MICROBIAL

ECOLOGY

in Health and Disease

CCACTION

ENGIHR SUPPLEMENT
Manipulating the gut microbiota to maintain health and
treat disease

Karen P. Scott', Jean-Michel Antoine?, Tore Midtvedt® and
Saskia van Hemert**
"Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK; 2Danone Research, Cedex,

France; ®Department of Microbiology, Tumor and Cell Biology (MTC) Karolinska Institute, Stockholm,
Sweden: “Winclove Probiotics, Amsterdam, The Netherlands

Background: The intestinal microbiota composition varies between healthy and diseased individuals for
numerous diseases. Although any cause or effect relationship between the alterations in the gut microbiota
and disease is not always clear, targeting the intestinal microbiota might offer new possibilities for prevention
and/or treatment of disease.

Objective: Here we review some examples of manipulating the intestinal microbiota by prebiotics, probiotics,
and fecal microbial transplants.

Results: Prebiotics are best known for their ability to increase the number of bifidobacteria. However, specific
prebiotics could potentially also stimulate other species they can also stimulate other species associated with
health, like Akkermansia muciniphila, Ruminococcus bromii, the Roseburia/Enterococcus rectale group, and
Faecalibacterium prausnitzii. Probiotics have beneficial health effects for different diseases and digestive
symptoms. These effects can be due to the direct effect of the probiotic bacterium or its products itself, as well
as effects of the probiotic on the resident microbiota. Probiotics can influence the microbiota composition as
well as the activity of the resident microbiota. Fecal microbial transplants are a drastic intervention in the gut
microbiota, aiming for total replacement of one microbiota by another. With numerous successful studies
related to antibiotic-associated diarrhea and Clostridium difficile infection, the potential of fecal microbial
transplants to treat other diseases like inflammatory bowel disease, irritable bowel syndrome, and metabolic
and cardiovascular disorders is under investigation.

Conclusions: Improved knowledge on the specific role of gut microbiota in prevention and treatment of
disease will help more targeted manipulation of the intestinal microbiota. Further studies are necessary to see
the (long term) effects for health of these interventions.
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icrobes existed on Earth long before humans;
M therefore, it is logical that humans have learned

to live with them, in fact co-evolved with them.
All animals can be looked upon as dualistic ‘super-
organisms’, i.e. their selves and their microbiota. Estab-
lishment and maintenance of an intestinal microbiota is
of utmost importance for health in all mammals.

In the last 2-3 decades, an increasing number of
metagenomic analyses have provided us with information
about differences in gut microbiota composition between
healthy and diseased individuals. Generally, high micro-
bial diversity is thought to be associated with a healthy

gut microbiota, while loss of diversity seems to correlate
with disease. Nowadays over 25 diseases or syndromes
have been linked to an altered intestinal microbiome
(1). These diseases range from gastrointestinal diseases
like inflammatory bowel diseases (IBDs), irritable bowel
syndrome, and colorectal cancer to metabolic diseases
and potentially even to diseases like Alzheimer’s disease,
autistic spectrum disorders, chronic fatigue syndrome,
Parkinson’s disease, and autoimmune diseases like rheu-
matoid arthritis and multiple sclerosis. The most studied
disease conditions in relation to intestinal microbiota
are obesity, metabolic syndrome, and type II diabetes on
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one hand, and bowel diseases (Crohn’s disease, ulcerative
colitis, irritable bowel syndrome) on the other hand.
Although there is a relationship between the gut micro-
biota and disease, it is unclear in most cases if alterations
in the microbiota are a cause or an effect of the disease,
and whether manipulation of the gut microbiota could
help to prevent or even treat the disease.

The potential role of the gut microbiota in obesity was
first recognized by the group of Jeffrey Gordon. In mice
experiments, adult germ-free mice colonized with a nor-
mal microbiota of conventionally raised animals had a
60% increase in body fat content and insulin resistance
developed within 14 days despite reduced food intake (2).
Obese ob/ob mice were found to have a higher Firmicutes/
Bacteroidetes ratio compared to lean ob/+ and wild-type
mice (3). Although this altered Firmicutes/Bacteroidetes
ratio has also been described in some human studies,
other studies did not find this correlation, which is still
matter of debate (4). It may be that defining the bacterial
distribution at a phyla level is not specific enough and
differences between obese and lean individuals are better
described at genus or even species level. Whether an
altered microbiota causes obesity or is caused by the
same diet that leads to obesity is still unclear.

In IBDs (Crohn’s disease and ulcerative colitis), the
role of the gut microbiota has also been recognized.
Numerous culture-independent studies have been carried
out recently, comparing the microbiota composition of
IBD patients with that of healthy controls (5). In general,
an overall decrease in microbial diversity and stability
of the intestinal microbiota has been observed in IBD
patients. Specific bacterial species, like Faecalibacterium
prausnitzii, have been found to have anti-inflammatory pro-
perties, as well as a decreased abundance in IBD patients
(6). Also the function of the microbiota seems to differ
between people with Crohn’s disease compared to healthy
controls. People with Crohn’s disease have higher levels of
fecal trypsin, an enzyme that is produced by the pancreas
and which is normally inactivated by the Bacteroides (7).

In this review, examples of manipulating the gut micro-
biota by prebiotics, probiotics or fecal transplants are
described to give an overview of some of the potential
ways to manipulate the gut microbiota and to improve
human health. Some probiotic interventions have an
impact on disease and digestive symptoms (8, 9) and the
identification of specific health-promoting bacteria from
metagenomic-based studies will provide novel candidates
for probiotic intervention. The culture and delivery of
such novel probiotics will provide many new challenges.
At the same time understanding which bacterial species
are present at lower abundance in diseased compared to
healthy individuals will enable selective targeting of those
bacteria using a prebiotic approach. An alternative to the
modulation of specific bacterial species is the transplan-
tation of whole gut microbiota from healthy to diseased

individuals. Such a treatment is particularly successful in
patients with recurring Clostridium difficile infections.

Manipulating the gut microbiota by prebiotics
The impact of diet on the composition of the gut microbiota
is discussed in detail elsewhere in this volume (see the review
by Graf et al. in this supplement). Here we will consider the
effect of very specific dietary components, prebiotics.

Prebiotics were first described in 1995 (10) and the
current, refined, definition states that ‘A prebiotic is a
selectively fermented ingredient that results in specific
changes in the composition and/or activity of the gastro-
intestinal microbiota, thus conferring benefit(s) upon host
health’ (11). This expanded definition attempts to encom-
pass alterations in other beneficial members of the gut
microbiota, rather than focusing solely on the ‘bifidogenic
effect’. However prebiotic efficacy is still often stated in
terms of the prebiotic index, which relates to the relative
increase in bifidobacteria (12), and does not refer to the
effect on other members of the gut microbial community.

Prebiotics act to enhance the growth and/or activity of
bacteria that are resident in the colon, acting as growth
substrates to selectively boost numbers and/or activities
of particular bacteria. Data from metagenomic studies
comparing the gut microbiota in healthy and diseased
individuals (e.g. Metahit and the HMP projects) enables
bacterial groups or species that are repressed under spe-
cific disease conditions to be identified. Specific growth
studies can then be performed under conditions of increas-
ing complexity to identify substrates that can selectively
boost the growth or activity of these bacteria, and thus
have the potential to redress the dysbiosis associated with
the disease when administered as prebiotics.

All food that is indigestible in the upper gastrointestinal
tract (GIT) and thus reaches the colon is available for
fermentation by the gut anaerobes. The current distinction
of a prebiotic is the ‘selective fermentation’, in that not all
bacterial species should be able to utilize a specific prebiotic
for growth. Substrates that are widely accepted prebiotics
include the fructans inulin and fructo-oligosaccharides
(FOS), galacto-oligosaccharides (GOS), and lactulose (13,
14). Many more, including resistant starches (of which there
are many types) and oligosaccharides with a variety of mono-
meric units, are under investigation and development (12).

There are many publications demonstrating increased
numbers of bifidobacteria in humans following dietary
supplementation with fructans of varying chain length.
What became apparent from some of these studies was
that the level of fecal butyrate also increased follow-
ing FOS supplementation (15). Since bifidobacteria pro-
duce lactate and not butyrate as a fermentation product
the effect of the intervention must be more complex.
It is likely that at least two mechanisms contribute to
the increased detection of butyrate (Fig. 1). Bacteria in
the human gut exist within interactive consortia, and the
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Fig. 1. Possible routes for butyrate production from fructan
substrates by the gut microbiota.

lactate produced by the increased numbers of bifidobac-
teria probably serves as a growth substrate for lactate-
utilizing, butyrate-producing bacteria. The impact of such
bacterial cross-feeding on final metabolite detection has
been shown in mixed culture work (16-20). In addition
some butyrate-producing bacteria are able to use fructans
directly for growth (21), and genes for prebiotic degrada-
tion were identified in a range of abundant commensal
bacteria by functional metagenomic screening (22).

The other important point is that not all bifidobacteria
species and strains within a specific species have equal
abilities to degrade prebiotic substrates. Detailed work has
shown that there are four distinct groups of bifidobacteria
with very different abilities to degrade fructan molecules
of different chain lengths (23), with the ability to utilize
the longer chain length molecules limited to few species.
The same research group has identified five, species-
independent, clusters of bifidobacteria differing in their
ability to utilize arabinoxylan oligosaccharides (24).
Although this may seem a trivial difference it is in fact
particularly relevant with the increasing use of prebiotics
in baby formulae. Most baby formulae milk are supple-
mented with GOS, and research has shown that this ele-
vates numbers of bifidobacteria compared to babies fed
formulae lacking the prebiotic (25). However, the bifido-
bacterial population is more diverse and less stable in
prebiotic supplemented, formula-fed infants (26) com-
pared to breast-fed infants. B. adolescentis, normally found
in high numbers in adults, was detected in some formula-
fed infants, although it is completely absent in breast-fed
babies whose microbiota is dominated by B. longum sub-
species infantis (26). It is not clear what impact this
distinction between the bifidobacteria species present has
on the maturation of the infant gut and immune system.

Pure culture work has revealed that different prebiotics
have varying selectivity. FOS was less selective than GOS
as a growth substrate for a panel of obligate gut anae-
robes tested, while even fewer bacteria were able to use
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starch and long-chain inulin for growth (21). However,
bacterial interactions are key in understanding the true
effect of prebiotics, and bacteria that may be able to
utilize prebiotics as substrates for growth in pure culture,
may not compete well-enough for the substrate in mixed
culture. Proper demonstration of the effect of prebiotics
requires human supplementation studies, with subsequent
analysis of appropriately stored fecal material, analyzing
the full microbial content, to at least a genus level.
Bacterial genome sequencing can help to identify those
bacteria which have the potential to degrade specific
substrates, by enabling the identification of specific genes
on the genome, while metagenome sequencing can assess
the number of such genes present in entire fecal samples.
Many more clones involved in degrading GOS compared
to FOS were identified in human intestinal metagenomic
libraries (22). Genes for FOS degradation were identified in
Bifidobacterium longum and Eubacterium rectale (22) while
an inducible fructan utilization operon was previously
identified in Roseburia inulinivorans (27). E. rectale and R.
inulinivorans both belong to the Roseburia genus (28, 29)
and, along with Faecalibacterium prausnitzii, are the pre-
dominant butyrate producers in the human GIT (30).

Prebiotic stimulation of keystone species
Knowledge of specific bacterial species present at lower
abundance in certain disease states offers an opportunity
to use prebiotics in a targeted way. Prior to initiating such
a strategy, it is essential to have a firm understanding of
the role bacteria play in the development of the disease,
or at least how they may function to alleviate it, as well as
thinking about the wider consequences of increasing
numbers of a specific bacterium.

Postulated bacterial targets include:

Akkermansia muciniphila, Lower numbers of this bac-
terium have been associated with diabetes, obesity, and
IBD (31), and supplying a gluten-free diet to mice in-
creased fecal levels of Akkermansia species (32). In
contrast however another study found that levels of
A. muciniphila were four times higher in patients with
colorectal cancer than in healthy controls (33). Thus, it is
still unclear whether boosting numbers of this mucin
degrading bacterium would actually be beneficial for
health.

Ruminococcus bromii has been described as a keystone
species for degradation of resistant starch (RS) (34), and
numbers of R. bromii clearly responded to increasing the
RS content of the diet in human studies (30, 35). Co-
culture experiments indicate that R. bromii performs the
initial degradation of starch externally releasing mono-
and oligo-saccharides that can act as substrates for other
bacteria (34), and this has also been demonstrated in
fermenter models (36). Boosting numbers of the key-
stone, primary polysaccharide degrader could thus affect
the overall composition of the gut microbiota due to
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bacterial cross-feeding. However, the four types of RS are
structurally and chemically different, and many diverse
bacteria are able to utilize soluble starch as a growth
substrate in vitro. Hence, the type of starch used to selec-
tively increase numbers of specific bacterial species has
to be chosen with care. RS2 and RS4 had very different
effects on the composition of the microbiota when
compared in the same human study (37).

The Roseburia/E. rectale group of butyrate-producing
bacteria were also significantly increased on the RS3 diet
(30). It was previously shown that reducing the carbo-
hydrate content of the diet had a significant effect on
lowering numbers of the Roseburia/E. rectale group, and
also resulted in lower butyrate production (38). This
linking of bacterial metabolite production and bacterial
composition is an important consideration when investi-
gating the potential health effects of prebiotics. Butyrate-
producing bacteria are potential targets for prebiotic use
to enhance bacterial numbers and elevate butyrate con-
centrations due to the role of butyrate in causing apoptosis
of cancer cells (39, 40). Butyrate-producing bacteria were
found to be less abundant in fecal samples obtained from
colorectal cancer patients compared to healthy controls
(41, 42).

F. prausnitzii has been shown to respond to prebiotic
supplementation using a mixed chain length fructan sup-
plement (43, 44). F. prausnitzii is also able to use pectin
for growth which may enable a more targeted approach
to boosting numbers of this bacterial species (45). Re-
duced numbers of F. prausnitzii are present in Crohn’s
disease patients (44), and since this bacterium has also
been shown to have an anti-inflammatory effect (46) it is
a strong target for disease therapy.

Oxalobacter formigenes is the key bacterium respon-
sible for the degradation of oxalate in humans (47), and
an accumulation of oxalate is the main case of kidney
stone formation (48). Patients suffering from calcium
oxalate kidney stones are less likely to be colonized by
O. formigenes (49). The bacterium is sensitive to many
commonly used antibiotics (50) and is less abundant in
individuals who have undergone antibiotic treatment at
some point in their life (51). Oral recolonisation with
Oxalobacter has been successful (52), although it is not
permanent. Identification of specific substrates to boost
existing numbers of O. formigenes would be a viable alter-
native therapy, but the preliminary microbiology work
has yet to be done.

There are other bacteria whose numbers have been
shown to be reduced under certain disease conditions and
thus offer targets for prebiotic enhancement, although in
many cases the literature is still inconclusive (see review
(1)). These include a decreased abundance of Bacteroides
species, including B. vulgatus, in pediatric IBS patients
(53) and reduced numbers of butyrate-producing bacteria
associated with type II diabetes (54).

Manipulating the gut microbiota by probiotics
Lactic acid bacteria were initially used to preserve milk
because they occurred spontaneously in the dairy environ-
ment. An added bonus was that fermentation of milk by
lactobacilli into yogurt improved its digestibility. Yogurt
thus provided both a preservable food to eat, and a digest-
ible one. Yogurt was also used to cure diarrhea. Legend
states that the French king, Frangois 1st, was cured from
chronic diarrhea by a Turkish ‘yogurt’ (55). The concept
that some bacteria can provide a health benefit and
cure disease, led the way to the development of probiotics.
Probiotics are defined as ‘live microorganisms that, when
administered in adequate amounts, confer a health
benefits on the host’ (56, 57). Currently the main groups
of probiotic bacteria used for human foods or supple-
ments and/or animal feed or are lactobacilli, streptococci,
and bifidobacteria. Furthermore, the yeast Saccharomyces
boulardii and one specific strain of E. coli, strain Nissle are
commonly used. The European Food Safety Authority
(EFSA) recognized the health benefits of different pro-
biotics as components of animal feed for many different
bacteria, while for humans (the general population) the
only accepted claim is the benefit on lactose digestion, at
the present time. However, scientific data are accumulating
showing that specific probiotic strains or combination of
strains can be beneficial in different diseases (58). Effects
can be either a direct effect of the probiotic bacterium
itself, or an indirect effect via the interaction with the
commensal microbiota.

The first scientific study reporting the capacity of a
living bacterium to provide a health benefit to humans,
was reported in the 1980s and related to the digestion
of lactose. The breath test technique is an easy way to
monitor lactose maldigestion, and Levitt & Savaiano’s team
demonstrated that live yogurt bacteria (Lactobacillus
bulgaricus and Streptococcus thermophilus) were able
to compensate for the deficit of lactase in adults (59).
This effect has been confirmed by many other groups in
different countries, which reported a variable but always
significant reduction of lactose malabsorption in lactose
malabsorbers consuming yogurt (60). The bacteria them-
selves possess the enzymatic activity to digest lactose.
However, lactase is not the only enzyme involved, as the
efficiency of different strains of lactobacilli (as measured
by the breath test) is not proportional to their lactose
activity per colony forming unit. Probably other enzymes,
like a permease activity involved in the influx of lactose
into the bacteria, play a role as well (61).

Another recently reported enzymatic activity that
a bacterium can provide to improve human health is
the degradation of oxalate. The bacterium Oxalobacter
formigenes, mentioned earlier, is able to degrade oxalate
in the lumen of the intestine, therefore reducing oxalate
absorption, oxalate excretion in urine and the risk of
kidney stones developing (62). Oxalobacter formigenes is
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an example of a possible next generation probiotic — a
commensal bacteria which is found in the intestine that
can confer a defined health benefit to the host. Other
examples include those mentioned above, such as Akker-
mansia muciniphila, Ruminococcus bromii, and Faecalibac-
terium prausnitzii. Culturing and delivering these (strictly)
anaerobic bacteria on an industrial scale is still a technical
challenge, and as these bacteria do not have a history of
safe use, there also are regulatory hurdles to overcome
before these kind of bacteria can be brought to the market.

It has long been known that many microbial strains,
including many gut commensals, can produce neuro-
transmitters and the existence of a gut—brain axis is well
established. Many gut commensal bacteria, including
clostridial species, Desulfovibrio, Sutterella, B. fragilis,
and also bacterial metabolic products, such as propionic
acid, have been associated with behavioral alterations
including autism spectrum disorders (63—65). The phrase
‘psychobiotic’ has been proposed to describe a class of
probiotics of relevance to psychiatry (66).

Other options for next generation probiotics might
come from cohorts of people not consuming a ‘wester-
nized’ ‘diet’. Work has started to have such fecal samples
stored at the United Nation Global Seed Vault at
Svalbard (67). A sample bank like that would be a valu-
able asset to be used by future generations.

Another multifactorial mechanism of action of some
probiotics is to improve human health by influencing
the resident microbiota, either by temporarily replacing a
missing part of the resident microbiota, or by supple-
menting the endogenous population, or by stimulating
(part of) the resident microbiota. Certain probiotic strains
can secrete antibiotic-like factors to prevent localised
growth of potential competitors. The ability of a probiotic
to efficiently use a niche in the digestive tract to grow and
to use available sources of energy may prevent growth of
exogenous microbes and lower substrate availability for
pathogens. This mechanism of microbial exclusion is likely
involved in the effects of certain probiotics to prevent
necrotising enterocolitis (NEC) in premature babies (68),
and to prevent the occurrence of diarrhea and C. difficile
infection during or after the use of antibiotic(s) (69-71).
The use of antibiotics is known to have long-term effects
on the intestinal microbiota composition and thereby
on health (72, 73) and certain studies with probiotics
have shown lower distortion of the gut microbiota when
probiotics were given in parallel with the antibiotics
(74-76).

Probiotics can interact with host epithelial cells and
other human cells in the body through physico-chemical,
or immune signals, in the same way as the commensal
gut microbiota. This communication can even reach the
brain (77). In the gut, some probiotics can change the
composition of the mucus secreted by the colonocytes, by
changing the gene expression of the colonocytes (78),

Manipulating the gut microbiota

while others can strengthen the tight junctions between
epithelial cells reducing the deleterious effect on perme-
ability of some pathogens (79, 80). Finally, some probio-
tics are able to modulate the effect, directly or indirectly,
of the gut microbiota on the local immune and inflam-
matory systems, down-regulating over-stimulated inflam-
matory (81) and/or immune responses (82).

Probiotic stimulation of the intestinal microbiota
Probiotics may also act as ‘prebiotics’ and stimulate the
growth of part of the gut microbiota. For example, a
probiotic strain of Lactobacillus casei increased the con-
centration of lactobacilli in the stools of young children
(83). A strain of Lactococcus lactis increased the concen-
tration of bifidobacteria and reduced the concentration
of Enterococci in human-flora associated rats (84). The
levels of a commensal rat ileum bacterium correlated with
the positive disease outcome of a prophylactic probiotic
therapy in a rat model for acute pancreatitis (85). An
additional mechanism by which some probiotics can
influence human health is the modification of expressed
functions of (part of) the gut microbiota. Some probiotics
are able to change the enzymatic activities of the gut
microbiota: e.g. the nitrogen metabolism as reflected by
urinary concentration of p-cresol, or the glucosidases, or
the bile salt hydrolases, or azoreductase (86). The recent
genomic and metabolomic tools are able to specifically
identify changes, and even without any detectable change
in the composition of the fecal microbiota its metabolic
activity may be altered by a probiotic (87). It should be
emphasized that almost all microbiota studies have used
fecal material as a source. It is likely that probiotics mainly
act in the small intestine where there is a low concentra-
tion of resident microbiota and where an intake of 10®
probiotic bacteria per gram (the average concentration of
probiotic in fermented milks and in food supplements) is a
significant increase. The probiotics are likely to influence
the diversity and richness of the microbiota during their
transit. In the large intestine, the probiotic bacteria will be
outnumbered by the endogenous bacteria, but they can
still have direct and indirect effects on health.

Manipulating the gut microbiota by fecal
transplants

It is stated that the use of feces to treat a variety of
diseases goes back as far as the 4th century AD (88), when
according to Merde, Bedouins have used warm camel
feces for the treatment of diarrhea (89). However, western
medicine was reluctant to use fecal transplant for the
treatment of diarrhea, even severe antibiotic-associated
diarrhea caused by C. difficile. In a review article, only
eight reports utilizing fecal microbiota transplantation
(FMT) for relapsing C. difficile infections were published
before the year 2000 (90). Since then, a dramatic increase
has taken place. By 1 August 2014, there were 613 reports
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in PubMed, in which FMT had been given for a large
variety of disorders.

In principle there are four different types of fecal
transplant used in human medicine.

1) Single donor — often to a single recipient. This has
been the most common to date, with the donor often
a close relative or friend. The donor has to be tested
for the absence of pathogens and specific diseases,
which is time consuming and often expensive. Case
reports demonstrate good results (91, 92) but it is
difficult — and of little value — to perform micro-
biomic and metabolomic studies.

2)  Multiple donors — The same preliminary tests of
donors have to be done as for 1. ‘Stool banks’ can
be established and microbiomic and metabolomic
studies are possible. Stool banks are under establish-
ment in the US, although so far there are no pub-
lished microbiomic and metabolomic data.

3)  Autologous feces transplantation — For this method a
fecal sample has to be collected before therapeutic
interventions, ideally during a healthy condition,
and has to be properly stored until time for usage.
The storage may need to be for as long as decades
for certain conditions, but this might be more feas-
ible for severely injured patients that most probably
will need antibiotic therapy and patients with auto-
logous bone marrow stem cell transplantation. So
far the are no publications about this method.

4)  Anaerobically cultivated feces from healthy donor(s) —
The benefit of this method is that the selection
of donor(s) and screening for pathogens is only
necessary once, at the start. This is also probably
the cheapest method. Due to the high degree of
standardization that is possible, microbiome and
metabolomic studies can be performed. Linked to
this method are defined collections of mixed com-
mensal anaerobes, which are cultivated separately.
Proof of principle studies have already been per-
formed for recurrent C. difficile infection (93).

Screening of the donor material is of utmost importance
to prevent the transfer of a pathogen or a disease from
the donor to the recipient. For the screening procedures
many protocols are used (94-96). Care also has to be
taken with the administration of the feces to the recipient,
and different methods have been used, rectally via a
catheter of colonoscopy, or oro/nasally, via different pro-
tocols using a duodenoscope or a naso-duodenal tube
(94-97). Maintaining the viability of the introduced
bacteria is extremely important.

At present, antibiotic-associated diarrhea (AAD) and
subsequent C. difficile-associated diarrhea (CDAD) are by
far the two most common conditions for which fecal trans-
plantation therapy is used. In general, fecal transplants

have given very good results for these conditions, supe-
rior or equaling the best results obtained by antibiotic
therapy (90, 94-96). For IBS, especially post-infectious
IBS, there are also generally good temporary results
published, although there is seldom a complete cure (98,
99). Several studies with regard to ulcerative colitis have
been performed, and in general remissions are obtained
(98, 100, 101), even in children (102). Results from a very
recent study indicated a lack of specific microbes and
microbial functions as possible cause(s) in Crohn’s disease,
making specific feces transplantation a very interesting
prospect (7). For both ulcerative colitis and Crohn’s
disease, it should be underlined that well-designed,
randomized controlled trials are needed before FMT will
become a standard part of therapy for IBD (100).

The most rapidly increasing fields for FMT are the
metabolic and cardiovascular disorders. Different case
reports have been described, and multiple hypotheses
have been raised to explain the observed effects. It is far
beyond the scope of this short report to review this field,
but it should be kept in mind that a substantial part of
the world-wide increase in so-called life-style diseases
might be due to diet- or environmental-induced altera-
tions in the intestinal microbiota. If so, FMT might be a
therapeutic alternative. Again, well-designed and prop-
erly controlled studies are needed. So far, one small but
double blind, placebo controlled study, showed tem-
porary effects of fecal transplantation in males with
metabolic syndrome (103).

FMT has also been tested in the treatment of many
other diseases, including autoimmune and allergic dis-
eases, neurodevelopmental and neurodegenerative disor-
ders, chronic fatigue syndrome, etc. (88, 98, 104). Most of
the reports show promising results, although they are
dealing with very few patients and further well-designed,
randomized controlled trials are needed to establish the
efficacy of FMT for these diseases.

To further understand the mechanisms involved, it
would be very helpful if further studies with FMT also
analyse the microbial composition before and after FMT
therapy. Such studies could also help to identify microbes
and their products involved in the pathogenesis of these
disorders, and investigate whether so-called intestinal
microbiota-associated characteristics are re-established
(105). The data generated would also reveal whether
FMT has optimal success when the commensal micro-
biota is decimated, as is the case with CDAD, or whether
there is still the potential to replace a disturbed but
abundant microbiota with an incoming healthy one.

In general acute adverse effects of FMT are mild and
transient and serious adverse effects are extremely rare
(97-102, 104, 106, 107). The safety of FMT in immuno-
suppressed patients has been poorly studied, but a recent
report, based on 20 patients stated that there was no
health concern (106). The theoretical concern that the
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transplant may contain microorganisms that might be
involved in the development of chronic disorders/diseases
in the recipient in later years can only be elucidated by
long-term follow—up studies of all recipients. Clearly such
documentation is currently lacking.

At present, regulatory agencies have difficulties in
establishing rules for FMT. In the USA, their Food and
Drug Administration has classified fecal microbiota as a
drug, and by this classification physicians have to submit
a time-consuming application, although an exception has
been made for recurrent C. difficile infections (107). The
European Medicine Agency has not yet made a similar
classification. In the meantime, the rules published by
the European Society for Microbiology and Infectious
Diseases are generally followed (97). Accepting human
beings as ‘superorganisms’, their intestinal microbiota is
an integrated part of themselves, and FMT should follow
the same rules as, for instance, blood transfusions.

Concluding remarks

Our intestinal microbiota is an integral part of ourselves
and cross-talk between the intestinal microbiota and host
leads to life-long epigenetic programming.

The unsuccessful quest for a pathogen for some dis-
eases like Crohn’s disease has triggered the new hypoth-
esis that many so-called ‘life-style’ disorders/diseases may
be caused by hitherto not clarified compositional and/or
functional ‘weaknesses’ within the intestinal microbiota.
Therefore, manipulating the microbiota, either by pre-
biotics, probiotics or fecal microbial transplantation, seems
rational for the prevention and treatment of disease.
Whether or not manipulation of the intestinal microbiota
is a helpful approach in these and other diseases still needs
many more studies. The analyses of missing functions in
the intestinal microbiota during disease will help to select
the potential prebiotic, probiotic or fecal microbial trans-
plants harbouring the required function.
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