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Abstract: In this paper, a low-loss, spiral lattice photonic crystal fiber (PCF)-based plasmonic biosensor
is proposed for its application in detecting various biomolecules (i.e., sugar, protein, DNA, and mRNA)
and biochemicals (i.e., serum and urine). Plasmonic material gold (Au) is employed externally to
efficiently generate surface plasmon resonance (SPR) in the outer surface of the PCF. A thin layer
of titanium oxide (TiO2) is also introduced, which assists in adhering the Au layer to the silica
fiber. The sensing performance is investigated using a mode solver based on the finite element
method (FEM). Simulation results show a maximum wavelength sensitivity of 23,000 nm/RIU for a
bio-samples refractive index (RI) detection range of 1.32–1.40. This sensor also exhibits a very low
confinement loss of 0.22 and 2.87 dB/cm for the analyte at 1.32 and 1.40 RI, respectively. Because of
the ultra-low propagation loss, the proposed sensor can be fabricated within several centimeters,
which reduces the complexity related to splicing, and so on.

Keywords: photonic crystal fiber (PCF); confinement loss; wavelength sensitivity; plasmonic sensor;
refractive index (RI)

1. Introduction

Surface plasmon resonance (SPR)-based sensing technology has added a new dimension in
plasmonic science, as this phenomenon is highly capable of detecting very small refractive index
(RI) changes in the surrounding medium [1,2]. The SPR sensing phenomenon can be efficiently
demonstrated between the metal–dielectric interface when the frequency of the incoming light and
the frequency of the free electrons mutually coincides [3]. SPR sensors are used for different sensing
applications such as in diagnostics for health, environmental monitoring, and biochemical and
bio-organic sample detection [4,5]. Current SPR-sensing platforms are based on prism coupling,
optical fibers, and fiber gratings [6]. However, prism coupling based optical devices are bulky in
their configuration and not feasible for integration and miniaturization [7]. Optical fiber based
sensors offer a high resolution, a miniaturized structure, and are also capable in remote sensing
applications [8]. In contrast to conventional optical fiber, photonic crystal fibers (PCFs) are highly
acceptable for SPR-sensing purposes because of their unique, controllable light-guiding mechanism,
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excellent birefringent properties, and flexible structural design [9,10]. However, most of the reported
PCF-SPR sensors have a high propagation loss and comparatively low sensitivity. Therefore, the current
PCF-SPR sensing research can be tailored based on low propagation loss with high sensitivity. Owing
to the analysis and improved sensitivity response, the sensor’s performance can be increased by
varying the structural parameters [11] such as air hole dimensions, pitch, plasmonic metal thickness,
fiber length, ring numbers, and lattice configuration (i.e., hexagonal, circular, spiral, rectangular,
or octagonal).

Plasmonic material selection is another key issue for the PCF-SPR sensor. To date, various
well-known plasmonic materials are used to excite SPR such as gold [12,13], silver [4], copper [2],
graphene [14], and titanium nitride [15]. Recently, thin layers of oxides such as indium–tin oxide (ITO),
aluminum oxide (Al2O3), and titanium oxide (TiO2) have also been used [16–18], along with plasmonic
materials, to form a bimetallic layer, which assists in creating a strong SPR effect. The bimetallic layer also
assists in increasing wavelength sensitivity and sensing range. Until now, various PCF structures have
been proposed—internal metal-coated [19], external metal-coated [20], side-polished [21], D shape [22],
modified D shape [23], open channel [24], and slotted [25]—to improve the sensing response. Rifat et al.
proposed a D-shaped Au-TiO2 bimetallic coated plasmonic sensor [7], which shows the highest loss of
23.18 dB/cm, an average wavelength sensitivity of 9800 nm/RIU, and a resolution of 2.2 × 10−6 RIU.
However, to make a D-shaped flat surface, excessive surface polishing is needed. Recently, Zhang et al.
proposed a grooved, microstructure-coated PCF-SPR sensor [26], which showed a maximum loss of
140.3 dB/cm, an improved wavelength sensitivity of 15,933 nm/RIU, and a maximum wavelength
resolution of 6.84 × 10−6 RIU in the measurement range from 1.40–1.43. Therefore, the internal
microstructure coating makes this sensor critical during fabrication. To overcome the above limitations,
an external sensing method can be utilized by placing the sensing medium as well as plasmonic metal
at the outer surface of the PCF. On that perspective, until now, different types of circular PCF-SPR
sensors have been developed [27–29]. Liu et al. proposed a single-layer birefringent sensor [27], which
showed the highest leakage loss at 110 dB/cm, a wavelength sensitivity of 15,180 nm/RIU, and a sensor
resolution of 5.68 × 10−6 RIU in the sensing range between 1.40 and 1.43. Most Recently, Lou et al.
proposed a gold–graphene bimetallic sensor [28], which exhibited the highest propagation loss of
185.5 dB/cm and maximum wavelength sensitivity of 8600 nm/RIU in the sensing range from 1.33 to
1.38. All the above sensors have a hexagonal or circular lattice configuration. In addition, Hasan et al.
proposed a spiral lattice dual-polarized sensor [29], which showed the highest peak loss at 22.63 dB/cm
and wavelength sensitivity of 4600 nm/RIU. However, from the above literature review, it is clear that
the wavelength sensitivity is moderate, and the propagation loss is very high.

In this paper, a simple, low-loss, PCF-based SPR sensor is proposed to promote the detection of
analytes in the visible to near-IR wavelengths in real-time. The plasmonic metal layer and the analyte
layer are effectively placed on the outer portion of the PCF surface to reduce fabrication complexity.
In the cladding region, all lattice air holes are circular, and the hole dimensions are also identical,
which can make this sensor more feasible for practical realization. To utilize the sensing performances,
the impact of plasmonic materials with varying Au thicknesses, TiO2 thicknesses, and the impact of the
Au-TiO2 bimetallic layer compared to the only Au layer are studied. Later, the air hole dimensions and
pitch parameter effects are also studied, showing a corresponding normalized loss intensity. Finally,
the feasibility of fabricating the proposed sensor is discussed.

2. Sensor Design and Brief Theory

A two-dimensional schematic cross-section of the proposed PCF sensor is depicted in Figure 1,
where the array of air holes is well organized in a spiral configuration. This sensor consisted of three
air hole rings with six arms. In the first ring, the first hole was placed at a 30◦ position, and the
other holes, such as numbers 2, 3, 4, 5, and 6, were placed at 90◦, 150◦, 210◦, 270◦, and 330◦ positions,
respectively. The difference of the angular position between two adjacent holes in the same arm was
Θ = 30◦. The central air hole (core) diameter was dc = 3 µm, which was removed to confine maximum
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light at that region. Two air holes in the second ring were positioned at 0◦ and 180◦ (numbers 7 and 8),
and the other four air holes (numbers 15, 16, 17, and 18) have been removed from 60◦, 120◦, 240◦,
and 300◦ positions to excite SPR and also to stack the solid capillary for the consideration of fabrication.
The regular air holes are stacked with thin wall capillary. The distance from the core to the center of
the first ring of air holes was fixed at 2 µm, which is denoted as pitch (Λ). The other two pitches were
considered as 1.4 Λ and 1.8 Λ for the distance from the core to the second- and third-ring air holes,
respectively. The diameter of the cladding air holes was scaled at d = 1.3 µm.

Figure 1. (a) Two-dimensional cross-section view of the proposed spiral photonic crystal fiber (PCF)
sensor. (b) Computational meshing domain with optimized design parameters. PML, perfectly matched
layer; SBC, scattering boundary condition.

Fused silica glass was used as the background material of the sensor, for which the dispersion
characteristics can be carried out from the following Sellmier equation [9]:

n2(λ) = 1 +
B1λ2

λ2 −C1
+

B2λ2

λ2 −C2
+

B3λ2

λ2 −C3
, (1)

where n is the RI of the fused silica, which is dependent on wavelength λ. Here, the constants are taken
from Ref. [9].

The complex RI of gold can be defined by the following equation from the Drude–Lorenz model [9]:

εAu = ε∞ −
ω2

D

ω(ω+ jγD)
−

∆ε ·Ω2
L(

ω2 −Ω2
L

)
+ jΓLω

, (2)

where εAu is the gold permittivity. All constant values of Equation (2) are taken from Ref. [9].
A thin layer of TiO2 was also used between gold and silica, which assists in reducing the adhesion

problem of Au and improves sensitivity. The TiO2 layer was also helpful for exciting the SPR with
efficiently contacting the core-guided mode to the SPP mode [18]. The dielectric constant of titanium
oxide is calculated by the following equation [30]:

n2
TiO2

= 5.913 +
2.441× 107

(λ2 − 0.803× 107)
, (3)

where nTiO2 is the wavelength-dependent RI of titanium oxide, and λ is the wavelength measured
in µm.

A crucially important performance parameter for the proposed PCF-SPR sensor is confinement
loss, which can be evaluated by the following expression [5]:

α(dB/cm) = 8.686× koIm(ne f f ) × 104, (4)
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where the imaginary effective mode index is denoted as Im (neff), the wave number is k0 = 2π/λ, and the
operating wavelength is λ.

Analyte sensing occurs with small variations of the wavelength of the bio-targets in the surrounding
environment. Therefore, wavelength sensitivity is also an important performance parameter of the
PCF-based SPR sensor, which can be calculated by the following expression [18]:

Sλ(nm/RIU) = ∆λpeak/∆na, (5)

where ∆na denotes the refractive index difference of the two adjacent analytes, and ∆λpeak means the
variations of the two nearby resonance peaks.

Another parameter for calculating the sensing performance is sensor resolution, which can be
determined from the following equation [18]:

R(RIU) = ∆na × ∆λmin/∆λpeak, (6)

where the two nearby dielectric RI variations are considered as ∆na = 0.01, and the minimum
wavelength peak resolution is considered as ∆λmin = 0.1 nm. Here, the noises originated by the
external perturbation, and also the instrumental noise, are effectively ignored during wavelength
resolution calculations.

The sensing performance, as well as the numerical analysis of the proposed sensor, was performed
by using the commercially available software COMSOL Multiphysics 5.4. Figure 1b represents the
computationally extreme and fine meshing domain with optimized design parameters of d = 0.65Λ,
dc = 3 µm, Λ = 2 µm, Tt = 10 nm, and tg = 40 nm. The total mesh consisted of a total of 97,610 triangular
elements, where the edge and vertex elements were 5680 and 76, respectively. The total mesh area was
181.4 µm2. Scattering boundary conditions (SBCs) and perfectly matched layers (PMLs) were applied
to obtain better computational accuracy during the simulation. The PML layer effectively absorbs the
scattering photon and prevents unintended reflections. The dielectric or sensing layer was introduced
between the PML layer and the gold layer.

Though the proposed work is conducted on a fully theoretical basis, the schematic experimental
setup of the sensing system for our sensor is described in Figure 2. This setup included the optical
tunable source (OTS), polarization controller, and optical spectrum analyzer (OSA). These components
are connected with a single-mode fiber (SMF). The analyte or sensing layer was positioned at the outer
portion of the PCF, and the inlet (analyte) and outlet (analyte) can be controlled via a pump. When
mutual interaction between the analyte (sensed by the RI) and legend takes place, then a small blue
shift (shifted to the shorter wavelength) or red shift (shifted to the longer wavelength) of the loss peak
is observed, which can be easily monitored via OSA. The principal of the red or blue shift can be
described from the following equation [30]:

dp =
1
kβ

=
λ

2πβ
, (7)

where dp means the penetration depth generated by the evanescent wave, and β and k are the decay
constant and wave number. From the equation, it can be concluded that the incident wavelength
is proportional to dp. Hence, for a longer wavelength dp is high, and for a shorter wavelength dp is
low. Strong coupling is observed between the core-guided mode and plasmonic mode for longer
wavelengths, resulting in comparatively more damping of the evanescent wave. Therefore, the red
shift phenomenon occurs. On the contrary, for the reverse reason, blue shift can happen. By changing
the RIs of the environmental bio-targets surrounding the PCF, the unknown analytes can be detected
by analyzing the output loss spectrum in the computer.
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Figure 2. Schematic representation of the experimental setup of the proposed sensing platform. OSA,
optical spectrum analyzer; OTS, optical tunable source; SMF, single-mode fiber.

3. Numerical Performance Analysis and Brief Discussion

3.1. Dispersion Relation and Optical Field Distribution with Coupling Strength

Figure 3a shows the dispersion relation as well as optical field distribution for the resonance
condition. The inset shows the (i) SPP mode, (ii) core mode, and (iii) coupling of the SPP and
core-guided mode. Mathematically, resonance occurs when the real part of the effective mode index
(neff) of the core-guided mode and the SPP mode coincide [5]. At the resonance wavelength, a sharp
loss peak was observed, and unknown samples could be effectively determined by shifting this peak
to a longer or shorter wavelength for different analyte refractive indexes. Imaginary (confinement loss)
and real effective mode indexes for the core-guided mode are shown in Figure 3a by red and blue lines.
Additionally, the black line shows the SPP mode for the interaction of the evanescent wave on the
gold–dielectric surface. The real part of the SPP and core-guided modes intersected at a wavelength of
0.85 µm, and a peak was observed at the point of intersection, which is the phase-matching condition
for the analyte RI of 1.39. At this point, maximum energy transfers from the core-guided mode to the
plasmonic mode.
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3.2. Influence of Analyte RI (na) Variations on Sensing Characteristics

The analyte’s RI variation has a significant impact on PCF-SPR-sensing characteristics.
The SPR-sensing mechanism with PCF is susceptible to the surrounding environment. In contrast with
the other sensing technique, the proposed mechanism showed a comparatively larger resonance peak
shift when small RI variations in the targeted dielectric occurred. For this analysis, the y-polarized mode
was considered as it exhibited a comparatively larger evanescent field, resulting in the propagation
of maximum free-surface electrons, compared to the x-polarization mode. From Figure 4a, it can be
seen that the resonance peak of the confinement loss curve became sharper and gradually broader
(redshifted) to the longer wavelength, with a varying RI of analyte (na) from 1.32 to 1.40. This
phenomenon can be described as follows: with the increase of analyte RIs, the effective mode index of
the sensing medium was reduced significantly, and the RI contrasts also decreased between the SPP
mode and the core-guided mode. Owing to the small RI contrast, maximum light penetrated through
the cladding region instead of light confinement through the core region, resulting in a comparatively
higher amount of light that vibrated through the metal surface and coupled with the dielectric (this
phenomenon is demonstrated well in the contour plot in Figure 3b–d). That is the reason a redshifted
peak was obtained with high loss. Using Equation (4), a resonance loss peak of 0.22 dB/cm was obtained
at 0.6 µm for na of 1.32, and a resonance peak of 0.28 dB/cm was observed at 0.61 µm for na of 1.33.
Here, the wavelength variation was 0.01 µm. Therefore, the wavelength sensitivity obtained was about
1000 nm/RIU by using Equation (5). Similarly, the resonance mode loss peaks gradually increased from
1.34 to 1.40, respectively, and the highest resonance mode loss peak for this sensor was obtained at
about 2.87 dB/cm at 1.08 µm for na of 1.40. The resonance mode loss peak shifted from 0.85 to 1.08 µm
for an analyte RI from 1.39 to 1.40. As a result, the highest wavelength sensitivity was calculated at
about 23,000 nm/RIU. Using Equation 6, we can calculate the corresponding wavelength resolution by
considering the minimum 1% sensing capability. The proposed sensor showed a minimum wavelength
resolution of 1 × 10−4 RIU for an na variation from 1.32 to 1.33 and a maximum wavelength resolution
of 4.34 × 10−6 RIU for an na variation from 1.39 to 1.40. Details of the simulation results are organized
in Table 1. Figure 4b depicts the normalized mode loss intensity for different na variations from 1.32 to
1.40. From the figure, it is evident that the minimum intensity was obtained for na of 1.32, and the
maximum intensity was obtained for na of 1.4. This is the reason behind the fact that the mutual
interaction between plasmonic and core-guided modes were strengthened for higher analyte RI values
and, on the contrary, remained weak for lower analyte RI values. Therefore, a strong interaction results
in a high intensity, and a comparatively weak interaction results in a low intensity. The adjacent color
bar shows a black portion as low intensity and a yellow-white portion for high intensity.

Table 1. Performance investigation for the analyte RI detection range from 1.32 to 1.40.

Analyte RI
Resonance
Mode Loss

(dB/cm)

Resonance
Wavelength

(µm)

Wavelength
Peak Shift

(nm)

Wavelength
Sensitivity
(nm/RIU)

Wavelength
Resolution

(RIU)

1.32 0.2219 0.6 10 1000 1 × 10−4

1.33 0.2853 0.61 20 2000 5 × 10−5

1.34 0.36246 0.63 20 2000 5 × 10−5

1.35 0.46932 0.65 30 3000 3.33 × 10−5

1.36 0.62095 0.68 40 4000 2.5 × 10−5

1.37 0.81593 0.72 50 5000 2 × 10−5

1.38 1.1814 0.77 80 8000 1.25 × 10−5

1.39 1.7546 0.85 230 23,000 4.34 × 10−6

1.40 2.87033 1.08 - - - - - - - - - - - - - - - - - - - - - - -

Investigation of polynomial fitting of the proposed sensor is also crucial for better optimization.
The average sensitivity can be measured by this polynomial fitting curve, which is depicted in
Figure 4c. In the figure, the dotted line represents the polynomial fitting, and the marker means
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the resonance wavelength for the respective analyte RIs. The relationship between analyte RI and
resonance wavelength can be measured by the R2 value in the measurement range from 1.32 to 1.40.
The proposed spiral PCF sensor showed that R2 = 0.9491. The corresponding polynomial regression
equation was λ = 95.455na

2 – 254.54na + 170.28, where na represents the analyte RI and λ represents
the resonant wavelength.Sensors 2019, 19, x FOR PEER REVIEW  7 of 12 
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Figure 4. (a) Confinement loss spectra, (b) normalized resonance intensity, and (c) polynomial fitting
characteristics for analyte RIs variation from 1.32 to 1.40.

3.3. Impact of Plasmonic Material Thicknesses on the Sensing Performance

The impact of TiO2 and Au layer thicknesses on sensing performance is illustrated in Figure 5.
From Figure 5a it is evident that, when the thickness of the TiO2 layer was raised from 6 to 14 nm,
a negligible variation of mode loss peak was observed. Loss resonance peaks of 1.1859, 1.1814,
and 1.143 dB/cm, respectively, were obtained at 0.77 µm wavelength for na of 1.38, and the highest
loss peaks of 1.7954, 1.7546, and 1.6792 dB/cm were obtained at 0.85 µm wavelength, respectively,
for na of 1.39. It is notable that, here, the wavelength sensitivities were identical at 8000 nm/RIU for
all considered TiO2 layer thickness variations from 6 to 14 nm. Also, from Figure 5b it is shown that
around 0.85 µm resonance wavelength, the normalized mode loss intensity was slightly higher for
10 nm thickness for na of 1.39. Hence, our optimized TiO2 layer thickness was (Tt) = 10 nm.

Au plasmonic material has a notable impact on PCF-SPR sensor performance. The impact of
variations in the Au layer thickness is demonstrated in Figure 5c–d. From Figure 5c is evident that, with
an increment of the gold layer thickness from 40 to 50 nm, the loss resonance peak slightly redshifted,
and the loss peak showed a downward tendency. The reason behind this phenomenon can be explained
as follows: because of the damping characteristics of gold, the loss resonance peak decreases for
a thicker layer of gold. In contrast, the thinner layer of gold increases the loss depth. Penetration
depth also has significant impacts on mode loss and resonance intensity of loss. The frequency of
the incoming photon is proportional to the penetration depth [30]. Therefore, a thicker gold layer
needs a higher wavelength for light penetration. Hence, the loss peak redshifts with an increasing gold
layer thickness.
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With an increment of gold layer thickness from 40 to 45 and 50 nm, loss peaks were reduced
to 1.0.787 and 1.1611 for na of 1.38 and 0.524 and 0.726 dB/cm for na of 1.39. Here, the resonance
wavelength redshifted to 1000 nm for 45 and 50 nm thicknesses, respectively. However, the wavelength
sensitivity was at 8000 nm/RIU for all considered thicknesses. Additionally, from Figure 5d it can be
predicted that the strongest propagation mode loss intensity was obtained for the 40 nm thickness of
gold, and the lowest intensity was seen for the 50 nm thickness of gold. Therefore, we carefully chose
the optimized gold layer thickness of tg = 40 nm to attain a higher sensitivity as well as better light
interaction from the core-guided mode to the SPP mode.
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Figure 5. Observation of loss spectrum for (a) TiO2 thickness variations and (c) Au layer thickness
variations; (b) and (d) represent the normalized loss intensity for TiO2 and Au thickness variations for
na of 1.39; (e) plasmonic material effects of the Au-TiO2 bimetallic layer and Au alone using optimized
sensor parameters.

Because of its unique damping properties and chemical stability in the environment, Au is
considered as a key plasmonic material. A thin TiO2 layer can be used to assist the adhesion between
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Au and silica, which also improves the sensing performance. For selecting plasmonic material for our
sensor, we compared the sensing performances by using only the Au layer and by using the Au-TiO2

bimetallic layer. Figure 5e shows that when the Au-TiO2 materials were used, then the resonance peak
of mode loss was observed about 1.7546 dB/cm at 0.85 µm and 2.87033 dB/cm at 1.08 µm for na values
of 1.39 and 1.40, respectively. Moreover, the corresponding wavelength sensitivity obtained was about
23,000 nm/RIU. However, when only the Au material was used, then the resonance peak of mode loss
was reduced and was about 1.8943 dB/cm at 0.84 µm and 3.07 dB/cm at 1.01 µm for analyte RIs of
1.39 and 1.40, respectively. Therefore, the corresponding wavelength sensitivity obtained was about
17,000 nm/RIU. From Figure 5e it is seen that, when only the Au material was used, then the mode loss
increased, and the corresponding wavelength sensitivity was dramatically reduced. The wavelength
sensitivity was highest, and propagation loss was lowest, for the Au-TiO2 bimetallic layer rather than
only the Au layer. Hence, we used the Au-TiO2 bimetallic layer instead of using only the Au layer in
our proposed sensor.

3.4. Influence of Λ and d Variations on the Sensing Performance

The analyte sensing characteristics of the PCF-SPR sensor are also dependent on structural design
parameters such as pitch (Λ) and air hole diameter (d). Owing to the variation of Λ and d, the detection
properties change simultaneously. When Λ is increased, then the mutual interaction between the
core-guided mode and the SPP mode is reduced. Therefore, the blueshifted loss peak observed and
the resonance intensity also decreased monotonically. As illustrated in Figure 6a the mode loss peak
decreased with a negligible blue shift in order to increase the pitch dimension from 2 to 2.4 µm.
The highest loss peaks of 1.1814 and 1.7546 dB/cm were observed at 0.77 and 0.85 µm for na values
of 1.38 and 1.39, respectively, with a pitch parameter of 2 µm. In addition, the highest loss peak
was obtained at about 0.69 and 0.45 dB/cm for na values of 1.38 and 1.39, respectively, with a pitch
dimension of 2.2 µm. Moreover, loss peak was observed at about 1.02 and 0.62 dB/cm for na values of
1.38 and 1.39, respectively, with a pitch dimension of 2.4 µm. In addition, the wavelength sensitivity
also decreased from 8000 to 7000 nm/RIU for Λ values of 2 to 2.4 µm, respectively. Resonance intensity
variations are shown in Figure 6b, where the highest intensity was observed for Λ = 2 µm. Hence,
we considered Λ = 2 µm as the optimized pitch parameter for this proposed structure. Furthermore,
a similar phenomenon was observed for the increment of diameter d as the Λ variation, which is
depicted in Figure 6c–d. Because of the moderate loss and overall better sensing performance, the lattice
air hole diameter was carefully optimized to d = 0.65 Λ for the proposed design.

Feasibility of fabrication is another key issue for the spiral lattice PCF-SPR sensor. The equiangular
configuration of the spiral design of PCF can be fabricated using a stack-and-draw technique, which
is also discussed in the following Refs. [29,31]. A thin layer of plasmonic metal Au and TiO2 can be
deposited with the commonly used chemical vapor deposition (CVD) method [32], wheel polishing
method [18], and atomic layer deposition (ALD) [29]. Table 2 shows performance comparisons with
respect to the previously implemented sensor. From the table, it is observable that both the measurement
range and wavelength sensitivity of the proposed sensor were comparable to that of the reported sensors.

Table 2. Performance comparison with the previously reported PCF-SPR sensor.

References Sensing Range Maximum Peak
Loss (dB/cm)

Wavelength
Sensitivity (nm/RIU)

Wavelength
Resolution (RIU)

Ref. [5] Au coated 1.33–1.40 180 12,000 8.33 × 10−6

Ref. [7] Au-TiO2 Coated 1.33–1.43 23.18 9800 2.2 × 10−6

Ref. [11] Au Coated 1.33–1.40 65 9000 1.1 × 10−5

Ref. [18] Au-TiO2 Coated 1.33–1.38 80 25,000 4 × 10−6

Ref. [24] Au Coated 1.33–1.39 375.85 5000 2 × 10−5

Ref. [26] Au Coated 1.4–1.43 140.3 15,933 3.5 × 10−8

Ref. [27] Au Coated 1.40–1.43 110 15,180 5.68 × 10−6

Ref. [28] Au-graphene Coated 1.33–1.38 185.5 8600 - - - - - - -
[proposed] Au-TiO2 Coated 1.32–1.40 2.87 23,000 4.34 × 10−6
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Figure 6. Representation of loss spectrum for (a) pitch (Λ) variation from 2 to 2.4 µm, (c) air hole
diameter, and (d) variation from 0.6 Λ to 0.7 Λ for na values of 1.38 and 1.39; (b) and (d) represent the
loss intensity for Λ and d variation for na of 1.39.

4. Conclusions

A highly sensitive, low-loss PCF-SPR sensor has been proposed for an analyte sensing range
between 1.32 and 1.40 RI. The sensing performances are realized by using the finite element method
(FEM). The simulation results show that a maximum wavelength sensitivity of 23,000 nm/RIU, a very
low propagation loss of 2.87 dB/cm, and a sensor resolution of 4.34 × 10−6 RIU were obtained. Because
of the ultra-low loss and high wavelength sensitivity, the proposed sensor can be a promising candidate
for application in detecting various bio-samples in the lab-on-a-fiber platform.
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