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Abstract: Q fever is a zoonotic disease that is caused by Coxiella burnetii and leads to abortion and
infertility in ruminants and debilitating disease in humans. Jimma zone, including Jimma town,
located in the Oromia region of Ethiopia, was affected by an outbreak of abortions in ruminants
related to Q fever infection between 2013 and 2015. This study aimed to investigate the geo-clustering
of C. burnetii seroprevalence in dairy farms of Jimma town and identify the environmental risk factors
associated with seroprevalence distribution. A total of 227 cattle were tested for antibodies against C.
burnetii in 25 farms. We explored the clustering of C. burnetii seroprevalence using semivariograms.
A geostatistical regression-based model was implemented to quantify the risk factors and to predict
the geographical variation in C. burnetii seroprevalence at unsampled locations in Jimma town using
OpenBugs. Our results demonstrated that the risk of exposure in dairy cattle varied across the
landscape of Jimma town and was associated with environmental risk factors. The predictive map of
C. burnetii seroprevalence showed that communities in the eastern part of Jimma town had the highest
risk of exposure. Our results can inform community-level investigations of human seroprevalence in
the high-risk areas to the east of Jimma.

Keywords: dairy cattle; Coxiella burnetii; predictive risk mapping; Q fever; seroprevalence; spatial
modelling

1. Introduction

The febrile illness Q fever is caused by Coxiella burnetii, a Gram-negative intracellular
bacterium [1]. Q fever is a zoonotic disease that is distributed worldwide, except in New
Zealand. Q fever has been commonly described as an occupational disease, affecting
veterinarians, farmers and slaughterhouse workers; however, it is not limited to these
groups [2]. The main route for transmission to humans is through contaminated aerosol
inhalations and the presentation of the disease can vary from acute symptoms, such as
severe pneumonia, to chronic or an asymptomatic infection [1,3]. Domestic ruminants
are considered the main reservoirs for C. burnetii bacteria and their clinical symptoms
are characterised by reproductive disorders, such as abortion, stillbirth, retained placenta,
infertility and birth weakness [4].

Coxiellosis has mainly been associated with the abortion of domestic ruminants, most
commonly in ovines. The infections can occur due to close contact with infected placentas,
body fluids or environmental contamination [5]. One common source of C. burnetii infection
in a herd is the introduction and movement of domestic ruminants., which has been
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demonstrated in several outbreaks [6,7]. Environmental contamination plays a fundamental
role in bacterium transmission, as C. burnetii that is attached to dust particles, can be
dispersed by wind [8–11]. Even with the recognised importance of wind-borne dispersal
in Q fever infections, there is a lack of empirical studies on the geographical dispersal of
C. burnetii [12]. However, observational studies indicate that, on average, infection risk
increases within a distance of 5 to 10 km of infected sources in rural areas, while in urban
areas, outbreaks were associated with a distance between 2 to 4 km from contaminated
sources [12].

In Africa, C. burnetii exposure is a common finding in a variety of species; however, the
seroprevalence varies by species and location [13]. Studies on C. burnetii seroprevalence in
cattle varied from 5% in Dakar, Senegal, to 55% in Zaria, Nigeria [13]. The seroprevalence
of C. burnetii has previously been reported in pastoral livestock in south-east Ethiopia,
Africa, with the highest seroprevalence found in camels (90%), followed by goats (54%) and
cattle (31%) [14]. Between 2013 and 2015, the Jimma zone in the Oromia region, Ethiopia,
was affected by an increasing trend of abortion episodes in ruminants over these years [15].
More than 11,487 cases were recorded, which included cattle, goats and sheep [16]. The
overall seroprevalence in dairy cattle in the capital city of Jimma zone (Jimma town) was
estimated to be close to 9%, with a higher seroprevalence in cattle at slaughterhouses than
in cattle at dairy farms [15]. Despite the relatively high seroprevalence in livestock and the
high cattle density in Jimma, the geographical variation in the distribution of C. burnetii
exposure in the region is yet to be investigated. Rural communities in the Jimma zone are
likely to be at a higher risk of exposure to C. burnetii due to the high density of cattle herds,
extensive management systems, potential contact with other herds and associated socio-
environmental conditions. Knowledge concerning the relative distribution of C. burnetii
exposure in livestock is important for assessing the baseline risk to human communities in
the vicinity of infected farms.

To prevent and control future outbreaks, it is important to understand which areas
may have a higher risk of infection and the role that environmental variables play in the
risk of exposure. In the context of C. burnetii transmission, this approach is particularly
important given that environmental conditions have been linked with human Q fever
infections in several countries where livestock and human outbreaks have been reported in
the same place [11,12,17]. Spatial epidemiological methods are useful for understanding
the relationship between infection and covariables, such as land use and human population
density, and to predict disease frequency indicators at unsampled locations. Model-based
geostatistical and Bayesian approaches can be useful for disease control management by
estimating the variation in disease risk and by highlighting areas of higher risk [18,19].

In this study, we aimed to identify the geographical distribution of C. burnetii sero-
prevalence in the herds of Jimma town, which contained the cattle with a higher risk of
exposure, and quantify associated ecological risk factors. First, we explored the clustering
of Q fever seroprevalence via spatial correlations; second, we developed a geostatistical
regression model to quantify risk factors and predict the geographical risk of Q fever
seroprevalence in Jimma town to uncover the likely exposure risk of communities in the
vicinity of affected cattle herds.

2. Results
2.1. Spatial Variation of C. burnetii Seroprevalence and Analysis of the Clustering

Our results indicated that three of the 25 farms with the highest seroprevalence
were located in the eastern part of Jimma town (Figure 1). Moreover, the results of the
semivariogram of the observed C. burnetii seroprevalence showed a tendency for clustering
in the study area (Figure 2). The average cluster size of farm-level C. burnetii seroprevalence
was approximately 800 m.
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Figure 1. Spatial distribution of Coxiella burnetii seroprevalence related to the 25 dairy farms involved
in the study. The study area (main map) is situated in the Jimma town in the Oromia region, Ethiopia.

Figure 2. Geographical clustering of the C. burnetii seroprevalence in the 25 dairy farms involved in the study in Jimma
town: (A) raw data semivariogram and (B) residual semivariogram. One decimal degree corresponds to approximately
111 km at the equator.

The summary of the farm-level C. burnetii seroprevalence semivariogram (Table 1,
Figure 2a) estimated partial sill = 0.0063, nugget = 0, sill = 0.0063 and the practical range
(defined as the distance at which the variogram value was 95% of the sill) corresponded
to approximately 2.4 km at the equator. The summary of the residual semivariogram
(Figure 2b) showed partial sill = 0.1051, nugget = 0.8897, sill = 0.9948 and the practical
range was approximately 3.2 km at the equator (Table 1). The residual semivariogram
showed that 10.56% of the variation due to spatial aggregation.
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Table 1. Results from the variogram-based parameter estimations using the weighted-least-squares
method for the raw data and the residuals.

Parameters Raw Data Residuals

Range (ϕ) 0.0072 (~0.8 km) 0.0096 (~1.1 km)
Nugget (τ2) 0 0.8897

Partial sill (σ2) 0.0063 0.1051
Sill 0.0063 0.9948

Variance of spatial random effect 0% 10.56%

2.2. Farm Level and Socio-Environmental Risk Factors Associated with C. burnetii Seroprevalence

The best-fitting non-spatial multivariable model included the farm-level variable of
herd size and the environmental variables of population density, road density, elevation
and three landcover classes (Table 2). Our results indicated that while herd size, elevation
and the three landcover classes (i.e., grassland, cropland and built areas) were positively
associated with C. burnetii seropositivity, population density and road density showed a
negative association with C. burnetii prevalence. However, none of the associations were
statistically significant.

Table 2. Univariable and multivariable binomial generalised linear models at the farm level (n = 25) for C. burnetii in dairy
cattle herds of Jimma town.

Variable
Univariable Analysis Best-Fitting Multivariable Analysis

Coef. 95% CI p-Value Coef. 95% CI p-Value

Farm-Level Factors
Multi-age mix (ref. yes) 0.28 (−0.81, 1.37) 0.62

Multi-species mix (ref. yes) 16.04 (−4449.44, 4481.51) 0.99
Tick infestation (ref. yes) 0.18 (−0.9, 1.26) 0.75
Herd size (continuous) * 0.01 (0, 0.03) 0.17 0.01 (−0.14, 0.34) 0.42

Connected with other herd (ref. yes) 0.53 (−1.04, 2.1) 0.51
Management system: semi-intensive

(ref. intensive) 0.58 (−0.51, 1.67) 0.30

Nuisance (ref. yes) 0.45 (−0.86, 1.76) 0.50
Abortion history in the herd (ref. yes) −0.48 (−2.04, 1.09) 0.55

Ecological Factors
Elevation * 0.02 (−0.01, 0.06) 0.21 0.001 (−0.001, 0.004) 0.32

Population density * −0.01 (−0.02, 0) 0.20 −0.01 (−0.07, 0.06) 0.89
Road density 0.0002 (0, 0) 0.73 −0.01 (−0.03, 0.01) 0.16

Landcover: grassland
(ref. tree cover) −0.74 (−2.89, 1.4) 0.50 4.76 (−11.01, 20.52) 0.55

Landcover: cropland
(ref. tree cover) −0.78 (−2.39, 0.83) 0.34 4.64 (−11.79, 21.06) 0.58

Landcover: built areas
(ref. tree cover) −0.26 (−1.53, 1.02) 0.70 3.56 (−12.28, 19.4) 0.66

* Variables with p-value < 0.25; Coef: regression coefficient; CI: confidence interval; ref: reference.

The results of our Bayesian binomial geostatistical model indicated that, after account-
ing for the spatial dependence between surveyed farms, the C. burnetii seroprevalence had
a significant negative association with the underlying human population density. Our
results also indicated that, while not statistically significant, the variables elevation, tree
cover and road density were positively associated with C. burnetii seroprevalence, and that
cropland and built-up areas were negatively associated with C. burnetii seroprevalence
(Table 3).
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Table 3. Estimates of model parameters for C. burnetii seroprevalence based on a Bayesian geostatisti-
cal logistic regression model.

Variable Posterior
Mean 2.5CrI 97.5CrI

Elevation 0.014 −0.08 0.16
Landcover: tree cover (ref. grass cover) 1.48 −7.14 7.82
Landcover: cropland (ref. grass cover) −0.72 −6.76 4.49
Landcover: built area (ref. grass cover) −1.65 −7.13 3.11

Population density * −0.02 −0.04 −0.002
Road density 0.001 −0.003 0.004

Intercept −24.01 −274.8 136.6
Spatial Effect

Phi (ϕ) 48.3 2.70 97.35
Tau (τ) 61.07 0.01 541.5

* Significant effect; CrI: credible interval; ref: reference.

Our geostatistical model also indicated that after accounting for farm-level and socio-
environmental predictors and spatial autocorrelation, the radii of C. burnetii seroprevalence
in Jimma town was 6.9 km.

2.3. Predictive Distribution of C. burnetii Seroprevalence

Our predictive C. burnetii seroprevalence distribution map (Figure 3) indicated signifi-
cant spatial heterogeneity and particularly high exposure risk in the eastern area of Jimma
town (>20–45%). The predicted seroprevalence was higher (>10–20%) in two clusters in the
north-west and south-west of Jimma town compared to the central and western areas of
the town (<10%).

Figure 3. Predicted spatial distribution of C. burnetii seroprevalence based on the mean predicted
values for the 25 dairy cattle examined in Jimma town.

3. Discussion

Our model-based geographical study showed that the C. burnetii exposure risk from
dairy cattle varied significantly across the landscape in Jimma town, Oromia Region,
Ethiopia. Evidence of clustering of C. burnetii seropositivity in peri-urban and urban
herds was found, and C. burnetii seroprevalence was significantly associated with a lower
population density. Together these results indicated a significant risk to communities in the



Pathogens 2021, 10, 646 6 of 11

vicinity of these infected farms, which needs to be further investigated. Indeed, our results
demonstrated that the predicted risk of community C. burnetii exposure to potentially
infected dairy cattle was estimated to be the highest in the eastern parts of Jimma town,
providing an opportunity for further investigations into seroprevalence in the affected
communities.

The finding that C. burnetii seroprevalence was clustered in Jimma town up to a
distance of 800 m indicated a potential dispersal pattern, which is consistent with previous
Q fever studies in urban settings [20,21]. Our result is in line with that of an urban outbreak
study from Germany in 2005, where the attack rate was 1.3% at 350–400 m [22]. In our study,
this distance was slightly larger than that previously described and this difference could be
associated with factors that affect geographical dispersion, such as wind speed, barriers in
the landscape [12] and cattle movement relationships between farms; unfortunately, we
did not have such data to include in the model.

Our results of the residual spatial dependence in C. burnetii seroprevalence after ac-
counting for farm-level and environmental risk factors suggested that clustering C. burnetii
remains unexplained by other farm-level variables that were not included in our non-spatial
multivariable model. Important farm-level variables that should be considered in further
investigations include information about biosecurity measures that were implemented in
each farm, the introduction of new animals into the herd and relationships with Q fever
infection areas (e.g., synchronicity with other ruminant outbreaks in Jimma zone) [12].
Furthermore, there could be important small-scale ecological factors, the influence of socio-
economic factors, environmental bacterial contamination and bacterial survival that should
be taken into account to estimate the risk of C. burnetii exposure [23]. For example, the
environmental variables of wind speed and direction could also be considered in future
studies since C. burnetii attaches to dust particles, which suggests a prominent role of
wind-borne dispersal [9,10].

Due to the estimated presence of unexplained residual spatial clustering, a geostatis-
tical model was implemented to account for the residual spatial clustering across Jimma
town and predict C. burnetii at unsampled locations across the town. Our results indicated
that the risk of C. burnetii exposure was higher in areas with a lower population density,
which is consistent with the fact that cattle farms are normally located in peri-urbanised
areas with a lower population density. Furthermore, this association is consistent with
a previous study of an outbreak in Germany, where it was suggested that the urbanisa-
tion of rural areas was a potential factor that contributed to C. burnetii outbreaks [24].
Together, these findings have important public health implications. A preventive measure
to avoid C. burnetii exposures that was adopted by some countries is based on regulating
the proximity of urban residential areas to livestock facilities. In Germany, these urban
planning regulations involve a 500 m residential construction exclusion area around sheep
farms [25]. Meanwhile, in Australia (according to the Communicable Diseases Network
Australia), their recommendation of a 1 km residential exclusion from abattoirs is based on
the Netherlands outbreak [26].

Our predictive C. burnetii seroprevalence map indicated that predictive risk was not
constant in Jimma town and there were areas, particularly to the east of the town, where
the risk of C. burnetii exposure was predicted to be higher. While our previous study
demonstrated that cattle in Jimma town were under a high level of C. burnetii exposure [15],
our study expanded current knowledge in that it demonstrated that the east area of the
town presented the higher predicted seroprevalence compared to other parts of the town.
Our seroprevalence prediction map might help with targeting resources to ensure that
communities that are most at risk of Q fever infection to the east of Jimma town are
surveyed. Moreover, our predictive C. burnetii seroprevalence distribution map is an
important decision support tool to target not only livestock Q fever management plans but
also the deployment of subsequent follow-up studies to the human communities within
the identified high-risk areas.
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The findings of this study need to be interpreted in light of some important limitations.
First, the small sample size of the cattle herd samples and the small study area (approx. 54
km2) were limiting factors regarding drawing robust conclusions about the generalisability
of the results to other areas in the Jimma zone. Moreover, given the high level of livestock
production in the Jimma zone, other areas are also possibly at risk. Second, although
we found a significant association with human population density, it has to be taken
into account that this result is based on the resolution of the available human population
density raster, which was limited to a 5 km grid. Finally, while we found a higher risk of
C. burnetii seroprevalence to be associated with some ecological variables, elevation, tree
cover and road density (as a proxy of the density of residential areas), these effects were not
statistically significant. These results are not unexpected in an ecological study, as effects
will tend to the null; this is known as regression dilution bias [27].

In conclusion, our findings indicated that C. burnetii seroprevalence in dairy cattle
farms was highly clustered in Jimma town and that the geographical clustering was
associated with the contextual factors of the community. This study could also be used as a
model for other countries worldwide. Our results can form the basis for a decision support
tool to guide further empirical studies in livestock and people in the eastern part of Jimma
town where the risk of dairy cattle exposure to C. burnetii was predicted to be the highest.

4. Materials and Methods
4.1. Sampling and Environmental Data Collection

To estimate the seroprevalence of C. burnetii infection in the Jimma dairy herds, a total
of 227 cattle were tested in 25 dairy farms between October 2016 and October 2017 [15].
Blood samples were collected from the jugular vein from the 227 animals using a vacutainer
tube [see reference [15] for more details]. A total of 14 animals were seropositive for C.
burnetii [15]. The highest farm-level seroprevalence was 20% and serum samples were
tested using Indirect Enzyme-Linked Immunosorbent Assay (i-ELISA) from ID Screen® Q
Fever Indirect Multi-Species kits (ID.vet, Grabels, France) for the detection of antibodies
against C. burnetii [15]. The overall seroprevalence for each farm was calculated and
included in a map for visualisation purposes. The location of each farm was obtained from
the livestock and fisheries resources development office in Jimma town [15] and the Jimma
town dairy cooperative office. The coordinates (longitude and latitude) data of each farm
was collected using the Garmin GPS map 64 series.

We obtained a set of socio-environmental variables to explain the geographical vari-
ation in C. burnetii exposure in dairy cattle in Jimma town. C. burnetii can survive in
the environment and therefore environmental variables can be important predictors of
exposure. In fact, C. burnetii can attach to dust particles [9,10]; hence, windborne spread
has been linked with Q fever outbreaks [28]. Higher elevation is associated with stronger
winds [29]; therefore, elevation was considered in our analyses. Open areas can influence
the dispersal of dust particles [30] and therefore was considered as an environmental
predictor. Population density and road density were considered to investigate the public
health risk that was associated with dairy cattle seropositivity.

Elevations were obtained from the ASTER Global Digital Elevation Model (GDEM)
Version 3 (ASTGTM). Land cover was obtained from the ESA Land Cover CCI – S2 proto-
type LC map of Africa 2016 at a 20 m resolution. The land cover categories that overlapped
with the study area were: tree cover areas, shrubs cover areas, grassland, cropland, vegeta-
tion aquatic, bare areas, built areas and open water. For the prediction analysis, the land
cover types were reclassified into three categories: tree cover, cropland and built areas.
Grassland was included as a reference, as well as the rest of the land cover categories. A
raster map that contained the human population density in 2000 (GPW V3, UN Adjusted)
with a 2.5 arc-minutes resolution was obtained from CIESIN. The road density was used as
a proxy of the density of residential areas in Jimma town and was calculated using the line
density tool that is available in the ArcGIS (version 10.8) toolbox (Table 4). All environmen-
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tal variables were downloaded in December 2020. Pearson’s correlation coefficients were
used to explore the correlations between environmental variables.

Table 4. Environmental variables included in the model for the C. burnetii geographical risk prediction to the population of
Jimma town.

Environmental Variable Data Source Spatial Resolution

Elevation (metres)
ASTER Global Digital Elevation Model (GDEM)

Version 3 (ASTGTM) (https://earthdata.nasa.gov,
accessed on 1 December 2020)

30 m grid cell

Land cover classifications

ESA Land Cover CCI – S2 prototype LC map of
Africa 2016

(http://2016africalandcover20m.esrin.esa.int/,
accessed on 1 December 2020)

20 m grid cell

Human population density (number of
people per 5 km2)

GPW V3, UN-adjusted, CIESIN
(http://sedac.ciesin.columbia.edu/data/set/

gpw-v3-population-density, accessed on 1
December 2020)

~5 km grid cells

Road network (used to calculate the road
density)

Ethiopia GIS Dataset (https:
//open.africa/dataset/ethiopia-gis-dataset,

accessed on 1 December 2020)
-

4.2. Analysis of Clustering

To investigate geographical clustering in C. burnetii seropositivity in Jimma town,
Ethiopia, semivariograms were used. The extent of the geographical clustering in Coxiel-
losis was quantified by using a semivariogram, which showed the average cluster size of C.
burnetii seropositive farms and how strong the clusters were. A semivariogram is a plot
of the semivariance of all pairs of positions under a series of defined separation distances
and can be defined by three parameters, namely the nugget, the range and the sill. The
sill is constituted by the sum of the partial sill and the nugget. The partial sill and nugget
correspond, respectively, to the components of the residual variation that are spatially
structured and unstructured (e.g., random error) variations. The nugget can represent
natural random changes, very small-scale spatial variation or measurement errors. The
range indicated the average size of clusters of C. burnetii seroprevalence. The residuals of
the non-spatial model were also investigated for spatial autocorrelation to estimate how
much spatial variation in C. burnetii seroprevalence was explained by the variables in the
non-spatial model. The semivariogram was constructed using the geoR package and the
model parameters were estimated using weighted least squares [31] in R [32].

4.3. Risk Factors Associated with Farm-Level Seroprevalence

We used a binomial generalised linear model to quantify associations between the
farm-level C. burnetii seroprevalence and the farm-level biosecurity risk factors and socio-
environmental predictors. The statistical analysis was performed in two steps. First, we
performed univariable analysis to select variables to be included in the final multivariable
model based on a p-value < 0.25. Second, we performed multivariable analysis by including
the previously selected variables and all the ecological variables for the final multivariable
model. Models were performed using Stata version 15.1 software [33].

4.4. Modelling the Geographical Risk Prediction of C. burnetii Seroprevalence

Based on the results of the residual semivariogram analysis, we decided to implement
a Bayesian geostatistical binomial model to account for the residual spatial autocorrelation.
The model was adjusted for data on socio-environmental risk factors correlated with the
prevalence of C. burnetii seropositivity in Jimma, Ethiopia, by using OpenBugs version
3.2.3 (MRC Biostatistics Unit, Cambridge, and Imperial College London, U.K.). The model
included intercept and environmental variables, such as elevation, land cover, population

https://earthdata.nasa.gov
http://2016africalandcover20m.esrin.esa.int/
http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density
http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density
https://open.africa/dataset/ethiopia-gis-dataset
https://open.africa/dataset/ethiopia-gis-dataset
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density and road density. The numbers of tested and positive animals were included as
observed data. A total of 25 individual observations of C. burnetii status and 4736 individual
prediction points were considered in the analysis, where the points were distributed in
a grid that overlapped the study area such that adjacent points were separated by 110 m
across Jimma’s landscape. The mean predicted values were used to create a predicted
spatial distribution of C. burnetii seroprevalence using a kernel function, which calculates
a magnitude per-unit area from points in ArcGIS desktop version 10.8. The outputs of
Bayesian models, including parameter estimates and spatial prediction at unsampled
locations, are distributions termed “posterior distributions”. The posterior distributions
fully represent the uncertainties associated with the parameter estimates. The full model
specification is included in Supplementary File S1. The parameter phi (ϕ) indicates the size
of clusters and refers to the rate of decay of the spatial autocorrelation; the radius of the
cluster corresponded to (3/ϕ) × 111 (one decimal degree is equivalent to approximately
111 km at the equator).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10060646/s1, Supplementary File S1 contains the statistical notation of Bayesian
geostatistical models and spatial interpolation. Reference [34] is cited in the supplementary materials.
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