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Abstract

In recent years, several studies have reported that the allocation of spatial attention fluctuates

periodically. This periodic attention was revealed by measuring behavioral performance as a

function of cue-to-target interval in the Posner cueing paradigm. Previous studies reported

behavioral oscillations using target detection tasks. Whether the influence of periodic attention

extends to cognitively demanding tasks remains unclear. To assess this, we examined the effects of

periodic attention on the perception of duration. In the experiment, participants performed a

temporal bisection task while a cue was presented with various cue-to-target intervals. Perceived

duration fluctuated rhythmically as a function of cue-to-target interval at a group level but not at an

individual level when the target was presented on the same side as the attentional cue. The results

indicate that the perception of duration is influenced by periodic attention. In other words,

periodic attention can influence the performance of cognitively demanding tasks such as the

perception of duration.
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Introduction

Our ability to discern the passage of time involves multiple mechanisms corresponding to
different timescales: millisecond range, seconds-to-minutes-to-hours range, and the 24-hr
light–dark cycle (Buhusi & Meck, 2005). The phenomenon of duration distortion has long
been used to investigate mechanisms of duration perception in the millisecond range.
Duration distortion refers to the phenomenon whereby perceived duration deviates from
physical duration. For example, flickering stimuli (Hashimoto & Yotsumoto, 2015; Herbst,
Javadi, van der Meer, & Busch, 2013), adaptation to a specific duration (Heron et al., 2012;
Shima, Murai, Hashimoto, & Yotsumoto, 2016), adaptation to a specific temporal frequency
(Johnston, Arnold, & Nishida, 2006), and the eccentricity of the stimulus (Kliegl & Huckauf,
2014) have all been shown to distort perceived duration; the knowledge obtained from these
studies has contributed to revealing the mechanisms of time perception.

Attention is also a factor that alters perceived duration. Many studies have reported that
the duration of an attended stimulus is perceived as longer than an unattended stimulus. For
example, an oddball stimulus, which attracts more attention, embedded in a sequence of
standard stimuli is perceived as longer than a standard stimulus (Tse, Intriligator, Rivest, &
Cavanagh, 2004; Ulrich, Nitschke, & Rammsayer, 2006).

The overestimation of duration for an attended stimulus has also been reported using the
Posner cueing paradigm. In a typical Posner cueing task, a brief flash called an attentional cue
is first presented on either side of a fixation point. Then, a target stimulus is presented on the
same or opposite side of the attentional cue. The participants are instructed to detect the
target stimulus as fast as possible. Previous studies have shown an attentional facilitation
such that the reaction time was faster when the target stimulus was presented in the same side
as the attentional cue (cued location) than when the target stimulus was presented opposite of
the attentional cue (uncued location; Chica, Martin-Arevalo, Botta, & Lupianez, 2014;
Posner & Cohen, 1984). Studies using the Posner cueing paradigm to measure time
perception require participants to judge the duration of the target stimulus. These studies
have shown that the target stimulus presented on the cued location is perceived longer (Enns,
Brehaut, & Shore, 1997; Mattes & Ulrich, 1998; Seifried & Ulrich, 2011; Yeshurun &
Marom, 2008; but see Chen & O’Neill, 2001).

These attention-induced distortions of perceived duration can be explained not only by the
distortion of the duration itself but also by the misperception of the stimulus onset or offset.
In fact, attention is known to alter the temporal resolution of vision (Hein, Rolke, & Ulrich,
2006; Rolke, Dinkelbach, Hein, & Ulrich, 2008). For example, the onset of the attended
stimulus can be perceived earlier (Enns et al., 1997; Rolke, Ulrich, & Bausenhart, 2006;
Shore, Spence, & Klein, 2001), while the offset of the attended stimulus can be perceived
later (Rolke et al., 2006). However, it should be noted that the perceived onset and offset
timing alone do not determine the perceived duration. For example, the interval between the
perceived onset and the perceived offset does not necessarily match the perceived duration
(Bendixen, Grimm, & Schröger, 2006). Furthermore, duration distortion can be observed
without changes in the perceived timing of the onset or offset (Johnston et al., 2006; Kaneko
& Murakami, 2009).

In a classical Posner cueing paradigm, a shortening of the interval between the attentional
cue and the target onset (cue-to-target interval) leads to a faster reaction time in the cued
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versus uncued location (attentional facilitation). Conversely, when the cue-to-target interval
is long, the reaction time is slower in the cued versus uncued location (inhibition of return
[IOR]; Posner & Cohen, 1984). Recently, periodic fluctuations in behavioral performance
have been reported using densely sampled cue-to-target intervals in the Posner
cueing paradigm (Fiebelkorn, Saalmann, & Kastner, 2013; Landau & Fries, 2012;
Song, Meng, Chen, Zhou, & Luo, 2014). This periodic fluctuation, called behavioral
oscillation, is different from the classical time course of attention (attentional facilitation
and IOR) in that the behavioral oscillation has higher frequencies of performance
fluctuation. It has been suggested that these behavioral oscillations reflect the periodic
mechanism of attention (VanRullen, Carlson, & Cavanagh, 2007; VanRullen & Dubois,
2011). Studies of behavioral oscillation report performance fluctuations at the theta
frequencies (Fiebelkorn et al., 2013; Hickok, Farahbod, & Saberi, 2015; Landau & Fries,
2012; Tomassini, Spinelli, Jacono, Sandini, & Morrone, 2015) or at the alpha frequencies
(de Graaf et al., 2013; Romei, Gross, & Thut, 2012; Spaak, de Lange, & Jensen, 2014). The
behavioral oscillation occurs in antiphase between the cued and uncued locations (Landau &
Fries, 2012), suggesting that once the attentional cue attracts attention to the cued location,
attention is alternately directed to cued and uncued locations.

The purpose of this study was twofold. The first aim was to investigate the periodic
mechanism of attention. Most studies of behavioral oscillation employ a simple target
detection task with brief target stimuli. However, it is unknown if the behavioral
oscillation observed in that task can also be observed in cognitively demanding tasks with
longer target stimuli. Such differences in task and target duration are known to alter the effect
of attention. For example, IOR occurs earlier in detection tasks than in discrimination tasks
(Klein, 2000; Lupiáñez, Milán, Tornay, Madrid, & Tudela, 1997). Also, a longer target
duration induces stronger attentional facilitation than brief target duration
(Martı́n-Arévalo, Chica, & Lupiáñez, 2013; Maruff, Yucel, Danckert, Stuart, & Currie,
1999). In this study, we investigated whether the periodic mechanism of attention
influences performance on the duration judgment task, which is cognitively demanding
with a longer target durations. If periodic attention influences the perception of duration,
the perceived duration of a target stimulus presented after the attentional cue should fluctuate
rhythmically as a function of the cue-to-target interval.

The second aim of our study was to investigate the role of periodic attention on duration
perception. As mentioned previously, attention distorts perceived duration by distorting
perceived duration itself or by misperception of the onset or offset of a stimulus. In this
study, we investigated whether the perception of duration was influenced by periodic
attention to the timing of the stimulus onset. The cue-to-target interval was defined as the
interval between the attentional cue and the target onset. The cue-to-target interval was
sampled densely to carefully manipulate attention to target onset timing.

Method

Participants

Ten students from the University of Tokyo (one author and nine naive participants, eight
males and two females, two left-handed and eight right-handed individuals, 21.2� 1.2 years
of age) participated in this experiment. All participants had normal or corrected-to-normal
vision. All participants gave written informed consent to participate in the experiment in
accordance with the Declaration of Helsinki. The protocol was approved by the institutional
review boards of the University of Tokyo, and all experiments were carried out in accordance
with the guidelines set by the Ethics Committee of the University of Tokyo.
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Apparatus

Stimuli were generated using Matlab [v. 2012b], Psychtoolbox [v. 3.0.11], Palamedes toolbox
[v. 1.8.0] (Brainard, 1997; Pelli, 1997). Stimuli were presented on a gamma-corrected CRT
monitor (DiamondtronM2 RDF223H, Mitsubishi, Tokyo, Japan) controlled by iMac OS X
10.9.5 (Apple, 1024� 768 pixels, 120Hz refresh rate). The experiment was conducted in a
dark room. The viewing distance was 57.3 cm, and participants were asked to stabilize their
head on a chin rest.

Stimuli

The stimuli used in this experiment are shown in Figure 1. The standard and target stimuli
were white disks (92 cd/m2, 4� in diameter) presented on either side of the fixation point
(black cross, 1� � 1�) on a gray background (23 cd/m2, 40� � 30�). The distance between the
fixation point and the center of the disk was 5�. The fixation point was presented at the center
of the screen throughout the sessions. The attentional cue was a white rectangle (92 cd/m2,
4� � 1�) briefly presented (50ms) on either side of the fixation point. The distance between the
center of the fixation point and the closer side of the rectangle was 8�.

Procedure

Participants performed a temporal bisection task which was composed of a learning phase
and a testing phase. In the learning phase, a short standard stimulus (325ms) and a long
standard stimulus (775ms) were randomly presented on either side of the fixation point at the
center of the screen. Participants were asked to learn these two standard durations and
indicate whether the presented stimulus was short or long by pressing a button. After the
learning phase, a testing phase started. The attentional cue was briefly presented on either

Figure 1. The stimuli used in the experiment. Left: The attentional cue was briefly presented on either side of

the fixation point. Right: Following the cue and cue-to-target interval, a target stimulus was presented on either

side of the fixation point. In the cued condition, the attentional cue and the target stimulus were presented on

the same side (solid lines). In the uncued condition, they were presented on the opposite side (dashed lines).
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side of the fixation point. Following the cue, a target stimulus was presented on either side of
the fixation point. The duration of the target stimulus was chosen randomly from seven
durations (325–775ms, 75-ms step), and the cue-to-target interval (interval between the
onset of the attentional cue and the onset of the target stimulus) was randomly chosen
from 33 durations (250–1,050ms, 25-ms step). In the cued condition, the target stimulus
was presented on the same side as the attentional cue (cued location). In the uncued
condition, it was presented on the opposite side of the attentional cue (uncued location).
Participants were asked to judge which of the two standard durations from the learning phase
most closely matched the duration of the target stimulus. The intertrial interval (interval
between the response and the onset of the attentional cue in the next trial) was randomly
jittered in the range of 700 to 1,700ms.

Participants registered their responses by pressing an up-arrow key or a down-arrow key
with the forefinger of their dominant hand. The key assignments were counterbalanced across
participants. They were also instructed to fixate on the fixation point throughout the sessions
and to not count the durations (Rattat & Droit-Volet, 2012).

The number of trials in the testing phase was 9,240, and these trials were divided into
60 blocks across 10 days, resulting in 154 trials per block and 6 blocks per day. Half of the
trials were cued conditions, and the other half were uncued conditions. The cued trials and
the uncued trials were randomly presented. The number of trials per target duration per cue-
to-target interval was 20. To learn and retain the internal representation of the standard
durations, learning phases were embedded in the testing phase. Each block was separated
into four parts, and learning phases were inserted at the beginning of each part: 12 learning
trials were inserted before the first trial of each block, and 4 learning trials were inserted
before 40th, 78th, and 117th trials of each block.

On the first day of the experiment, participants underwent a practice block with 140 trials
to accustom themselves to the temporal bisection task before the main experiment. Thus, the
number of blocks on the first day was seven: one practice block and six experimental blocks.
The procedure was the same as the main experiment except that the attentional cue was not
presented before the target stimulus.

Data Analysis

To improve the signal-to-noise ratio, we performed a binning procedure used in Fiebelkorn
et al. (2013). For example, trials from the 250 -, 275 -, and 300-ms cue-to-target intervals were
merged per target duration, and these merged trials were considered as trials from the 275-ms
cue-to-target interval. This 50-ms bin was shifted forward by 25ms, and trials from the 275 -,
300 -, and 325-ms cue-to-target intervals were merged per target duration and considered as
trials from the 300-ms cue-to-target interval. This procedure was repeated throughout the
duration of the cue-to-target interval (250–1,050ms). As a result, cue-to-target intervals
decreased from 33 (250–1,050ms) to 31 (275–1,025ms). Before binning, the number of
trials per cue-to-target interval was 20 per one target duration. After binning, the number
of trials per cue-to-target interval increased to 60 per one target duration.

In each cue-to-target interval, the proportions of long responses were calculated for each
target duration, plotted as a function of target duration, and then fit with a cumulative
normal distribution function:

y ¼
�ffiffiffiffiffiffi
2�
p

Z x

�1

exp �
�2 x� að Þ

2

2

� �
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. Next, the parameters � and � were estimated. Fitting and estimation were conducted using
Palamedes toolbox for Matlab (Prins & Kingdom, 2009). The parameter �, which
indicates the duration that gives 50% long responses, was determined as the bisection
point at a particular cue-to-target interval and indicated perceived duration. The bisection
points were calculated for each cue-to-target interval and calculated separately for cued
and uncued conditions.

After estimating the bisection points, we tested whether the bisection points of the cued
and uncued conditions fluctuated rhythmically. The fluctuation of bisection points may
contain both the slower temporal component reflecting the classical time course of
attention (attentional facilitation and IOR) and the faster temporal component reflecting
periodic attention. We first removed this slower component by detrending with a first-
order linear function and filtered by a third-order Butterworth filter (cutoff frequency:
3 Hz; see Fiebelkorn et al., 2013; Song et al., 2014). A single-frequency sine function was
then fit to this high-passed fluctuation of bisection points in each condition and in each
participant with the least squares method. The best fit frequency of the sine function was
estimated. The coefficient of determination (R2) of this fitting procedure was used as an index
of periodicity in the bisection points (de Graaf et al., 2013; Fiebelkorn et al., 2011; Picazio
et al., 2014):

individual R2 ¼ 1�

P
yi � ŷið Þ

2

P
yi � �yið Þ

2

group R2 ¼

P
individual R2

n

where yi is the bisection point at the ith cue-to-target interval, ŷi is the value of the fit sine
function at the ith cue-to-target interval, �y is the mean of the bisection points across all cue-
to-target intervals, and n is the number of participants. Note that the group R2 value was the
simple mean of the individual R2 values, thus the fitting of psychometric functions,
detrending, and the fitting of sine functions were always performed at an individual level.
The individual R2 and group R2 show the extent to which the single-frequency sine function
fits the fluctuation of bisection points at an individual level and at a group level, respectively
(Fiebelkorn et al., 2011). In other words, a significantly high R2 value indicates rhythmic
fluctuation of the bisection points.

Permutation testing was conducted to test whether the R2 value was statistically
significant. The proportion of long responses was permutated across cue-to-target
intervals, before applying the 50-ms binning process. This permutation procedure was
conducted separately for each participant and target duration. The permutated data were
then binned, and the R2 value was calculated for each permutation. After 2,500 iterations, a
sampling distribution of R2 values was constructed. If the R2 value from the real data set was
larger than the top 5% of R2 values from the sampling distribution, the R2 value was
considered to be significant. We analyzed not only raw bisection points but also the
difference between bisection points in the cued and uncued conditions to determine
the spatial effect of attention. After calculating the difference in bisection points’ between
the two conditions, the same procedure (fitting to a single-frequency sine function, R2 value
calculation, and permutation testing) was conducted.

Landau and Fries (2012) reported that the effect of periodic attention is stronger when the
attentional cue is presented on the right hemifield. To confirm this attentional benefit, the
same analysis was conducted only using trials in which the attentional cue was presented on
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the right hemifield. In addition, we investigated whether discrimination accuracy fluctuated
rhythmically. The slope of the psychometric function (i.e., the parameter �) was regarded as
an indicator of discrimination accuracy. The same procedure was conducted to the slope
parameters in the cued and the uncued conditions, and the difference in slopes between the
cued and the uncued conditions.

In addition to the analysis of periodicity, the classical time course of attention, such as
attentional facilitation and IOR, was also examined via a two-way repeated measures
analysis of covariance. The null hypothesis was that there would be no bisection point
difference between the cued and uncued conditions and no linear trend of the bisection
point sequences. The factors were 2 conditions (cued and uncued) � 31 cue-to-target
intervals.

Results

Psychometric functions in a typical participant are shown in Supplementary Figure 1. The
fluctuation of bisection points in the cued and the uncued conditions in a typical participant
is shown in Figure 2 and in all participants in Supplementary Figure 2. After detrending with
a first-order linear function, filtered by a third-order Butterworth filter, and fitting to a single-
frequency sine function, the R2 value was calculated. The fit results for all participants in the
cued and the uncued conditions are shown in Supplementary Figure 3. Group-level
permutation testing showed that the group R2 value for the observed data was
significantly higher than that of the permutated data in the cued condition (p¼ .029) but
not in the uncued condition nor in the difference between bisection points (p> .05; Figure 3).
This result indicates that single-frequency sine functions fit well with the fluctuation of
bisection points in the cued condition at a group level. In other words, the bisection points
fluctuated rhythmically as a function of the cue-to-target interval. In addition, to determine
whether such rhythmic fluctuations were observed at an individual level, individual
permutation testing was conducted using individual R2 values. R2 values were not

Figure 2. The bisection points as a function of the cue-to-target interval in a typical participant. The red

lines show the cued condition and the blue lines show the uncued condition.
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significant in almost all participants (p> .05) except one participant in the cued condition
(p¼ .01) and one participant in the difference between bisection points (p¼ .05). These results
indicate that single-frequency sine functions did not fit well with the fluctuation of the
bisection points at an individual level. Therefore, the rhythmic fluctuation of the bisection
points could not be observed at an individual level. The frequencies of the sine function, R2

values, and p values calculated for both group and individual assessments are shown in
Supplementary Table 1. In the cued condition, the frequencies of the best fit sine functions
were around the theta band (4.9� 1.5Hz (SD)). In addition, the group R2 values were
calculated with the same procedure using trials where the attentional cue was presented in
the right hemifield only. No significant difference was found in any conditions (p> .05). Also,
we did not observe significant periodic fluctuations of the slope parameters in any conditions
(p> .05).

The bisection points between the cued and the uncued conditions were also compared
(Figure 4). A two-way repeated measures analysis of covariance revealed a significant
difference in the bisection points between the cued and the uncued conditions, F(1,9)¼ 35.7,

Figure 3. Sampling distribution of group R2 values after permutation. Solid lines show the group R2 values

from the real data set and dashed lines show the top 5%. (a) The cued condition, p¼ .029, (b) the uncued

condition, p> .05, and (c) the difference between bisection points, p> .05.
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p< .001, but showed neither a significant trend of the bisection point as a function of the cue-
to-target interval, F(1,9)¼ 2.0, p¼ .19, nor an interaction, F(1,9)< 1, p¼ .66. These results
indicate that the bisection point was larger in the cued condition than in the uncued condition.

Discussion

Perceived Duration Fluctuated Rhythmically as a Function of Cue-to-Target Interval

In this study, we investigated whether the perception of duration is influenced by
periodic attention. It was found that perceived duration fluctuated rhythmically as a
function of cue-to-target interval in the cued condition at a group level but not at an
individual level. Periodic fluctuations in behavioral performance have been reported using
rather simple target detection tasks for briefly presented target stimuli. Although previous
research on spatial attention has pointed out that longer target duration and difficult tasks
alter, or sometimes negate, the effect of attention (Klein, 2000; Martı́n-Arévalo et al., 2013;
Maruff et al., 1999), here we suggested the possibility that the periodic mechanism
of attention also influences the performance of a cognitively demanding task such as the
duration perception task.

In the experiment, attention to the timing of the target onset was manipulated by densely
sampled cue-to-target intervals. We will introduce two explanations for the periodic
fluctuation of perceived duration. One is that attention to the timing of the target onset
altered the perceived onset timing (Enns et al., 1997; Rolke et al., 2006; Shore et al., 2001).
Although the perceived onset timing itself was not measured directly in our study, altered
perceived onset could influence perceived duration. The other plausible explanation is that
attention to the timing of the target onset altered the perceived duration itself and not via the
change in the perceived onset timing. Further research is needed to dissociate these two
possibilities.

The results of our study can be interpreted in the context of the pacemaker–accumulator
model (Gibbon, Church, & Meck, 1984; Treisman, 1963) that is one of the classical models

Figure 4. Averaged data across all cue-to-target intervals. Left: The averaged bisection points. Right: The

averaged psychometric functions across all cue-to-target intervals and all participants. Red shows the cued

condition and blue shows the uncued condition. Solid black lines indicate bisection points and dashed black

line indicates intermediate target duration.
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for time perception. This model includes three components: the pacemaker that emits pulses
to the accumulator and switch that lies between the pacemaker and accumulator. When we
start measuring time, the switch is turned on and the accumulator starts to accumulate pulses
from the pacemaker. When we stop measuring time, the switch is turned off, and the pulses
from the pacemaker are stopped and are no longer transmitted to the accumulator. The
number of accumulated pulses represents perceived duration. The attentional-gate model
(Zakay & Block, 1995) suggests that the switch is influenced by attention. When attention
is directed to the target stimulus, the switch can be turned on earlier and pulse transmission
can start sooner. The accumulator can then accumulate more pulses that result in longer
perceived duration. If periodic attention alters the switch onset timing, the number of
accumulated pulses would fluctuate periodically, which would result in the periodic
fluctuation of perceived duration.

Some studies have assumed that the frequency of behavioral oscillation is the same
between individuals, and their analyses were conducted to fit only one frequency to the
group-level mean of behavioral performance (Fiebelkorn et al., 2013; Landau & Fries,
2012). In contrast, other studies report that the frequencies of behavioral oscillations are
different across individuals (de Graaf et al., 2013; Fiebelkorn et al., 2011; Romei et al., 2012).
In our experiment, different frequencies were fit to each individual’s data, as in Fiebelkorn
et al. (2011), to observe behavioral oscillations both when the frequencies of behavioral
oscillations are the same across individuals and when the frequencies of behavioral
oscillations are different across individuals. As a result, in the cued condition, we observed
behavioral fluctuations at theta frequencies, which are consistent with studies that reported
behavioral oscillations using target detection tasks (Fiebelkorn et al., 2013; Landau & Fries,
2012; Tomassini et al., 2015).

Significant behavioral oscillations were not detected at the individual level in our study,
which may be due to the effect size of behavioral oscillation. In fact, many studies only report
behavioral oscillation at a group level and not at an individual level (Drewes, Zhu, Wutz, &
Melcher, 2015; Dugué, Roberts, & Carrasco, 2016; Fiebelkorn et al., 2013; Landau & Fries,
2012). A group-level analysis has greater statistical power than an individual analysis (Biau,
Kernéis, & Porcher, 2008), which may lead to detection of behavioral oscillation despite a
small effect size. In this study, the observed amplitude of the individual fluctuation of
bisection points was small (�6ms) relative to standard durations (325ms and 775ms), and
standard error of each bisection point was at around �8ms. Such a small effect size might be
the reason why behavioral oscillations were not detected at the individual level in our
experiment.

We speculate that the small effect size might be a result of the experimental manipulation.
For example, when the onsets of seven target durations were aligned, the offsets were not
temporally aligned. This problem was inevitable because seven target durations had to be
used to calculate a psychometric function for each cue-to-target interval in the temporal
bisection task. There are tasks that only require one target duration such as the temporal
reproduction task; however, we did not use the temporal reproduction task because it is
known to have reproduction bias, especially in subsecond durations when participants
reproduce the duration by pressing a button (Shi, Ganzenmüller, & Müller, 2013).
Another plausible reason for the small effect size could be the large number of trials
required to complete the experiments. In the experiment, participants performed six blocks
per day, which took 1.5 hr each day, for 10 days. The prolonged experimental sessions seem
to have induced a learning effect. Bisection points obtained in the first day were smaller
than bisection points obtained in the last day, t(9)¼ 2.63, p¼ .027, while the difference in
bisection points between the cued and uncued conditions was not different between the
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first and last days, t(9)¼ 1.33, p¼ .21. This learning effect was represented by the change in
the bisection point itself, not the change in the fluctuation of bisection points, indicating that
the learning effect did not influence periodic attention. However, such a long experiment
might result in a practice effect that decreased the effect of attention (Lupiáñez, Weaver,
Tipper, & Madrid, 2001) and led to a decrease in periodic attention. This problem was
inevitable because many cue-to-target intervals had to be used to observe high-frequency
behavioral oscillations. Similarly, multiple long durations had to be used in order to estimate
a psychometric function.

The effect of periodic attention is known to be stronger in the right hemifield than in the
left hemifield (Landau & Fries, 2012). To determine whether such an attentional benefit
existed in our experiment, we conducted the same analysis using only trials in which the
attentional cue was presented in the right hemifield. However, we did not find periodic
fluctuations of perceived duration in either hemifield. To evaluate the hemifield-specific
effect in this analysis, the number of trials had to be cut by half, which decreased the
effect size. More trials will be required to examine hemifield-specific effects.

As saccadic eye movement can also affect duration perception (Morrone, Ross, & Burr,
2005), some may wonder whether behavioral oscillations might have resulted from
eye movements. Several studies observed behavioral oscillations after excluding trials with
eye movement, suggesting that behavioral oscillations are not completely a result of eye
movement (Fiebelkorn et al., 2011, 2013; Landau & Fries, 2012; Song et al., 2014).

Several previous studies suggested that behavioral oscillation is associated with neural
oscillation. For example, the frequency of behavioral oscillation correlates with individual
alpha frequency in the brain (de Graaf et al., 2013; Romei et al., 2012). A study reported that
behavioral oscillation derives from entrainment of neural activity in the visual cortex to
external flickering stimuli (Spaak et al., 2014). Behavioral performance correlates with the
phase of neural oscillation following particular timing (Busch, Dubois, & VanRullen, 2009;
Busch & VanRullen, 2010; Landau, Schreyer, van Pelt, & Fries, 2015; Sherman, Kanai, Seth,
& VanRullen, 2016). Future studies should investigate the neural implementation of periodic
attention altering perceived duration.

Attention-induced distortion of perceived duration can be induced not only by
misperception of the onset but also by misperception of the stimulus offset (Enns et al.,
1997; Rolke et al., 2006; Shore et al., 2001). In this study, we showed the effect of periodic
attention on the timing of target onset in the perception of duration by densely sampling
intervals between the attentional cue and target onset. Further studies will be needed to
discuss the effects of periodic attention on the target offset.

Bias Induced by an Attentional Cue Might Explain Shorter Perceived Duration in
the Cued Condition

Bisection points were larger in the cued condition than in the uncued condition. In other
words, perceived duration was shorter in the cued condition than in the uncued condition.
This result is inconsistent with studies that report an expansion of perceived duration in the
cued compared to uncued condition (Enns et al., 1997; Mattes & Ulrich, 1998; Seifried &
Ulrich, 2011; Yeshurun & Marom, 2008). One possibility is IOR-induced duration
compression that induces shorter perceived duration in the cued condition than in the
uncued condition when the cue-to-target interval is long (Osugi, Takeda, & Murakami,
2016). To test this possibility, we conducted an additional experiment with a shorter cue-
to-target interval (50ms). The detailed experimental procedure and results are provided in
Supplementary Materials. We did not observe a longer perceived duration in the cued
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condition even in the short cue-to-target interval. This result denied the possibility of IOR-
induced duration compression. The perceived duration was shorter in the cued condition
independently of the cue-to-target interval.

An alternative explanation for the shorter perceived duration in the cued condition is a
bias induced by an attentional cue. In the cued condition, an attentional cue was presented in
the same location as the target stimulus. The short duration of the attentional cue (50ms)
might bias participants’ judgment about the duration of the subsequent target, if presented in
the same location, as being shorter. Such bias has been reported in one previous study
(Wiener, Thompson, & Branch Coslett, 2014).

We did not observe the typical attentional effect (i.e., duration expansion in the cued
condition); thus, the typical attentional effect may be obscured by bias induced by the
attentional cue. This does not necessarily deny the possibility of periodic attentional
modulation; periodic attention and bias can occur simultaneously because attention-induced
duration distortion is a perceptual phenomenon and bias is a cognitive phenomenon (Wiener
et al., 2014). In addition, some behavioral oscillation studies reported periodic attention but not
typical attentional effects (Fiebelkorn et al., 2013; Landau & Fries, 2012). They indicate that
periodic attention can occur even in the absence of typical attentional effects. In fact, some
studies report behavioral oscillations that do not reflect periodic attentional modulation but
rather reflect periodic modulation of visual processing such as priming (Huang, Chen, & Luo,
2015) or visual categorization (Drewes et al., 2015). Therefore, the results reported in this study
do not deny the possibility that the observed oscillation reflects a periodic modulation of other
types of visual processing but not attention.

One candidate for a periodically modulated visual processing is duration perception.
Using a priming task, Huang et al. (2015) interpreted the behavioral modulations as the
periodic modulation of priming. Also, using a visual categorization task, Drewes et al.
(2015) interpreted the behavioral modulations as the periodic modulation of visual
categorization. By the same logic, using a duration perception task, our results can be
interpreted as the periodic modulation of duration perception. If periodic mechanism
exists in the duration perception, it would periodically change the perceived duration
directly not via periodic changes of attention. Further study is needed to explore what was
actually modulated during periodic fluctuation of the perceived duration.

Periodic Fluctuation of Perceived Duration Was Observed Only in the Cued Condition

In this study, significant behavioral oscillation was observed only in the cued condition. This
result is partially inconsistent with Landau and Fries (2012) who reported that the behavioral
oscillations were in antiphase between the cued and uncued locations and concluded that
multiple locations were alternately attended to. To explain this discrepancy, we need to
assume multiple periodic attentional mechanisms for different locations, instead of one
periodic attentional mechanism with a periodic spatial modulation. Fiebelkorn et al. (2013)
reported behavioral oscillation only in the uncued condition and not in the cued condition.
They also reported that the frequencies of behavioral oscillations in the uncued condition differ
depending on the location relative to the cue. Their study suggested multiple periodic
attentional modulations in different locations relative to the cue not one periodic attentional
modulation mechanism that alternately attends to multiple locations. If different periodic
attentional mechanisms separately regulate behavioral oscillations of perceived duration in
the cued and uncued locations, periodic fluctuations would not necessarily be antiphase but
could have different characteristics between in the cued condition and in the uncued condition.
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Under this assumption, the reason of periodic fluctuation being observed only in the cued
condition can be explained by the stimulus property used in our study. The effect of attention
is known to decrease when the size of the attentional focus is larger because attention is
allocated evenly across the broad area (Castiello & Umiltá, 1990). In a typical stimulus
configuration of the Posner cueing paradigm, placeholders marked the location where the
target stimulus would appear (Chica et al., 2014) and restricted the size of the attentional
focus in both cued and uncued locations. In the present experiment, such placeholders
indicating potential target positions were not used, in an attempt to simplify stimulus sets.
Instead of placeholders, the attentional cue might work as the location cue that restricted the
size of the attentional focus in the cued location, and the size of the attentional focus was
restricted near the position of the attentional cue. However, the attentional cue could not
restrict the size of the attentional focus in the uncued location, and therefore, the attention
might be allocated evenly within the side of the screen opposite to the attentional cue. In the
cued condition, the target stimulus was presented in the cued location, where the size of the
attentional focus was restricted. Thus, the effect of attention might not decrease in the cued
condition. On the other hand, in the uncued condition, the target stimulus was presented in
the uncued location, where the size of the attentional focus was not restricted. Thus,
decreased attentional effects in the uncued location could have made the behavioral
oscillation in the uncued condition unobservable.

Conclusion

We investigated whether the perception of duration is influenced by periodic attention.
Perceived duration fluctuated rhythmically as a function of the cue-to-target interval
only in the cued condition. This result suggested the possibility that perceived duration is
distorted periodically by the periodic mechanism of attention, and that periodic
attention influences performance in a cognitively demanding task such as the perception of
stimulus duration.
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