cruz), anti-TXNIP (#ab188865, Abcam), anti-p-ASK1
(#3765, CST), anti-t-ASK1 (#8662, CST), anti-p-p38 (#4511,
CST), anti-t-p38 (#8690, CST), and antiheat shock protein
20 (HSP20; #ab184161, Abcam).

2.9. Real-Time Quantitative Polymerase Chain Reaction.
Total RNA was extracted using TRIzol reagent and then
reverse transcribed to cDNA using standard protocols
[33–35]. Next, the samples were incubated with SYBR
Green Mix on a deep-well Real-Time PCR Detection Sys-
tem. Melting curve analysis was performed to examine
primer specificity, and relative gene expression was deter-
mined using the 2-ΔΔCt method.

2.10. Detection of Lactate Dehydrogenase (LDH), Nuclear
Factor-κB (NF-κB), Myeloperoxidase (MPO), Caspase-1, and
ASK1 Activity. LDH activity in the lungs and BALFs was
determined using an LDH assay kit (Abcam, UK) [36].
Nuclear proteins were extracted, and NF-κB activity was
determined using the TransAM kit according to the manu-
facturer’s instructions (Active Motif, USA). MPO activity
(Abcam, UK) in fresh lung homogenates was detected by
measuring absorbance at 412nm; this was used as a bio-
marker for neutrophil infiltration. Caspase-1 activity
(Abcam, UK) in the lungs or macrophages was detected
using the fluorescent substrate YVAD-AFC and quantified
by a multidetection reader. ASK1 activity was measured

using an immune complex kinase assay with a His-MKK6
substrate as previously described [37].

2.11. Intracellular ROS, Hydrogen Peroxide (H2O2), and
Superoxide Measurements. Intracellular ROS levels were
measured in the lungs or macrophages using 2′,7′-dichlor-
ofluorescin diacetate (DCFH-DA; Sigma, USA), which is oxi-
dized to form fluorescent DCF products by excessive free
radicals [38–42]. Briefly, the lung homogenates or cells were
incubated with DCFH-DA (20μmol/L) for 1 h at 37°C in the
dark, and then DCF fluorescence intensity was detected by a
multidetection reader at an excitation/emission wavelength
of 485/535 nm. The levels of H2O2 in the lungs or macro-
phages were determined by the Amplex™ Red Hydrogen Per-
oxide/Peroxidase Assay Kit (Thermo Fisher Scientific, USA)
according to the manufacturer’s instructions [43, 44]. The
absorbance was measured using a spectrophotometer at
560 nm. Superoxide production was quantified based on the
oxidation of luminol by superoxide as previously described
[45]. Samples were prepared and incubated with lucigenin
(5mmol/L; Sigma, USA) for 10min at 37°C in the dark,
and the luminescence intensity was measured at 30 sec inter-
vals for 3-5min.

2.12. Determination of the Levels of Oxidative Products. The
levels of protein carbonyls (PCs) were measured using a com-
mercial Protein Carbonyl Content Assay Kit (Abcam, USA)
as previously described [6]. In brief, fresh lung samples were
homogenized, treated with streptozocin to remove nucleic
acids, and incubated with DNPH (100μL), TCA (30μL), cold
acetone (500μL), and guanidine solution (200μL) following
the manufacturer’s instructions. Then, PCs were measured
spectrophotometrically at 375nm and expressed as pmol/mg
protein. The contents of 3-nitrotyrosine (3-NT), malondialde-
hyde (MDA), and 4-hydroxynonenal (4-HNE) were also
detected to assess protein and lipid peroxidation using
commercial kits (Abcam, USA). 8-hydroxy 2 deoxyguanosine
(8-OHdG) is produced by oxidative DNA damage, and 8-
OHdG levels in fresh lung homogenates were evaluated using
an 8-OHdG-coated plate and an HRP-conjugated antibody
according to the manufacturer’s instructions (Abcam, USA).
The absorbance was measured at 450nm and used to calculate
total protein concentrations as previously described.

2.13. Evaluation of DNA Fragmentation, Total Antioxidant
Capacity (TAOC), Total Superoxide Dismutase (SOD),
Catalase (CAT), and NRF2 Activity. Cytoplasmic histone-
associated DNA fragments were detected to further confirm
DNA damage using a commercial cell death detection ELISA
(Roche Applied Science, USA) at 405 nm as previously
described [46]. TAOC, total SOD, and CAT activities in the
lungs or macrophages were measured by commercial kits
according to the manufacturer’s instructions (Abcam,
USA). To evaluate NRF2 transcription activity, nuclear
extracts were prepared and incubated with the TransAM
NRF2 ELISA kit (Active Motif, USA) and then spectrophoto-
metrically detected at 450 nm.

2.14. Murine Peritoneal Macrophage Isolation and Treatment.
Primary murine macrophages were isolated from the
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peritoneal cavity via lavage. Cells were centrifuged at 1500g
for 10min at 4°C, resuspended in RPMI 1640 medium, and
seeded in 6-well plates at a density of 2 × 106 cells/well [7,
26]. The cells were transfected with miR-23a-5p antagomir
(50nmol/L), agomir (50nmol/L), or the negative controls
using Lipofectamine™ RNAiMAX Transfection Reagent
(Thermo Fisher Scientific, USA). Cells were incubated in
transfection medium for 24h, incubated in fresh medium for
an additional 24h, and then stimulated with LPS (100ng/mL)
for 6 h [47]. To silence ASK1, macrophages were infected for
6 h with a lentiviral vector carrying either a short hairpin
RNA targeting ASK1 (shASK1) or a scramble RNA
(shScramble) at a multiplicity of infection of 50. Cells were
then incubated in fresh medium for an additional 24 h prior
to miR-23a-5p overexpression. The mouse ASK1 targeting
sequences were obtained from Santa Cruz and then packaged
into lentiviral vectors by Vigene Bioscience (Rockville, USA).

2.15. Luciferase Reporter Assay. HEK293T cells were seeded
in 24-well plates at a density of 1 × 105 cells/well. 48 h later,
cells were cotransfected with a pGL3 plasmid (Promega,
USA) carrying either the wild type (WT) or mutant (MUT)
HSP20 3′ UTR with or without miR-23a-5p agomir using
Lipofectamine™ RNAiMAX Transfection Reagent [48–50].
The cells were incubated for 48 h, and then luciferase activi-
ties were measured using a luciferase reporter assay kit (Pro-
mega, USA).

2.16. Statistical Analysis. All data are presented as the
means ± SD and were analyzed using SPSS 23.0 software
(SPSS Inc., USA). Differences between two groups were com-
pared by an unpaired two-sided Student’s t-test. For multi-
group comparisons, one-way ANOVA followed by the
Newman–Keuls post hoc test was performed. A P value less
than 0.05 was considered statistically significant.

3. Results

3.1. miR-23a-5p Antagomir Ameliorates Pulmonary Injury
and Dysfunction in LPS-Treated Mice. We first investigated
whether miR-23a-5p expression was altered during ALI and
detected that miR-23a-5p levels were increased in the lungs
from LPS-treated mice (Figure 1(a)). We then used miR-
23a-5p antagomir to inhibit miR-23a-5p expression in vivo,
and the efficiency was confirmed in Figure 1(b). As shown
in Figure 1(c), LPS injection significantly decreased tidal vol-
ume, pulmonary ventilation, and lung compliance of mice
that were prevented by the miR-23a-5p antagomir. Com-
pared with saline-treated mice, the mice treated with LPS
displayed higher Rrs, Ers, Gtis, and Htis values, while miR-
23a-5p antagomir administration improved all measures of
lung function (Figure 1(d)) In addition, the miR-23a-5p
antagomir also restored respiratory rates in LPS-treated mice
(Figure 1(e)). In line with their compromised pulmonary
function, LPS-treated mice displayed decreased PaO2 and
increased PaCO2 and HCO3

- levels, which were attenuated
upon miR-23a-5p antagomir administration (Figures 1(f)
and 1(g)). LPS induced severe pulmonary edema and damage
in control mice, yet to a less extent in miR-23a-5p antagomir-

treated mice, as evidenced by decreased W/D ratio and LDH
activities in the lungs or BALFs (Figures 1(h)–1(j)). The
levels of BALFs proteins and EBD extravasation further clar-
ified the protective role of the miR-23a-5p antagomir against
LPS-induced ALI (Figures 1(k) and 1(l)). Moreover, we
found that treatment with the miR-23a-5p antagomir evi-
dently improved the survival rates of LPS-challenged mice
(Figure 1(m)). These findings demonstrate that miR-23a-5p
is increased in LPS-injured lungs and that pharmacological
inhibition of miR-23a-5p remarkably ameliorates LPS-
induced pulmonary injury and dysfunction in mice.

3.2. miR-23a-5p Agomir Exacerbates LPS-Induced ALI in
Mice. To examine whether miR-23a-5p upregulation would
exacerbate LPS-induced ALI, mice were treated with the
miR-23a-5p agomir to elevate pulmonary miR-23a-5p
expression (Figure 2(a)). As shown in Figures 2(b)–2(d),
the miR-23a-5p agomir further decreased tidal volume, pul-
monary ventilation, lung compliance, and respiratory rates
and increased Rrs, Ers, Gtis, and Htis values of LPS-treated
mice. Consistently, mice treated with the miR-23a-5p agomir
displayed increased gas exchange impairment following LPS
injection, as indicated by the decreased PaO2 and increased
PaCO2 and HCO3

- levels (Figures 2(e) and 2(f)). Besides,
the miR-23a-5p agomir exacerbated LPS-related pulmonary
edema, cellular injury, and structural destruction in mice
(Figures 2(g)–2(j)). Furthermore, mice treated with the miR-
23a-5p agomir had lower survival rates after LPS stimulation
(Figure 2(k)). Taken together, these results show that the
miR-23a-5p agomir exacerbates LPS-induced ALI in mice.

3.3. miR-23a-5p Antagomir Inhibits the Inflammatory
Response in ALI Mice. Next, we detected the effects of the
miR-23a-5p antagomir on the intrapulmonary inflammatory
response in ALI mice. We found that miR-23a-5p antagomir
treatment effectively reduced inflammation-associated genes
expression in the lungs, including inducible nitric oxide
synthase (iNOS, also known as NOS2), cyclooxygenase-2
(COX-2), IL-6, and TNF-α (Figure 3(a)). The miR-23a-5p
antagomir also decreased the levels of proinflammatory cyto-
kines (IL-6 and TNF-α) and increased the levels of anti-
inflammatory cytokines (IL-10) in the lungs and BALFs
(Figures 3(b) and 3(c)). Besides, the miR-23a-5p antagomir
suppressed the accumulation of total cells, macrophages,
and neutrophils in BALFs following LPS injection, which
was further confirmed by the decreased MPO activity in
murine lungs (Figures 3(d) and 3(e)). NF-κB is the most crit-
ical transcription factor involved in the inflammatory
response and is mainly sequestered in the cytoplasm under
physiological conditions. Upon LPS stimulation, it translo-
cates to the nucleus to trigger the expression of multiple
inflammatory cytokines [51, 52]. Herein, we observed that
the miR-23a-5p antagomir inhibited the phosphorylation
and nuclear accumulation of p65 in LPS-injured lungs
(Figures 3(f) and 3(g)). Accordingly, the LPS-induced
increase in NF-κB activity was also suppressed by the miR-
23a-5p antagomir (Figure 3(h)). Collectively, these data
indicate that the miR-23a-5p antagomir inhibits the inflam-
matory response in ALI mice.
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Figure 1: miR-23a-5p antagomir ameliorates pulmonary injury and dysfunction in LPS-treated mice. (a) Mice were intratracheally treated
with LPS (5mg/kg), and the level of miR-23a-5p in the lungs was measured at indicating times. (b) Mice were treated with the miR-23a-
5p antagomir (80mg/kg/day) or AntagNC for 3 consecutive days through tail-vein injections, and then the level of miR-23a-5p in the
lungs was measured. (c–e) Mice were pretreated with the miR-23a-5p antagomir (80mg/kg/day) or AntagNC for 3 consecutive days and
then intratracheally injected with 5mg/kg LPS. 12 h after LPS injection, the mice received pulmonary function measurements. Respiratory
system resistance (Rrs), elastance (Ers), tissue damping (Gtis), and tissue elastance (Htis) belong to the invasive pulmonary functional
parameters, as determined using the forced oscillation technique and the constant-phase model. (f and g) Arterial blood gas analysis of
PaO2, PaCO2, and HCO3

-. (h) Lung W/D ration in mice. (i and j) LDH activities in the lungs and BALFs. (k) Total protein concentrations
in BALFs. (l) EBD extravasation to the lungs. (m) Mice were pretreated with the miR-23a-5p antagomir or AntagNC for 3 consecutive
days and then exposed to a lethal dose of LPS (25mg/kg). Mice were observed every 12 h over 72 h with the percent survival calculated.
The data are expressed as the means ± SD (n = 6 per group). ∗P < 0:05 when compared with the matched group.
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Figure 2: miR-23a-5p agomir exacerbates LPS-induced ALI in mice. (a) Mice were treated with miR-23a-5p agomir (30mg/kg/day) or AgNC
for 3 consecutive days through tail-vein injections, and then the level of miR-23a-5p in the lungs was measured. (b–d) Mice were treated with
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Lung W/D ration in mice. (h) LDH activities in the lungs and BALFs. (i) Total protein concentrations in BALFs. (j) EBD extravasation to
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per group). ∗P < 0:05 when compared with the matched group.
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Figure 3: miR-23a-5p antagomir inhibits the inflammatory response in ALI mice. (a) Relative mRNA levels of inflammatory markers in the
lungs with or without the miR-23a-5p antagomir treatment upon LPS injection. (b and c) The levels of inflammatory markers in the lungs or
BALFs. (d) Total cells, macrophages, and neutrophils in BALFs were determined. (e) MPO activity in the lungs. (f and g) The phosphorylation
and nuclear accumulation of p65 were detected by western blot. (h) Relative NF-κB activity in the lungs. The data are expressed as the
means ± SD (n = 6 per group). ∗P < 0:05 when compared with the matched group.
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3.4. miR-23a-5p Antagomir Decreases Oxidative Stress in ALI
Mice. Oxidative damage also contributes to the progression
of LPS-induced ALI; therefore, we examined whether the
miR-23a-5p antagomir could inhibit LPS-induced oxidative
stress in the lungs [26, 45]. As shown in Figure 4(a), ROS
generation was significantly increased in the lungs of ALI

mice, but was suppressed by miR-23a-5p antagomir treat-
ment. H2O2 and superoxide are two primary forms of ROS
that play vital roles in LPS-induced oxidative damage to the
lungs. Intriguingly, the miR-23a-5p antagomir significantly
decreased H2O2 and superoxide levels in LPS-treated lungs
(Figure 4(b)). ROS overproduction induces oxidative damage
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Figure 4: miR-23a-5p antagomir decreases oxidative stress in ALI mice. (a) Intracellular ROS amount. (b) Relative levels of H2O2 and
superoxide in the lungs. (c) Oxidative products from proteins in the lungs. (d) Oxidative products from lipids in the lungs. (e) Oxidative
products from DNA in the lungs. (f) Relative level of DNA fragmentation in the lungs. (g and h) Cellular antioxidant capacity is
determined by TAOC, total SOD, and CAT activities. (i) NRF2 protein levels. (j and k) Relative NRF2 activity and mRNA levels of the
downstream targets. The data are expressed as the means ± SD (n = 6 per group). ∗P < 0:05 when compared with the matched group.
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to biomacromolecules and elevates the levels of oxidative
products from protein (e.g., PCs and 3-NT), lipid (e.g.,
MDA and 4-HNE), and DNA (e.g., 8-OHdG). As expected,
LPS injection increased the levels of PCs, 3-NT, MDA, 4-
HNE, and 8-OHdG in the lungs, which were significantly
decreased by the miR-23a-5p antagomir (Figures 4(c)–4(e)).
Besides, the miR-23a-5p antagomir also reduced LPS-
induced DNA damage, as evidenced by lower DNA fragmen-
tation levels (Figure 4(f)). Cellular antioxidant capacity
confers protective effects against LPS-induced ALI; however,
our data found that TAOC and the antioxidant enzymes,
SOD, and CAT activities were significantly suppressed in the
lungs of ALI mice. Fortunately, the miR-23a-5p antagomir
restored the antioxidant capacity in LPS-injured lungs
(Figures 4(g) and 4(h)). Due to the pivotal role of NRF2 in reg-
ulating the expression of numerous antioxidant enzymes, we
investigated whether the miR-23a-5p antagomir could affect
the NRF2 pathway. As shown in Figure 4(i), the decreased
NRF2 protein level in LPS-treated lungs was prevented by
the miR-23a-5p antagomir. Moreover, the miR-23a-5p antag-
omir also preserved NRF2 transcription activity upon LPS
stimulation; this was further confirmed by the increased
mRNA levels of downstream targets, such as heme
oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1
(NQO1), glutamate-cysteine ligase catalytic subunit (GCLC),
and glutamate-cysteine ligase modifier subunit (GCLM)

(Figures 4(j) and 4(k)). These results suggest that the miR-
23a-5p antagomir decreases oxidative stress in ALI mice.

3.5. miR-23a-5p Antagomir Suppresses NLRP3 Inflammasome
Activation in ALI Mice. Increased ROS promotes the disasso-
ciation of TXNIP from thioredoxin and activates the NLRP3
inflammasome, which in turn amplifies the inflammatory
response via accelerating the maturation and release of proin-
flammatory cytokines [53–55]. Herein, we found that the LPS
challenge elevated the protein abundances of ASC, NLRP3,
TXNIP, and the active form of caspase-1 (p10), whereas these
alterations were remarkably blunted by the miR-23a-5p antag-
omir (Figures 5(a) and 5(b)). The miR-23a-5p antagomir also
suppressed caspase-1 activity and reduced the levels of IL-1β
and IL-18 in the lungs (Figures 5(c) and 5(d)). These data
imply that the miR-23a-5p antagomir suppresses NLRP3
inflammasome activation in ALI mice.

3.6. miR-23a-5p Agomir Aggravates Pulmonary Inflammation
in ALI Mice. In contrast, the miR-23a-5p agomir significantly
promoted the accumulation of leukocytes in BALFs upon LPS
stimulation; this was further verified by the increased pulmo-
nary MPO activity (Figures S1A-B). Besides, LPS-induced
increases in IL-6, TNF-α, and decrease of IL-10 in BALFs or
lungs were more pronounced following treatment with the
miR-23a-5p agomir (Figures S1C-D). As expected, NF-κB
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Figure 5: miR-23a-5p antagomir suppresses NLRP3 inflammasome activation in ALI mice. (a and b) ASC, NLRP3, p10, and TXNIP protein
levels. (c) Relative caspase-1 activity in the lungs. (d) The levels of IL-1β and IL-18 in the lungs. The data are expressed as the means ± SD
(n = 6 per group). ∗P < 0:05 when compared with the matched group.
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transcription activity was further enhanced in the miR-23a-5p
agomir-treated mice upon LPS injection (Figure S1E). These
results demonstrate that the miR-23a-5p agomir aggravates
pulmonary inflammation in ALI mice.

3.7. miR-23a-5p Agomir Increases Pulmonary Oxidative
Damage and NLRP3 Inflammasome Activation in ALI Mice.
The miR-23a-5p agomir also elevated pulmonary ROS,
H2O2, and superoxide levels in LPS-treated mice
(Figures S2A-B). Accordingly, LPS-associated generations
of the oxidative products from protein, lipid, and DNA
were further increased in mice treated with the miR-23a-5p
agomir (Figures S2C-G). Caspase-1 activation and IL-1β
and IL-18 overproduction were also augmented by the
miR-23a-5p agomir (Figures S2H-I). These findings show

that the miR-23a-5p agomir increases pulmonary oxidative
damage and NLRP3 inflammasome activation in ALI mice.

3.8. miR-23a-5p Antagomir Blocks LPS-Induced Inflammation
and Oxidative Stress in Macrophages. Based on the in vivo
findings, we then explored whether themiR-23a-5p antagomir
could block LPS-induced inflammation in primary macro-
phages in vitro. Consistent with the in vivo data, the miR-
23a-5p antagomir notably decreased IL-6 and TNF-α releases
from LPS-treated macrophages (Figure 6(a)). Besides, p65
phosphorylation, nuclear accumulation, and NF-κB activity
were also inhibited by miR-23a-5p antagomir treatment in
LPS-stimulated macrophages (Figures 6(b) and 6(c)). As
shown in Figures 6(d) and 6(e), primary macrophages treated
with the miR-23a-5p antagomir also showed lower levels of
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Figure 6: miR-23a-5p antagomir blocks LPS-induced inflammation and oxidative stress in macrophages. (a) Primary macrophages were
incubated with the miR-23a-5p antagomir (50 nmol/L) or AntagNC for 24 h and then incubated in fresh medium for additional 24 h
before LPS (100 ng/mL) stimulation for 6 h. The levels of IL-6 and TNF-α in the culture supernatants from LPS-treated macrophages were
determined. (b) The phosphorylation and nuclear accumulation of p65 were detected by western blot. (c) Relative NF-κB activity in
macrophages. (d) Intracellular ROS amount. (e) Relative levels of H2O2 and superoxide in macrophages. (f and g) Cellular antioxidant
capacity is determined by TAOC, total SOD, and CAT activities. (h) Relative caspase-1 activity in macrophages. (i) The levels of IL-1β
and IL-18 in the culture supernatants from LPS-treated macrophages. (j) Relative miR-23a-5p levels in primary macrophages with or
without the miR-23a-5p antagomir treatment. The data are expressed as the means ± SD (n = 6 per group). ∗P < 0:05 when compared with
the matched group.
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Figure 7: miR-23a-5p agomir augments LPS-induced inflammation and oxidative stress via activating ASK1 in vitro. (a and b) Relative ASK1
phosphorylation and activity in macrophages with or without miR-23a-5p antagomir treatment upon LPS stimulation. (c and d) Relative
ASK1 phosphorylation and activity in macrophages with or without the miR-23a-5p agomir treatment upon LPS stimulation. (e) Relative
ASK1 mRNA level in macrophages. (f) Primary macrophages were incubated with the miR-23a-5p antagomir (50 nmol/L) or AntagNC
for 24 h and then incubated in fresh medium for additional 24 h before LPS (100 ng/mL) stimulation for 6 h. To silence ASK1,
macrophages were infected with shASK1 or shScramble at a multiplicity of infection of 50 for 6 h, which were then incubated in fresh
medium for additional 24 hours before miR-23a-5p agomir treatment. The levels of IL-6 and TNF-α in the culture supernatants were
measured. (g) Relative levels of H2O2 and superoxide in macrophages. (h) Intracellular ROS amount. (i) Relative caspase-1 activity in
macrophages. (j) The levels of IL-1β and IL-18 in the culture supernatants from LPS-treated macrophages. The data are expressed as the
means ± SD (n = 6 per group). ∗P < 0:05 when compared with the matched group.
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intracellular ROS, H2O2, and superoxide compared to those in
the LPS group.Meanwhile, antioxidant capacity was preserved
by the miR-23a-5p antagomir in LPS-treated macrophages
(Figures 6(f) and 6(g)). We also found that the miR-23a-5p
antagomir markedly inhibited LPS-induced activation of
caspase-1 and the releases of IL-1β and IL-18 in primary mac-
rophages (Figures 6(h) and 6(i)). The efficiency of the miR-

23a-5p antagomir was verified in Figure 6(j). Together, these
results suggest that the miR-23a-5p antagomir blocks LPS-
induced inflammation and oxidative stress in macrophages.

3.9. miR-23a-5p Agomir Promotes LPS-Induced Inflammation
and Oxidative Stress in Macrophages. We also treated macro-
phages with the miR-23a-5p agomir to determine whether
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Figure 8: ASK1 inhibition abrogates the deleterious effects of miR-23a-5p agomir in vivo. (a) Mice were treated with the miR-23a-5p agomir
(30mg/kg/day) or AgNC for 3 consecutive days and then intratracheally injected with 5mg/kg LPS. To inhibit endogenous ASK1, mice were
daily treated with selonsertib (4mg/kg; Selleck, USA) for 7 consecutive days prior LPS injection. IL-6 and TNF-α levels in the lungs were
measured. (b) Intracellular ROS amount. (c) Relative levels of H2O2 and superoxide in the lungs. (d) Relative caspase-1 activity in the
lungs. (e) The levels of IL-1β and IL-18 in the lungs. (f) Lung W/D ration in mice. (g) EBD extravasation to the lungs. (h and i)
Pulmonary functional parameters. (j) Arterial blood gas analysis of PaO2 and PaCO2. The data are expressed as the means ± SD (n = 6 per
group). ∗P < 0:05 when compared with the matched group.
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Figure 9: miR-23a-5p agomir activates ASK1 via directly reducing HSP20 expression. (a) The predicted miR-23a-5p-binding sites within the
3′ UTR of HSP20. (b and c) HSP20 protein levels in the lungs with miR-23a-5p antagomir or agomir treatment upon LPS injection. (d)
Relative HSP20 mRNA level in the lungs. (e) Mice were pretreated with the miR-23a-5p antagomir (80mg/kg/day) or AntagNC for 3
consecutive days and then intratracheally injected with 5mg/kg LPS. To knock down endogenous HSP20, mice were intratracheally
injected with shHSP20 (1 × 108 PFU per mouse) or shScramble 1 week before LPS treatment. ASK1 phosphorylation was detected by
western blot. (f) Relative luciferase activity. (g) IL-6 and TNF-α levels in the lungs were measured. (h) Intracellular ROS amount. (i) Lung
W/D ration in mice. (j) EBD extravasation to the lungs. (k) Arterial blood gas analysis of PaO2 and PaCO2. The data are expressed as the
means ± SD (n = 6 per group). ∗P < 0:05 when compared with the matched group, n.s. indicates no significance.
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increased miR-23a-5p would aggravate inflammation and oxi-
dative stress in LPS-stimulated macrophages (Figure S3A). As
expected, the miR-23a-5p agomir further promoted the
releases of proinflammatory cytokines and the generation of
free radicals from LPS-treated primary macrophages
(Figures S3B-D). Endogenous antioxidant capacity was lower
LPS-stimulated macrophages treated with the miR-23a-5p
agomir than in those treated with the control agomir
(Figures S3E-F). Caspase-1 activation and the releases of IL-
1β and IL-18 from LPS-treated macrophages were further
augmented by the miR-23a-5p agomir (Figures S3G-H).
These findings strongly indicate that the miR-23a-5p agomir
promotes LPS-induced inflammation and oxidative stress in
macrophages.

3.10.mir-23a-5p Agomir Augments LPS-Induced Inflammation
and Oxidative Stress via Activating ASK1 In Vitro. We then
investigated whether ASK1 was involved in the deleterious
effects of the miR-23a-5p agomir in LPS-stimulated macro-
phages. As shown in Figures 7(a) and 7(b), the miR-23a-5p
antagomir inhibited both ASK1 phosphorylation and ASK1
activity in LPS-treated macrophages; this was further evi-
denced by decreased phosphorylation of the downstream
p38 kinase. Conversely, the miR-23a-5p agomir increased
ASK1 phosphorylation and activity in LPS-treated macro-
phages (Figures 7(c) and 7(d)). Next, ASK1 in macrophages
was knocked down by two different shASK1 vectors, and
the efficiency was verified in Figure 7(e). As shown in
Figures 7(f)–7(h), ASK1 silence decreased the levels of proin-
flammatory cytokines and oxidative stress in miR-23a-5p
agomir-treated macrophages upon LPS stimulation. Besides,
caspase-1 activation and the increased releases of IL-1β and
IL-18 from LPS-stimulated macrophages were also blocked
by ASK1 silence (Figures 7(i) and 7(j)). These results strongly
indicate that the miR-23a-5p agomir augments LPS-induced
inflammation and oxidative stress via activating ASK1
in vitro.

3.11. ASK1 Inhibition Abrogates the Deleterious Effects of the
miR-23a-5p Agomir In Vivo. Selonsertib, a potent ASK1
inhibitor, was then used to suppress ASK1 activity in mice
[22]. Consistent with the in vitro findings, selonsertib signif-
icantly reduced the levels of IL-6 and TNF-α, while elevated
IL-10 expression in the lungs (Figure 8(a)). Besides, miR-
23a-5p agomir-associated increases in intracellular ROS,
H2O2, and superoxide in response to LPS injection were
decreased by selonsertib treatment (Figures 8(b) and 8(c)).
NLRP3 activation was also blocked by ASK1 inhibition, as
evidenced by decreased levels of IL-1β, IL-18, and caspase-
1 activity (Figures 8(d) and 8(e)). Due to the alleviation of
inflammation and oxidative stress, mice treated with selon-
sertib also displayed reduced pulmonary edema and injury
(Figures 8(f) and 8(g)). The miR-23a-5p agomir-induced
impairment of pulmonary function and gas exchange was
also partially restored by selonsertib, as confirmed by the
increased tidal volume, PaO2, and decreased Rrs, Ers, and
PaCO2 of LPS-treated mice (Figures 8(h)–8(j)). These data
demonstrate that ASK1 inhibition abrogates the deleterious
effects of the miR-23a-5p agomir in vivo.

3.12. miR-23a-5p Agomir Activates ASK1 via Directly Reducing
HSP20 Expression. Previous studies have reported that HSP20
is required for ASK1 inhibition and that HSP20 protects
against LPS-induced organic injury, including ALI [8, 9, 56].
Herein, we identified two potential binding sites in the 3′
UTR of HSP20 using the online TargetScan software
(Figure 9(a)). Besides, we observed that the miR-23a-5p antag-
omir preserved HSP20 protein levels in LPS-treated lungs
(Figure 9(b)). While the miR-23a-5p agomir suppressed
HSP20 in the lungs with or without LPS injury (Figure 9(c)).
To clarify the involvement of HSP20, we knocked down
HSP20 expression in murine lungs and the efficiency was ver-
ified in Figure 9(d). As shown in Figure 9(e), the miR-23a-5p
antagomir significantly suppressed ASK1 phosphorylation in
shScramble-infected mice, yet failed to do so after HSP20
silence in response to LPS injection. A luciferase reporter assay
demonstrated that the miR-23a-5p agomir inhibited luciferase
activity in cells transfected with the WT HSP20 3′ UTR, but
did not alter luciferase activity in cells transfected with the
MUT HSP20 3′ UTR (Figure 9(f)). These results clearly dem-
onstrated that miR-23a-5p directly binds to the HSP20 3′
UTR. We found that HSP20 silence abrogated the anti-
inflammatory and antioxidant effects of the miR-23a-5p
antagomir in ALI mice, as confirmed by the unaffected IL-6,
TNF-α, and ROS levels in the lungs (Figures 9(g)–9(h)).
Accordingly, the improvements in pulmonary edema and
injury and gas exchange were blocked upon HSP20 knock-
down (Figures 9(i)–9(k)). These findings indicate that the
miR-23a-5p agomir activates ASK1 via directly reducing
HSP20 expression.

miR-23a-5p

3’ UTR

HSP20

ASK1

Inflammation Oxidative stress

NLRP3 inflammasome

ALI

5’

5’
3’

Figure 10: Schematic model of the role of miR-23a-5p on
HSP20/ASK1 signaling during ALI. miR-23a-5p directly binds to
the 3′ UTR of HSP20 and inhibits its protein expression, which
then activates ASK1 to augment inflammation and oxidative stress
in ALI.
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4. Discussion

The present study is aimed at investigating the role and
potential mechanism of miR-23a-5p in ALI development.
For this purpose, our results reveal that miR-23a-5p is upreg-
ulated in murine lungs in response to LPS injury, and that
miR-23a-5p antagomir significantly prevents LPS-induced
ALI in mice via inhibiting inflammation and oxidative stress.
Conversely, the miR-23a-5p agomir aggravates the inflam-
matory response and oxidative damage generated during
LPS-induced pulmonary injury. Besides, we also find that
the miR-23a-5p antagomir reduces, while the miR-23a-5p
agomir promotes LPS-associated proinflammatory cytokine
releases and ROS overproduction in primary macrophages.
Additionally, the deleterious effects of miR-23a-5p are medi-
ated through ASK1 activation, and these effects can be
blunted by pharmacological or genetic suppression of
ASK1. Moreover, we determine that miR-23a-5p directly
binds to the 3′ UTR of HSP20 and that HSP20 silence abro-
gates the anti-inflammatory and antioxidant effects of the
miR-23a-5p antagomir in ALI mice (Figure 10). Overall, this
study demonstrates for the first time the involvement of miR-
23a-5p in the regulation of LPS-induced ALI and identifies
miR-23a-5p as a potential therapeutic candidate for the treat-
ment of ALI.

Overproduction of the proinflammatory cytokines and
free radicals contributes to the initiation and development
of LPS-induced ALI [7, 26]. Upon LPS stimulation, normal
pulmonary structure and barrier function are disrupted,
and leukocytes subsequently migrate to lung tissues, where
they in turn recruit more inflammatory cells via producing
multiple proinflammatory cytokines [3, 4]. Accordingly, we
herein observed that pulmonary barrier function was mark-
edly compromised in ALI mice, as verified by the increased
EBD extravasation and leukocyte counts in BALFs; however,
miR-23a-5p antagomir treatment could ameliorate these
pathological alterations. LPS itself and the accumulated
inflammatory cells both contribute to the generation of free
radicals that ultimately overwhelm the endogenous antioxi-
dant capacity of the lungs and result in severe oxidative dam-
age to lung cells. In addition, it has been reported that ROS
acts as the primary activator of the NLRP3 inflammasome,
thereby accelerating the maturation and release of proinflam-
matory cytokines, including IL-1β and IL-18 [26]. In this
study, we observed that the miR-23a-5p antagomir preserved
the intracellular antioxidant capacity of LPS-treated lungs
and suppressed the activation of the NLRP3 inflammasome.
Various studies have revealed the indispensability of ASK1
in regulating inflammation and oxidative stress under differ-
ent pathological stimuli. Hayakawa et al. found that ASK1
deficiency increased susceptibility to colonic inflammation
in mice with inflammatory bowel diseases [57]. Data from
Qin and colleagues implied that ASK1 activation increased
NF-κB activity and inflammatory cytokine/chemokine
expressions during hepatic ischemia/reperfusion injury
[58]. Besides, ASK1 could enhance NF-κB activity via the
downstream p38 kinase, whereas attenuation of the
ASK1/p38 pathway remarkably decreased the expression of
proinflammatory cytokines [59]. ASK1 deficiency also less-

ened NADPH oxidase-mediated free radical production
and reduced aldosterone-induced cardiac oxidative stress
[60]. Moreover, ASK1 is also associated with various lung
diseases via the regulation of inflammation and oxidative
stress, such as pulmonary arterial hypertension, chronic
obstructive pulmonary disease, and ALI [5, 10, 61, 62]. Previ-
ous studies have identified HSP20 as an upstream inhibitor of
ASK1, and HSP20 overexpression rendered ASK1 inaccessi-
ble to activation, resulting in reduced activity of the
downstream p38 signaling cascade [8]. In this study, we
demonstrated that HSP20/ASK1 was involved in the regula-
tion of LPS-induced ALI by miR-23a-5p. Intriguingly, we
found that the miR-23a-5p antagomir conferred a partial,
not complete, reversal of some parameters (e.g., iNOS,
COX-2, and NF-κB). As we know, multiple complex mech-
anisms contribute to the pathogenesis of ALI. In the pres-
ent study, we investigated the possible involvement of
miR-23a-5p in LPS-induced ALI from the view of inflam-
mation and oxidative stress. As presented in our study,
the miR-23a-5p antagomir also failed to completely restore
LPS-induced pulmonary dysfunction. This phenomenon
can be ascribed to the existence of alternative pathogenic
factors to ALI independent of miR-23a-5p. Of course, the
insufficient efficiency of the miR-23a-5p antagomir may
also contribute to this result.

In summary, our findings suggest that LPS-induced
miR-23a-5p upregulation contributes to the development
of pulmonary injury and dysfunction. Inhibition of endoge-
nous miR-23a-5p provides pulmonary protection against
LPS-induced ALI. Collectively, our data indicate that miR-
23a-5p is a valuable therapeutic candidate for the treatment
of ALI.
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