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ABSTRACT
Until recently, subtropical Hawai‘i escaped the major bleaching events that have
devastated many tropical regions, but the continued increases in global long-term
mean temperatures and the apparent ending of the Pacific Decadal Oscillation
(PDO) cool phase have increased the risk of bleaching events. Climate models and
observations predict that bleaching in Hawai‘i will occur with increasing frequency
and increasing severity over future decades. A freshwater “kill” event occurred during
July 2014 in the northern part of Kāne‘ohe Bay that reduced coral cover by 22.5% in
the area directly impacted by flooding. A subsequent major bleaching event during
September 2014 caused extensive coral bleaching and mortality throughout the
bay and further reduced coral cover in the freshwater kill area by 60.0%. The high
temperature bleaching event only caused a 1.0% reduction in live coral throughout
the portion of the bay not directly impacted by the freshwater event. Thus, the
combined impact of the low salinity event and the thermal bleaching event appears
to be more than simply additive. The temperature regime during the September
2014 bleaching event was analogous in duration and intensity to that of the large
bleaching event that occurred previously during August 1996, but resulted in a much
larger area of bleaching and coral mortality. Apparently seasonal timing as well as
duration and magnitude of heating is important. Coral spawning in the dominant
coral species occurs early in the summer, so reservoirs of stored lipid in the corals
had been depleted by spawning prior to the September 2014 event. Warm months
above 27 ◦C result in lower coral growth and presumably could further decrease
lipid reserves, leading to a bleaching event that was more severe than would have
happened if the high temperatures occurred earlier in the summer. Hawaiian reef
corals decrease skeletal growth at temperatures above 27 ◦C, so perhaps the “stress
period” actually started long before the bleaching threshold of 29 ◦C was reached.
Hawai‘i is directly influenced by the PDO which may become a factor influencing
bleaching events in subtropical Hawai‘i in much the same manner as variations in the
El Niño Southern Oscillation (ENSO) influences bleaching events at low latitudes in
the tropical Pacific. Records show that offshore temperatures measured by satellite
will not always predict inshore bleaching because other factors (high cloud cover,
high wind and wave action, tidal exchange rate) can limit inshore heating and prevent
temperatures in the bay from reaching the bleaching threshold. Low light levels due
to cloud cover or high turbidity can also serve to prevent bleaching.
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INTRODUCTION
Coral bleaching is a stress response that results in the degeneration and expulsion of

symbiotic algae known as zooxanthellae from the coral host (Douglas, 2003). As a result,

the white skeleton becomes visible through the transparent coral tissue giving the organism

a “bleached” white appearance. Bleaching is a highly subjective term used to describe a

variety of conditions pertaining to low symbiont densities or loss of photosynthetic

pigments of the algal symbionts (reviewed by Fitt et al., 2001; Jokiel, 2004) and not a

simple direct response to elevated sea surface temperatures (SST). Local and global abiotic

(e.g., irradiance, salinity, ultraviolet radiation, etc.) and biotic (e.g., disease) stressors

may act alone or in combination to cause bleaching (reviewed in Jokiel, 2004). The zoox-

anthellae provide photosynthetic products vital to meeting host energetic requirements

(Falkowski et al., 1984). Bleached reef corals cannot survive very long unless conditions

change and the symbiosis is reestablished (Baker, 2001); however, in severe cases high

mortality occurs among the bleached corals (e.g., Wilkinson et al., 1999). Chronic or

widespread loss of symbionts disturbs the metabolism of the coral host and can lead to

delayed or reduced reproduction, tissue degradation, reduced growth, and death of the

affected tissue (Michalek-Wagner & Willis, 2001; Szmant & Gassman, 1990; Williams &

Bunkley-Williams, 1990).

Since the 1980s, regional bleaching events have occurred on coral reefs throughout

the world with increasing frequency and increasing geographic extent. The first massive

bleaching event off Panama in 1983 was followed by more frequent and severe events

throughout the world (Glynn, 1991; Graham, 1994). One of the largest mass bleaching

events occurred in the Seychelles in 1998 where more than 90% of live coral cover was lost

(Wilkinson et al., 1999). Another mass bleaching event in 2005 affected 80% of the coral

reefs in the Caribbean and over 40% of corals died at many locations across 22 countries

(Eakin, Lough & Heron, 2009). The occurrence and severity of mass coral bleaching has

increased continuously over the last two decades. As a result, almost every reef region in the

world has now suffered extensive stress or coral mortality.

These large-scale bleaching events correlate with elevated sea surface temperatures

(SST), especially during El Niño Southern Oscillation (ENSO) (Williams & Bunkley-

Williams, 1990; Glynn, 1991; Wellington et al., 2001). However, major bleaching events have

also occurred outside of ENSO periods (Brown, 1997). The increase in SST has been shown

to be the result of climate change due to anthropogenic release of carbon dioxide and other

gasses (Hoegh-Guldberg et al., 2007).

Until recently, the isolated subtropical location of Hawai‘i served as a haven from

conditions that have ravaged coral reef communities in other areas of the world. The

gradual rise in ocean temperature off Hawai‘i shown in long-term records led Jokiel &

Coles (1990) to predict that Hawaiian reefs were also approaching their upper thermal

limits and that the first bleaching events were imminent. The first large-scale bleaching

event in the Hawai‘i region occurred during the late summer of 1996 and was monitored

closely in Kāne‘ohe Bay throughout the period of onset, bleaching and recovery (Jokiel &

Brown, 2004). This event also impacted the northern part of the main Hawaiian Islands,
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while the majority of the Northwestern Hawaiian Islands (NWHI) showed no warming

or bleaching. In contrast, a second bleaching event during the summer of 2002 showed

positive anomalies in the NWHI and normal conditions in the main Hawaiian Islands

(Brainard, 2002; Aeby et al., 2003). In 2013, an apparent shifting of the Pacific Decadal

Oscillation (PDO) out of the cool phase and into the warm phase led Rodgers et al. (2015)

to conclude that another bleaching event was imminent.

The PDO index is an empirical orthogonal function (EOF) of monthly sea surface

temperature anomalies over the North Pacific poleward of 20◦N, calculated after the global

mean SST has been removed (Schneider & Cornuelle, 2005). The monthly mean global

average SST anomalies are removed to separate the Pacific pattern of variability from

any “global warming” signal that may be present in the data. Monthly values since 1900

are reported at http://research.jisao.washington.edu/pdo/PDO.latest. The PDO has been

described as a long-lived ENSO-like pattern of Pacific climate variability (Zhang, Wallace

& Battisti, 1997). The PDO is a climate phenomenon of the North Pacific (as opposed

to ENSO which affects the tropical Pacific). The PDO typically alternates between two

phases, but remains in each phase for a significant period of time (10–40 years). The two

phases of the PDO have been called warm phases (positive values) or cool phases (negative

values). The global SST pattern shows the strong tendency for temperatures in Hawai‘i

and the central North Pacific to be anomalously cool when SSTs along the coast of North

America are unusually warm, and vice-versa (Graham, 1994; Zhang, Wallace & Battisti,

1997; Mantua et al., 1997). During the past century, two major PDO eras that persisted for

20–30 years have been identified (Mantua et al., 1997; Minobe, 1997). Cool PDO regimes

prevailed from 1890 to 1924 and again from 1947 to 1976, while warm PDO regimes

occurred from 1925 to 1946 and from 1977 through the mid-1990’s.

Coral reefs are vulnerable to storm flooding events that reduce salinity in shallow waters

(Banner, 1968; Jokiel et al., 1993). Flash floods are intense, short in duration and common

in Hawai‘i. The humid air usually contains enough water to produce heavy rains at any

time, but normally flash floods are associated with upper-level forcing (Jokiel, 2006).

Flooding often occurs when convective cells are formed or enhanced by orographic

effects and become anchored against high-vertical relief features. These conditions

occurred during the night of 19 July 2014 in the Ko‘olau Mountains at the head of the

Wai‘āhole–Waikāne valley watershed. The resulting flash floodwaters drained onto inshore

reefs in the northern part of Kāne‘ohe Bay. Reef corals can live under natural conditions at

salinity ranging from 25 to 42h (Coles & Jokiel, 1992). Reduction in salinity to 15–20h for

a 24 h period or longer produces a lethal osmotic environment for the corals and their

endosymbionts (Mayfield & Gates, 2007). Such low salinities result in extensive bleaching

and high mortality (Coles & Jokiel, 1992; Jokiel et al., 1993). Freshwater flood events have

been documented in Kāne‘ohe Bay, Hawai‘i during May 1965 (Banner, 1968), again during

1988 (Jokiel et al., 1993) and recently the more localized event occurred during flash

floods in July 2014 (Bahr, Rodgers & Jokiel, 2015) for a frequency of re-occurrence of

approximately 25 years. During the 1965 flood, the freshwater discharged into the bay in

a 24 h period was calculated to be equivalent to a surface layer of 27 cm over the entire
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bay (Banner, 1968). The reduction in salinity in surface waters caused massive mortality of

coral reef organisms, with near total mortality of corals to a depth of 1–2 m in the inshore

regions. Twenty-three years later, a comparable storm flood resulted in similar large-scale

destruction of the reef flat corals in shallow (<2 m) water (Jokiel et al., 1993). Data on the

frequency and intensity of these events are important in the understanding of long-term

trends in coral reef ecology (Rodgers et al., 2015).

The 2014 flash flood and subsequent high temperature bleaching event provided an

opportunity to test the hypothesis that high temperature and low salinity have a synergistic

negative effect on corals (Coles & Jokiel, 1978). In addition, this high temperature bleaching

event in relation to a long-term temperature record taken offshore is relevant to hind cast

information as well as projections that predict more severe and more frequent occurrences

over time (Jokiel & Brown, 2004; Buddemeier et al., 2008; Hoeke et al., 2011). The first

reports of bleaching led us to the hypothesis that the 2014 bleaching event would be more

severe than the previous 1996 event in Kāne‘ohe Bay, and would have greater impact in the

area previously damaged by the storm flood.

METHODS
Study site description
Kāne‘ohe Bay, located on the northeast coast of O‘ahu, Hawai‘i (21◦, 28′N; 157◦48′W), is a

shallow (>50% of the bay is less than 3.3 m) embayment and receives drainage from nine

watersheds. It is the largest sheltered body of water in the eight main Hawaiian Islands with

a total surface area of 41.4 km2 at mean surface levels (Jokiel, 1991; Bahr, Jokiel & Toonen,

2015). The bay contains numerous patch reefs and is bounded by a barrier reef on the

seaward side creating restricted water exchange with the open ocean (Fig. 1). Also, most of

the shoreline is ringed by shallow fringing reef 0.3–0.9 m deep (Jokiel, 1991; Bahr, Jokiel &

Toonen, 2015)). Due to restricted circulation in this bay the temperatures are historically

1–2 ◦C higher than the open ocean in the summer months. Consequently, the corals in

the bay are already living at temperatures that offshore ocean reefs will not experience for

many years under various scenarios of global warming (Buddemeier et al., 2008; Bahr, Jokiel

& Toonen, 2015).

Hawaiian waters contain about 40 coral species from eight families, of which only a few

species are abundant (Maragos, 1972; Bahr, Jokiel & Toonen, 2015). Circulation patterns

and environmental conditions control the distribution and abundance of coral species in

the bay (Smith et al., 1981); however, historical anthropogenic influences (e.g., nutrient

enrichment, dredging, and urbanization) have reduced coral coverage in the south bay

(detailed in Bahr, Jokiel & Toonen, 2015). Corals in Kāne‘ohe Bay are most commonly

found on the reef crests and slopes of the fringing and patch reefs (summarized in Smith,

Chave & Kam, 1973; Jokiel, 1991). The seaward portion of the barrier reef contains a

lower percentage of live coral cover averaging about 5–10%, most of which are high wave

energy coral species (e.g., Pocillopora meandrina and Porites lobata). Coral cover in the

landward lagoon waters ranges between 30 and 90%, which is among the highest in the

main Hawaiian Islands (Smith et al., 1981; Rodgers et al., 2015). The dominant corals
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Figure 1 Bleaching events in Kāne‘ohe Bay. Extent of impact in the 1996 (cross-hatch) and 2014 (gray)
bleaching events in Kāne‘ohe Bay, O‘ahu Hawai‘i. (A) Enlarged photograph of O‘ahu, Hawai‘i. Kāne‘ohe
Bay is indicated by the white square. (B) Impacted area from the proceeding freshwater event (July 2014)
is indicated in the area bounded by the black square. Location of temperature recorders are shown on
reef flat (black star), back reef (red star) and on reef slope (blue star).
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Montipora capitata and the Hawaiian endemic species, Porites compressa, comprise ∼90%

of the coral coverage in Kāne‘ohe Bay (Edmondson, 1929; Maragos, 1972; Jokiel, 1991).

Other abundant species include Pocillopora damicornis, Leptastrea purpurea, Porites lobata,

and Fungia scutaria. A total of 22 species of coral are now protected under the Endangered

Species Act, but none are found in Hawaii (NOAA, 2014). Surveys and assessments of this

research were conducted under the Hawai‘i Institute of Marine Biology Special Acitivity

Permit 2015–7.

Surveys
Freshwater kill
The freshwater event occurred during the night of 19 July 2014. The extent of the area

damaged by reduced salinity was determined on 25 July 2014 based on observations

of dead organisms as well as salinity measurements (YSI, model number 85-25FT)

(Video S1) among the northern leeward patch and fringing reefs in close proximity to

stream mouths (Fig. 1). The initial quantitative impact assessment of the freshwater event

was conducted on 20 August 2014. On patch reef 37, five 25 m transects were strategically

placed to include the reef flat on the north, south, east, and west facing sides of the reef

in addition to a central transect deployed parallel to shore (Fig. 1). GPS locations were

taken at the beginning and end of each transect using a Garmin GPSMAP 76. These sites

were also temporarily marked with rebar and color-coded cable ties to allow for transect

identification during resurveys. Benthic coral cover was determined using high resolution

digital images taken along each 25 m transect using a Canon G12 zoom digital camera

with an Canon WP-DC34 underwater housing. The camera was mounted to an aluminum

monopod frame, 73 cm from the substrate to provide a 50 cm × 69 cm image. The 50

high resolution non-overlapping images from each 25 m transect were imported into an

ecological analysis program PhotoGrid (Bird, 2001) where 25 randomly selected points

were projected onto each image for a total of 1,250 points per transect. Relative abundance

and composition of benthic organisms and substrate were quantified including individual

coral species, higher taxonomic algal functional groups (e.g., coralline algae, turf, macro,

etc.) and abiotic substrate. Coral recovery surveys were conducted on 20 February 2015 on

the same transects.

Bleaching event
Broad scale surveys were conducted on 14 October 2014 to determine the severity, extent,

and spatial patterns of bleaching on the fringing, patch, and barrier reefs in Kāne‘ohe Bay

(n = 144 sites). Rapid assessments of coral cover by species and condition at all sites were

conducted by a vessel operator and tender (KS Rodgers), navigator and data recorder (KD

Bahr) and surveyor (PL Jokiel). The visual estimate technique was conducted in clear calm

conditions from the surface through a look box and/or snorkeling along the reef edge and

across reef flats within a 5 min observation period generally covering a swath of 25 m in

length and 4 m in width. This method has been evaluated and quantitatively compared to

eight other methods (i.e., quadrat, random, point intercept transect, CRAMP RAT, video

transect, towed-diver, photographic transect, NOAA ground truth) and produces results
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comparable to techniques that require much more effort (Jokiel et al., 2015). The visual

estimate technique is very rapid (5 minutes per transect) but consequently shows higher

variance and requires an observer with extensive experience in quantitative assessments

of coral cover and condition (Jokiel et al., 2015). Through this technique, we were able

to evaluated bleaching severity and extent across the large sampling area and reduce

variance by using the same experienced observer (PL Jokiel) at all sites. Moreover, the large

number of sites increases confidence in the results. Coral condition was classified visually

as “bleached” (pure white), “pale” (obvious pigment loss but some color), “normal”

and newly “dead” skeleton using the same methodology and classification originally

established by Jokiel & Coles (1974). Estimates were made in the areas of high coral cover

at a depth of 1–2 m. Subsequently, coral recovery surveys occurred on 1 December 2014

to assess coral mortality and pigmentation on the same reefs throughout the bay (n = 120

sites) using the same methods and observer.

Analysis of historical sea water temperature (SST) and
meteorological data
Offshore SST records based on satellite and other data at weekly intervals on a one-degree

latitude–longitude grid were obtained from the Integrated Global Ocean Services System

(IGOSS) at the International Research Institute for Climate and Prediction (IRI) website.

These data are produced at the US National Meteorological Center (NMC) using optimum

interpolation (OI) analysis of SST fields blended from ship, buoy and bias-corrected

satellite data. Where satellite data are used they are adjusted for biases using the method

of Reynolds (1988) and Reynolds & Marsico (1993). A description of the OI analysis can be

found in Reynolds & Smith (1994). Reynolds (1993) gives examples of the effect of recent

corrections. The IGOSS-NMC data sets were analyzed for the time period from November

1981 through December 2014. The data set for 21–22◦N, 157–158◦W covers all waters

offshore off east O‘ahu. Weekly IGOSS-NMC temperature plots and temperature anomaly

plots for the Hawaiian region (16–33◦N, 150–180◦W) were also analyzed (Fig. 4).

A 47-year time series of twice weekly SST taken at Koko Head on O‘ahu, Hawai‘i was

developed by the National Marine Fisheries Service (NMFS) from 1955 to 1992. The

sampling site was located along the steep cliffs that extend into deep water at 21◦17′N;

157◦41′W. SST at this location is representative of offshore central Pacific surface waters

due to deep-water exposure and strong onshore currents (Seckel & Yong, 1977). The

IGOSS-NMC and the NMFS time series overlap between 1 November 1981 and 19 March

1992. An analysis of temperature records from the two sources during the overlap period

determined the legitimacy of combining the NMFS and IGOSS-NMC data into a single

record (Jokiel & Brown, 2004). Mean summer monthly temperature in the Hawaiian region

is approximately 27 ◦C ± 1 ◦C (Jokiel & Coles, 1977). A 30-day exposure to temperatures of

only 29–30 ◦C will cause extensive bleaching in Hawaiian corals (Jokiel & Coles, 1990).

Meteorological variables, irradiance and temperature in Kāne‘ohe Bay were monitored

throughout the bleaching events of 1996 and 2014 by an automatic recording weather

station located on Moku o Lo‘e at the Hawai‘i Institute of Marine Biology (HIMB) (Fig. 1).
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Continuous water temperature was recorded at 1–2 m depth at three locations in the

bay during the 2014 bleaching event: (1) fore reef slope of the Moku o Lo‘e Reef in an

area of high coral cover adjacent to the weather station (Fig. 1 blue star), (2) back reef

of Moku o Lo‘e Reef at the NOAA National Ocean Service (Station ID 1612480, sensor

E1, 1.2 m depth) in a sheltered area near a well-developed coral community (Fig. 1 red

star), and (3) among corals in shallow water on “patch reef 37” in the northern part

of the bay (Fig. 1 black star). Temperature at the HIMB weather station was recorded

using a recording thermistor thermometer (Cole-Parmer Instrument Co., Vernon Hills,

Illinois, USA). Temperatures on patch reef 37 were collected with an Onset HOBO Pendant

(UA-002-08; Onset Computer Corporation, Cape Cod, Massachusetts, USA) recording at

10 min intervals.

Statistical analysis
The long term Koko Head temperature trends between 1956 and 2014 were analyzed

using a linear regression and mean sea surface temperatures were analyzed with a One

way ANOVA. Assumptions of normally distributed residuals and homoscedasticity

were assessed through graphical analyses of the residuals. Detailed transect surveys were

analyzed using a paired t-test. All statistical analyses were processed using (JMP Pro, 2014)

Pro 11 software (SAS Institute Inc., USA).

RESULTS
Freshwater event
Previous freshwater storm events in Kāne‘ohe Bay in 1965 (Banner, 1968) and in 1988

(Jokiel et al., 1993) killed shallow water corals throughout the bay. In contrast, the event on

19 July 2014 was restricted to northern patch and fringing reefs located in close proximity

to Wai‘āhole and Waikāne stream mouths (Fig. 1). Within a 24 h period, 24 cm of rainfall

was measured at the Wai‘āhole rain gauge which increased the stream daily mean discharge

by an order of a magnitude from 0.74 m3 s−1 to 24 m3 s−1 over a 48 h period (USGS, 2014).

Hourly rainfall data during the event revealed the largest amount of rainfall (4.1 cm h−1)

occurred at the lowest tide exposing those shallow reef communities to further reductions

in salinity (Fig. S1). Temperatures prior to the storm event ranged from 27.4 ◦C to

29.2 ◦C on adjacent patch reefs. During the flood event the input of freshwater caused

temperatures on the adjacent reef flat to decrease by 1 ◦C and average irradiance levels

deceased by 55%. These low irradiance regimes persisted for three days following the event.

Extensive bleaching and mass mortality of corals and cryptic reef dwellers (e.g., eels,

crabs, shrimp) were observed on more than 50% of the leeward surveyed patch and

fringing reefs following the storm (Video S1). Coral tissues were killed and sloughed off

and the dead skeletons were subsequently overgrown by turf algae. Of the major benthic

substrate types surveyed, an increase was shown in all substrate types (i.e., macroalgae,

turf, calcareous coralline algae, and silt) with the exception of coral cover between

August 2014 and February 2015 (Fig. S2). On the surveyed patch reef 37, 22% of total

coral cover died as the direct result of the freshwater event.
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Figure 2 Variations in water temperatures in Kāne‘ohe Bay at different reef locations. Water temper-
atures at depth of less than 1 m on reef flat (solid black line for patch reef 37), depth of 1–2 m on reef
slope (dashed blue line for HIMB weather station) and on the back reef at 1–2 m depth (solid red line for
NOAA tide gauge station) during the 2014 bleaching event 20 August 2014–1 December 2014. Color of
lines matches the color of the stars marking the respective location of each measurement site as plotted
in Fig. 1.

Bleaching event
Broad-scale bleaching surveys
Extreme warming occurred offshore of Hawai‘i during August–September 2014, leading

NOAA (coralreefwatch.noaa.gov) to issue a bleaching warning in early September 2014 for

the island of O‘ahu. Notifications gradually increased to a full bleaching alert later in the

month. Reports of bleaching throughout Hawai‘i followed. By early September mean SST

in Kāne‘ohe Bay reached 28.5 ◦C and was increasing rapidly (Fig. 2). Corals throughout

the bay began to show signs of stress including contracted polyps, mucous secretion and

some discoloration (Video S2). The maximum daily temperatures reached 30 ◦C for nearly

two weeks with maximum temperatures that exceed 30 ◦C during mid-day on the reef flat

(Fig. 2). By the middle of September, mid-day hourly water temperatures on the reef flat

exceeded 31 ◦C. The conditions of low winds, high solar input, and increase in SST had a

significant influence on the severity and extent of coral bleaching in the bay (Fig. 1).

Extensive bleaching was first recorded on 21 September 2014 (Neilson, 2014). Massive

bleaching (80–100% of total coral cover) was observed in some areas (Fig. 3). High levels of

bleaching and paling were observed throughout the bay. In the north bay, 73% of surveyed

corals showed signs of bleaching and paling. Surveyed corals in the central and south

bay also had high levels of bleaching and paling (62%, 70% respectively) (Fig. 3). On the

barrier reef, where the total coral cover is low (5–10%), 72% of surveyed corals exhibited

signs of bleaching (Fig. 3). Bleaching was observed to decrease with depth, especially in

localized areas of high turbidity.
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Figure 3 Extent of 2014 bleaching event. Surveyed sites during the bleaching event in Kāne‘ohe Bay in
October 2014 (A) and after initial recovery in December 2014 (B). Area impacted by the flooding event
is indicated in the black square. Proportion of surveyed corals are shown as normal (red), pale (yellow),
bleached (white), and dead (black).

Relative bleaching sensitivity observed in September 2014 was similar to that reported

for the August 1996 bleaching event, with members of the Pocilloporidae family as the

most susceptible to bleaching. However, during the September 2014 event, colonies of

Montipora capitata showed varied bleaching responses and were often more resistant

to bleaching in comparison to the hardy Porites compressa. Additionally, we observed

bleaching variations within species, where colonies in the same environment and often

right next to each other, showed different pigmentation levels.

Recovery of pigmentation was observed in early December 2014 in most of the bay

except on the barrier reef where pigment loss was still prevalent (26%) (Fig. 3). A large

portion of the surveyed patch reefs were observed to recover in the north bay (75%), south

bay (91%) and the central bay (89%) (Fig. 3). Coral mortality levels were estimated to

be less than 2% in August 1996 (Jokiel & Brown, 2004), while bay wide surveys indicated

average coral mortality to reach 9% following the 2014 freshwater kill and bleaching events

combined (Table 1). Major mortality was largely confined to those reef areas impacted by

the freshwater event, reaching nearly 60% following the bleaching event, while the reefs

areas not influenced by the lowered salinity event only experienced 1% bleaching mortality

(Fig. 3 and Table 1).
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Table 1 Broad-scale bleaching assessment. Total coral cover is expressed as percent. Normal, pale,
bleached, and dead are expressed as proportions of the total coral cover in the freshwater impacted areas
and non-impacted areas during the bleaching assessment (14 October 2014) and the recovery assessment
(1 December 2014).

Proportion of
surveyed corals

14 October 2014: Bleaching 1 December 2014: Recovery

Impacted Non-impacted Overall Impacted Non-impacted Overall

Total coral cover 49.4 61 59.6 53.6 54.9 63.2

Normal 1.6 32.6 27.4 33.1 90.2 82.4

Pale 26.5 22.7 23 4.1 6.3 6

Bleached 49.4 44.7 45.3 2.8 2.6 2.6

Dead 22.5 0 4.3 60 0.9 9

Figure 4 Long term Sea surface temperatures (SST). Combined SST record using IGOSS-NMC
temperature data (1992–2014) and corrected NMFS data for Koko Head, O‘ahu (1956–1992).

Detailed transect surveys indicated an additional significant decline in coral cover of

29.6% between August 2014 and February 2015 (paired t-test; t(4) = 3.27, p = 0.031). The

increased temperatures in late September exacerbated mortality of those corals exposed

to the preceding flooding event. Therefore, the surveyed areas exposed to the flood water

experienced an overall 42% decline in coral cover between August 2014 and February 2015.

The two major species M. capitata and P. compressa continued to dominate the coral cover

throughout the bay as they have in the past through previous environmental perturbations

since quantitative measurements have been taken (e.g., see Smith, Chave & Kam, 1973;

Smith et al., 1981; Rodgers et al., 2015; Bahr, Jokiel & Toonen, 2015). We observed high

mortality in certain less abundant species, such as Pocillopora damicornis, as also described

in the 1996 bleaching event (Jokiel & Brown, 2004).
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Hind-casting using the HadISST data set
Offshore temperature during the 1996 bleaching event showed an offshore maximum of

27.4 ◦C, with one month mean temperature exceeding 27.0 ◦C, which might be taken as the

hind cast threshold for bleaching conditions in Kāne‘ohe Bay. However, if we use this value

as a bleaching threshold, severe bleaching should have occurred during 1968 (maximum

28.0 ◦C, with 4 months exceeding 27.0 ◦C) and 1974 (27.8 ◦C with 3 months exceeding

27.0 ◦C). We can state with confidence that large-scale bleaching absolutely did not occur

during the years 1968 and 1974. Extensive scientific observations were being made in

Kāne‘ohe Bay during that time by a number of scientists operating from HIMB at Moku o

Lo‘e with no reports of bleached corals. The classic initial research on coral bleaching was

then being conducted in Kāne‘ohe Bay (e.g., Jokiel & Coles, 1974; Jokiel & Coles, 1977; Coles,

Jokiel & Lewis, 1976) so certainly any bleaching would have been detected. Likewise, there

were no other reports of coral bleaching from O‘ahu or any of the Hawaiian Islands (Jokiel

& Brown, 2004).

Forecasting using the HadISST data set
The longest accurate temperature record available for Hawaiian waters shown in

Fig. 4. A linear regression of these data (1956–2014) shows a significant positive slope

(R2
= 0.04, F(1,4359) = 198.2, p < 0.0001) indicating a 0.02 ◦C increase in the annual

mean temperature each year and a 1.15 ◦C increase over the past 58 years. Mean sea surface

temperatures were significantly higher in 2014 (25.5 ◦C) in comparison to 1956 (24.4 ◦C)

(One way ANOVA; F(1,102) = 30.1; p < 0.0001). The trend is expected to continue as global

climate change continues unabated, and the bleaching threshold will be crossed more often

as time continues with increasingly long and more severe exposure to high temperature in

a manner consistent with climate models developed for the region (Buddemeier et al., 2008;

Hoeke et al., 2011).

DISCUSSION
Coral reefs of the world will be increasingly vulnerable to large-scale bleaching events

as the observed trend of increasing ocean temperatures continues. There is widespread

agreement that global warming due to the production of anthropogenic gasses and the

“greenhouse effect” is responsible for large-scale thermal bleaching throughout the world

(e.g., Pittock, 1999; Hoegh-Guldberg, 1999). The year 2014 ranks as Earth’s warmest since

the beginning of systematic temperature recordings in 1880, according to two separate

analyses by National Aeronautics and Space Administration (NASA) and National Oceanic

and Atmospheric Administration (NOAA) scientists (NASA Goddard Institute for Space

Studies, 2014). Dramatic increases have occurred in the amount of energy stored within the

ocean (which is 90% or more of the total “global warming” heat) in the 1998–2014 time

period (NOAA, 2015), which may signal another round of mass coral bleaching around the

world during 2015.

This study investigated the effects of the lowered salinity and thermal bleaching events

on the corals in Kāne‘ohe Bay during the summer of 2014. The freshwater kill event

reduced coral cover by 22.5% in the area directly impacted by flooding. The subsequent
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major bleaching event during September 2014 caused extensive coral bleaching and 1.0%

reduction in live coral throughout the portion of the bay not directly impacted by the

freshwater event. Areas that were influenced both by the thermal and freshwater events

were shown to have a 60.0% reduction in coral cover. Thus, the combined impact of the

low salinity event and the thermal bleaching event appears to be more than simply additive.

Chronology and extent of the Hawaii bleaching events
The 1996, 2002 and 2014 bleaching events in Hawai‘i were triggered by positive summer

open ocean temperature anomalies exceeding 1 ◦C. Moreover, periods of low winds,

high solar input, and mid-day water temperatures exceeding 30 ◦C had a significant

influence on the severity and extent of coral bleaching in Kāne‘ohe Bay (Figs. 2 and 3).

Observations made during the 1996 and 2014 events reinforce the role of high irradiance in

accelerating bleaching of corals (Jokiel & Brown, 2004), suggesting that corals in high light

environments may be more susceptible to bleaching (K Bahr, 2013, unpublished data).

Previous laboratory and field studies have shown Hawaiian reef corals to experience

physiological stress and decrease skeletal growth above 27 ◦C with a bleaching threshold of

29–30 ◦C (Jokiel & Coles, 1977; Jokiel & Coles, 1990), so perhaps the “stress period” actually

starts when seawater temperature on the reef exceeds 27 ◦C. Temperatures exceeded 27 ◦C

for four weeks prior to bleaching in August 1996 and persisted an additional two weeks

before dropping below 27 ◦C in mid-September. Another temperature peak occurred

in early October 1996 prolonging but not increasing the severity of the event. These

conditions persisted for an additional four weeks and subsided in mid-October. The

1996 bleaching event was restricted to the central and southern portions of the bay. In

2014, temperatures exceed 27 ◦C for three weeks prior to the recording of bleaching in

mid-September. These temperatures persisted for five weeks and slowly dropped below

27 ◦C in late October (Fig. 5). Bleaching occurred over a much greater area throughout

the bay in 2014 and extended to the barrier reef (Fig. 1). Higher coral mortality levels in

the September 2014 thermal bleaching event are attributed to the lowered salinity event

because the reefs areas not influenced by the lowered salinity event only experienced

1% bleaching mortality (Fig. 3 and Table 1). The two events were very similar in terms

of magnitude and duration of thermal stress (Fig. 5), but the September 2014 event

damaged a much greater area (Fig. 1). The 2014 bleaching event occurred later in the

summer suggesting that seasonal timing as well as duration and magnitude of heating are

important.

Coral spawning in the dominant species occurred earlier in the summer during 1996.

The dominant species Porites compressa spawns following the new moon every month

from June to September. The other dominant species Montipora capitata spawns after the

full moon from May to September. Perhaps both species had used their reserves of lipid

prior to the September 2014 bleaching event, which made them more vulnerable to the

increased temperature. The subsequent warm months above 27 ◦C result in lower growth

and presumably further decreased lipid reserves, leading to a bleaching event that was more

severe than would have happened if the high temperatures occurred earlier in the season.
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Figure 5 Comparison of temperature during the 1996 and 2014 bleaching events. Comparisons of the
summer water temperatures during the 1996 (blue) and 2014 (red) bleaching events. Time of initial
reports of bleaching for each event are indicated by respective arrow.

During the September 2014 bleaching event, several colonies of M. capitata were

observed to be more resistant to bleaching than P. compressa unlike the bleaching

hierarchy described by Jokiel & Brown (2004) during the August 1996 event. Since

then, hierarchical bleaching incidence and temperature tolerances by species have been

reported for Hawaiian corals by KD Bahr (2015, unpublished data) in manipulative

mesocosm experiments and confirm these new observations. Also, bleaching was

observed to be highly variable among individuals of the same species during the

September 2014 event. These differences may be attributed to different physiological

tolerance of the strains of Symbiodinium species and the coral hosts (Fitt & Warner,

1995; Warner, Fitt & Schmidt, 1996; Kinzie III, Takayama & Cofforth, 2001; Berkelmans

& Van Oppen, 2006). Moreover, the spatial extent and patterns of bleaching responses

may be influenced by factors that control the amount of solar radiation reaching

the corals (i.e., cloud cover, turbidity, shading, depth) (Kirk, 1994; Brown, 1997;

Mumby et al., 2001).

Global warming has impacted corals in various regions. Maynard et al. (2015)

summarized available information and report that bacterial, fungal and protozoan diseases

of corals, (including black band disease, yellow band disease and white syndrome) are

known to have links to elevated temperature. They developed climate models that project

higher temperature conditions will increase the susceptibility of corals to disease, increased

pathogen abundance and virulence. Vibrios are ubiquitous in the aquatic environment

with a high abundance of vibrios detected in tissues and/or organs of many marine

organisms such as algae, corals, fish, and zooplankton. There are 74 species of this group

are distributed among four different families (Thompson, Iida & Swings, 2004). Vibrio spp.

are frequently identified as pathogens of reef corals and have been associated with bacterial

Bahr et al. (2015), PeerJ, DOI 10.7717/peerj.1136 14/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.1136


bleaching (Kushmaro et al., 2001; Ben-Haim & Rosenberg, 2002; Weil, Smith & Gil-Agudelo,

2006; Rosenberg et al., 2007). Gregoracci et al. (2012) studied that bacterioplankton diversity

and abundance in a large tropical bay and found that higher nutrient input favored higher

microbial growth including Vibrio spp. Thus, a rich and diverse population of vibrio is

always present and nutrients brought into Kāne‘ohe Bay by the flood event could have

enhanced the growth of the vibrio disease during the following bleaching event. In fact, a

disease outbreak in Kāne‘ohe Bay was reported when the corals were beginning to recover

from bleaching (Department of Land and Natural Resources, 2015), but this work is still

in progress.

Documenting the causes of the freshwater reef kill and predicting
rate of recovery
The presence of a major flash flood was documented by rain and stream gauges. Very cold

water (i.e., stream water) measured by thermographs on the reef showed low temperature

at time of maximum stream flow of very short and intense duration. Dead and dying

organisms were found in shallow water (<2 m) only and deeper corals were not affected

due to the less dense freshwater that formed a persistent surface layer. Also, there was a

strong mortality gradient with a high percentage of dead and dying reef organisms near

the stream mouth grading into undamaged reefs at a distance of approximately 1 km from

the stream discharge point. Nutrients and sediment input that accompanied the flood

appeared to have an influence on the increase in area covered by macroalgae, turf, and silt.

We can rule out high temperature as a cause because the freshwater event occurred nearly a

month before the first signs of bleaching were observed throughout Hawaii. Observations

on the patterns of mortality in corals and other organisms (sea cucumbers, crabs and

cryptic fish such as eels) are consistent with historical evidence described in Kāne‘ohe

Bay from two previous freshwater kill events (Banner, 1968; Jokiel et al., 1993). Rate of

recovery in the area impacted is expected to be rapid, based on previous information.

Recovery was delayed after the 1965 storm event in the south basin due to the presence

of two major sewer outfalls, which led to macroalga overgrowth and anoxic conditions

and prevented coral recovery. After sewage discharge was terminated in 1979, these reefs

recovered rapidly as shown by surveys during 1985 (Hunter & Evans, 1995). In contrast,

the reef coral communities killed in the 1988 flood were not impacted by sewage and

consequently recovered rapidly, with substantial increases in coral cover at 5 years and near

complete recovery at 10 years (Jokiel et al., 1993). Comparison between recovery rates after

the two flood events suggests that Kāne‘ohe Bay coral reefs can recover quickly from natural

flood disturbances, but not under chronic polluted conditions.

Forecasting bleaching recovery
Rates of bleaching recovery in Hawaiian corals is on the order of several months as shown

by field studies (Jokiel & Coles, 1974) and laboratory studies (Jokiel & Coles, 1977), but with

accompanying rates of mortality depending on the extent and duration of the high tem-

perature exposure (Jokiel, 2004). Recovery from the 1996 bleaching event was described by

Jokiel & Brown (2004). Mortality rate was very low (<2%) so the major recovery response
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was from bleached condition to normal pigmentation, which occurred completely among

bleached corals within 6 months. The rapid recovery of Kāne‘ohe Bay bleached corals

observed in this study are consistent with previous findings. Due to the low mortality levels

and high recovery rates observed in August 1996, major phase shifts are not expected to

occur as a result of the September 2014 bleaching event. Results of these studies suggest

there is no justification for human intervention in the form of transplantation or seeding

larvae. However, bleaching events in Kāne‘ohe Bay are predicted to occur at much more

frequent intervals with much greater mortality due to impending climate change with near

elimination of Kāne‘ohe Bay corals by the end of the century (Buddemeier et al., 2008).

Pacific Decadal Oscillation (PDO) and bleaching events in Hawai‘i
The long-term trend of increasing water temperature in Hawaiian waters (Fig. 4) originally

led Jokiel & Coles (1990) to conclude that Hawai‘i was approaching the upper bleaching

threshold for corals. The first documented bleaching event in Hawai‘i occurred in 1996

(Jokiel & Brown, 2004). However, there was a downward change in the temperature trend

at the end of the 1997/98 ENSO (Fig. 4). Reefs in other parts of the world were severely

impacted by the extreme 1998 ENSO and following events (Fig. S3), but Hawai‘i reef

escaped damage. After the 1998 event, there was a slowing of the warming trend off Hawai‘i

and what appears to be another small oscillation between the 1996 and 2014 bleaching

events (Fig. 4). These changes are consistent with the findings of Fang, Wu & Zhang (2014).

Their model suggests that the “North Pacific Ocean decadal variability, its dominant

mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global

warming, but with PDO shifting to a higher frequency.” The mean global temperature

will continue to increase as humans add additional greenhouse gasses to the atmosphere.

Entering the cool phase of the PDO initially slowed predicted increases in temperature for

Hawaiian coral reefs, but much warmer conditions can be expected in Hawaiian waters as

the PDO reverses into the warm phase with the PDO warming increments being added

to the increasing global mean. The December 2014 PDO value hit a new all-time record

level of +2.51, which is the highest and hottest PDO index value since record-keeping

began in 1900. The index continued to be very high into 2015 (Joint Institute for the Study

of the Atmosphere and Ocean, 2015). Perhaps the PDO fluctuations may become a major

factor influencing future mass bleaching events in Hawai‘i, much as the patterns of ENSO

influences bleaching events at lower latitudes.

Bleaching in Hawai‘i compared to other geographic regions
The increase of approximately 1.15 ◦C over the course of the 58 year record from

Hawai‘i (Fig. 4) translates into a 0.20 ◦C increase per decade. This value falls within the

0.07 ◦C–0.5 ◦C increase per decade range measured on various coral reefs throughout the

world (summarized by Fitt et al., 2001). Monitoring of reefs throughout Hawai‘i over the

past 14 years (Rodgers et al., 2015) showed that overall coral cover and diversity in Hawai‘i

have remained relatively stable since the initial survey in 1998. During this period, coral

cover on reefs in the Caribbean and other regions declined by as much as 50% due to

climate change related bleaching events, increased storm damage and lowered coral growth
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(Wilkinson, 2004). Nevertheless, Hawai‘i is now at a threshold of more severe and frequent

bleaching events projected for the near future (Jokiel & Brown, 2004; Donner, 2009; Hoeke et

al., 2011; Rodgers et al., 2015).

CONCLUSIONS
Increasing emissions of anthropogenic greenhouse gasses have resulted in global climate

changes that include global warming as well as intensification of storm flood patterns.

Results of this study reveal the combined impact of a lowered salinity event and the

subsequent high temperature bleaching event caused a further reduction in coral cover.

The influence of two of events operating in succession produced higher levels of coral

mortality Kāne‘ohe Bay. The temperature regimes during the September 2014 bleaching

event were analogous to the August 1996 event in terms of duration and intensity, but a

larger area of bleaching and coral mortality was observed. Therefore seasonal timing as well

as duration and magnitude of high temperature events are important.

Until recently, subtropical Hawai‘i escaped the major bleaching events that have

devastated many tropical regions around the world, but the continued increases in global

long-term mean temperatures and the apparent ending of the Pacific Decadal Oscillation

(PDO) cool phase have increased the risk of bleaching events in this area. Moreover, the

PDO may become a factor influencing bleaching events in subtropical Hawai‘i in much

the same manner as variations in the El Niño Southern Oscillation (ENSO) influences

bleaching events at low latitudes in the tropical Pacific.

Records show that hindcasting using offshore temperatures measured by satellites will

not always accurately predict inshore bleaching. It is known that other factors (cloud

cover, wind and wave action, turbidity tidal exchange rate) can reduce high irradiance and

limit heating in the nearshore environment and thereby prevent or reduce bleaching and

mortality on coral reefs. Nonetheless, long term temperature records and documented

bleaching events are consistent with the climate models and observations that predict more

frequent and increasing severity of bleaching in Hawai‘i over future decades.
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