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Abstract
Mesenchymal stem or stromal cells (MSCs) are pluripotent cells implicated in a broad range of physiological
events, including organogenesis and maintenance of tissue homeostasis as well as tissue regeneration and repair.
Because their current definition is somewhat loose – based primarily on their ability to differentiate into a variety
of mesenchymal tissues, adhere to plastic, and express, or lack, a handful of cell surface markers – MSCs likely
encompass several subpopulations, which may have diverse properties. Their diversity may explain, at least in part,
the pleiotropic functions that they display in different physiological and pathological settings. In the context
of tissue injury, MSCs can respectively promote and attenuate inflammation during the early and late phases of
tissue repair. They may thereby act as sensors of the inflammatory response and secrete mediators that boost or
temper the response as required by the stage of the reparatory and regenerative process. MSCs are also implicated
in regulating tumor development, in which they are increasingly recognized to play a complex role. Thus, MSCs
can both promote and constrain tumor progression by directly affecting tumor cells via secreted mediators and
cell–cell interactions and by modulating the innate and adaptive immune response. This review summarizes our
current understanding of MSC involvement in tumor development and highlights the mechanistic underpinnings
of their implication in tumor growth and progression.
© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

Few cells have attracted as much interest in the past
20 years as have mesenchymal stem or stromal cells
(MSCs). The fascination with MSCs is due in part to
their implication in a wide range of physiological and
pathological processes, including development, tissue
repair, organ transplantation, autoimmunity, and cancer,
and in part to their elusive identity. There have been
several excellent recent reviews on MSCs [1–9] and
rather than discuss all of their known biological and
functional properties, we will focus on their role in
cancer, particularly their immunomodulatory ability.

Current experimental models suggest that MSCs may
both promote and constrain tumor growth, although their
net effect appears to be predominantly pro-tumorigenic
(Table 1, with references). Tumor growth, which trig-
gers and maintains chronic inflammation, tissue remod-
eling, and dampened immunity, has been heralded as ‘a
wound that never heals’ [44], in which MSCs actively
participate. The immunomodulatory effects of MSCs on

innate and adaptive immunity through secreted factors,
exosomes, and cell–cell contacts constitute a major
mechanism by which MSCs affect tumor initiation and
progression. As MSCs may exert opposing effects on
immune cells, promoting inflammation on the one hand
and exhibiting immunosuppressive features, which
favor tumor progression, on the other, harnessing their
plasticity toward the expression of anti-tumorigenic,
anti-inflammatory, and pro-immunogenic properties
may provide an attractive therapeutic option. However,
such an endeavor requires in-depth understanding of the
functional relationship between tumor cells, MSCs, and
immune cells – particularly how tumor cells subvert
MSCs to function in their favor and the underpinnings
of MSC plasticity that allow such subversion to occur.

MSCs: heterogeneous cells in search of better
definition

Precise definition of stromal cell populations is still
lacking. Unlike hematopoietic cell subpopulations,
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Table 1. Pro- and anti-tumor effects of MSCs in the TME
References Origin of MSCs Species Tumor relevance Tumor function Mechanisms

[10] Bone marrow Human Breast cancer Promoting CCL5 (RANTES)
[11] Bone marrow Human Breast cancer Promoting p-EGFR
[12] Bone marrow Human Prostate cancer Promoting TGF-β
[13] Adipose tissue Human Prostate cancer Promoting TGF-β and periostin
[14] Umbilical cord and adipose

tissue
Human Breast cancer Suppressive Apoptosis induction (PARP cleavage)

[15] Bone marrow Mouse Hepatoma Suppressive Apoptosis induction
[16] Bone marrow Rat and

mouse
Melanoma Suppressive when

administered at a
3:1 ratio with ECs

Cytotoxic for endothelial cells (ROS)
and anti-angiogenic effects

[17] Bone marrow Human Ovarian cancer
(‘SKOV-3’ cell
line)

Promoting IL-6; transition to CAF

[18] Umbilical cord blood (UCB)
and adipose tissue (AT)

Human Glioblastoma
multiforme

UCB-MSCs:
suppressive;

AT-MSCs: promoting

UCB-MSCs: TRAIL (apoptosis)
AT-MSCs:
VEGF, ANG1, PDGF, IGF, SDF-1/CXCL12

[19] Tumor tissue, bone marrow Human Gastric cancer Promoting IL-8
[20] Tumor tissue, bone marrow Human Glioma Promoting IL-6/STAT3
[21] Bone marrow Human Breast cancer

‘MDA-MB-231’
cells

Promoting CAF differentiation

[22] Bone marrow Human Breast cancer
‘MDA-MB-231’
cells

Promoting TGF-β/Smad pathway;
TGF-β-dependent transition to CAF

[23] Bone marrow Human Kaposi’s sarcoma Suppressive MSCs target Akt activity within tumor
cells

[24] Dermal tissues of a human
fetus

Human Hepatoma Suppressive Wnt signaling pathway

[25] Tumor tissue Human Gastric cancer Promoting SDF-1 and VEGF
[26] Tumor tissue Human Head and neck

cancers
Promoting IL-6, IL-8, SDF-1α, and expression of

CD54
[27] Bone marrow Human Inflammatory

breast cancer
Promoting IL-6

[28] Bone marrow Human Pancreatic cancer Suppressive Unknown
[29] Bone marrow Human Glioma Suppressive Downregulation of PDGF/PDGFR axis
[30] Tumor tissue Human Ovarian cancer Promoting Promotion of Akt and XIAP

phosphorylation
[31] Tumor tissue Human Colon cancer Promoting IL-6/Notch-1/CD44 signaling axis
[32] Bone marrow Mouse Melanoma Promoting Immunosuppression after priming by

IFN-γ and TNF-α
[33] Tumor tissue Human Hepatocellular

carcinoma
Promoting Trophic factor secretion

[34] Bone marrow Human
and rat

Colon cancer Suppressive Immunomodulation and decrease in
inflammation; increase of miR-150
and miR-7

[35] Bone marrow Human Gastric cancer Promoting Platelet activation: TGF-β
[36] Bone marrow Mouse Breast cancer Promoting Increased stiffness (prosaposin) of the

ECM induces differentiation of
MSCs to CAFs, enhanced
proliferation, and survival of tumor
cells

[37] Adipose tissue Human, rat Gastric cancer Promoting MAPK activation, decrease apoptosis
[38] Adipose tissue Human Leukemia Suppressive DKK-1-mediated inhibition
[39] Bone marrow Human Colorectal cancer Promoting CCR5
[40] Tumor tissue Human Colorectal cancer Promoting Tumor cells escape from senescence

via P53/P21 pathway
[41] Adipose tissue Human Lung cancer Promoting IL-6/STAT3
[42] Bone marrow Human,

mouse
Breast cancer Promoting Chemoresistance via a

CD9-dependent mechanism
[43] Bone marrow, tumor tissue Human,

mouse
Prostate cancer Promoting Asporin (ASPN) secreted by MSCs

drives metastasis

Within the tumor, MSCs can exert both stimulatory and inhibitory effects on cancer cell growth, invasion, and metastasis through direct or indirect interactions with
tumor cells. However, despite the seemingly opposing potential effects of MSCs on tumor growth, their net effect seems to be predominantly pro-tumorigenic. This
reflects the imbalance between pro- and anti-tumorigenic activities that may vary depending on tumor type (and regionally within the tumors), the ecology of the host
milieu, the stage of the evolution of a particular tumor, and possibly the composition of the MSC population itself. The predominantly pro-tumorigenic effect of MSCs
in vivo and the opposing effects reported may be due to differences in experimental design, models used, and MSC heterogeneity that may reflect variable responses
to a given set of stimuli.
For a complete list of abbreviations see supplementary material, Table S1.
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whose identity, developmental stage, and plasticity can
be predicted based on a combination of cell surface
marker and transcription factor expression [45–47],
stromal cells lack comparable functional and dif-
ferentiation state markers. As a result, stromal cell
populations are defined based on relatively loose phe-
notypic and functional criteria, which may be common
to cells with distinct identities. Fibroblasts illustrate
this notion well. Although a few cell surface receptors,
including FAP (fibroblast activation protein α) and
FSP (fibroblast surface protein), are commonly used
to identify fibroblasts [48–50], their expression allows
only approximate categorization of a subset of stromal
cells. Moreover, fibroblasts are primarily defined based
on their functional properties upon activation, during
which they express alpha smooth muscle actin (α-SMA)
and secrete a wide range of extracellular matrix (ECM)
components. These secretory products are more or less
comparable in the context of wound healing (where
the cells are labeled myofibroblasts) [51,52] and can-
cer growth [where they are commonly referred to as
cancer-associated fibroblasts (CAFs)] [49,50]. Resting
fibroblasts, which are identified largely based on mor-
phology, remain poorly defined in terms of biological
properties. Arguments have been put forth that they
are multipotent cells, capable of differentiating into a
spectrum of mesenchymal tissues [49], which is akin to
tissue MSCs. However, adult skin fibroblasts tend not to
differentiate into various mesenchymal tissues in culture
and neither their origin nor their potential heterogeneity
has been clearly elucidated [49,53]. Similar issues face
the definition of MSCs (Figure 1).

Mesenchymal stem or stromal cells are multipotent
stromal cells, believed to be an important constituent
of the connective tissue that forms the supportive struc-
ture in which functional cells of tissues reside. In 2006,
the International Society for Cellular Therapy (ISCT)
published a position paper to define MSCs and recom-
mended renaming the cells ‘multipotent mesenchymal
stromal cells’ [54,55]. However, the most commonly
used terms are ‘mesenchymal stromal cells’ and ‘mes-
enchymal stem cells’.

Although they were initially described in the bone
marrow (BM), MSCs display a broad tissue distribution,
including adipose, synovial, and lung tissue as well as
umbilical cord and peripheral blood [56]. Their defining
properties include adhesiveness, a cell surface receptor
repertoire, and plasticity. Adhesiveness is determined by
MSC attachment to plastic under standard culture condi-
tions; the cell surface phenotype is defined by expression
of CD105, CD73, and CD90, and lack of expression
of CD45, CD34, CD14 or CD11b, CD79α, CD19, and
HLA-DR. This includes low expression levels of MHC
class I molecules, and minimal or no expression of MHC
class II molecules or co-stimulatory receptors, including
CD40, CD80, and CD86, precluding antigen-presenting
activity [57]. Plasticity is measured by the ability of the
cells to differentiate into osteocytes, adipocytes, and
chondrocytes in vitro in response to appropriate growth
factors [54]. However, MSCs have the capacity to

differentiate into both mesodermal and non-mesodermal
tissues, such that in addition to osteocytes, adipocytes,
and chondrocytes, they can differentiate toward endo-
dermal and neuroectodermal lineages (multi-lineage
plasticity [56]). Furthermore, a population of MSCs that
displays homogeneous expression of CD105, CD90,
and CD73 may display heterogeneous differentiation
properties. Exposure to differentiation factors may
result in only a fraction of the cells differentiating into
adipocytes, chondrocytes or osteocytes, suggesting
functional heterogeneity despite common cell surface
marker expression. Whether such functional hetero-
geneity reflects differences in adaptation to in vitro
culture or the outgrowth of stromal cell subpopulations
from progenitor cells bearing distinct identities remains
to be resolved. It must also be noted that the above crite-
ria have been defined using bone marrow-derived MSCs
but that there are substantial phenotypic and functional
differences among MSCs from different tissues [58].

Refinement of MSC definition along with the iden-
tification of their putative subpopulations requires
additional phenotypic and/or functional criteria. Candi-
date markers that are associated with MSCs from various
tissues include Stro-1 (BM-MSCs) [59], CD271/NGFR
(nerve growth factor receptor) [60], CD200 [61],
CD106/VCAM-1 (vascular cell adhesion molecule
1) [62], CD146/MCAM-1 (melanoma cell adhesion
molecule 1) [63,64], MSCA-1/TNAP (mesenchymal
stromal cell antigen 1/tissue-nonspecific alkaline phos-
phatase) [65], and SSEA-4 (stage-specific embryonic
antigen 4) [66]. The reliability and limitations of the
most commonly used markers have recently been
reviewed [67]. Several newly identified promising can-
didate markers include Meflin [68], PDPN (podoplanin)
[69], and gremlin-1 [70–72].

Physiological role: tissue regeneration and wound
repair

MSCs are widely believed to play a central role in
tissue repair. Injury-initiated inflammation, whose
effectors include innate immune cells and their media-
tors, and the ensuing tissue remodeling provide signals
that mobilize MSCs and drive their differentiation
toward diverse stromal components, some of which
replace damaged cells. Mesenchymal stromal cells
may be injured-tissue-resident or recruited from the
bone marrow. However, the mechanisms by which they
are mobilized and recruited to damaged sites are not
fully understood. One study, using a murine model
of acute renal tubular necrosis, suggested that bone
marrow-derived MSC recruitment to sites of injury
relies on the interaction between CD44 expressed on the
MSC surface and hyaluronic acid produced by a variety
of cells in areas of tissue remodeling [73]. However,
additional factors are likely implicated and the mech-
anisms that promote MSC survival and differentiation
toward distinct cell types in vivo are still unclear [74].

© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2020; 250: 555–572
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Figure 1. MSC definition and differentiation and comparison with fibroblasts. MSCs have been suggested to be a probable source of
fibroblasts, implying that fibroblasts are one type of mesenchymal cell into which MSCs differentiate. However, as MSCs and fibroblasts share
numerous functional features, it is possible that maturation or aging (although not in the sense of cell senescence) rather differentiation
distinguish the two cell types. Fibroblasts may thus be a more ‘mature’ form of MSCs that have lost pluripotency and altered part of
their cell surface receptor repertoire but that can respond to environmental stimuli such as injury and tumor growth in a manner akin
to that of MSCs, many of whose properties they retain. MSC (left) and fibroblast (right) activation are illustrated under reversible, wound
healing-associated, and chronic tumor-related inflammation. Some of the markers associated with each cell type in the context of wound
healing and the tumor microenvironment are highlighted. (1) MSCs are a diverse and heterogeneous subset of multipotent precursors
present in the stromal fraction of many adult tissues, especially bone marrow but also adipose tissue, synovial membranes, tooth pulp,
and the connective tissue of most organs. Several studies show that MSCs lie adjacent to blood vessels and are localized in almost every
perivascular space of the body. MSCs are the common predecessors of cells of the mesenchymal lineage, such as bone, cartilage, and fat
cells. They can also differentiate into cells from unrelated germline lineages (endodermic and neuroectodermic differentiation potential), a
process known as transdifferentiation. Quiescent or resting MSCs are spindle-shaped cells (fibroblast-like cells), but contrary to fibroblasts,
which can be identified primarily based on morphology, MSCs are more heterogeneous. (2) In response to tissue injury and the associated
stimuli, quiescent MSCs are activated to facilitate repair and regeneration. These MSCs may be tissue-resident or recruited from the bone
marrow or adjacent tissues and adopt a stellate morphology. The acquired synthetic properties are associated with secretory and migratory
functions that amplify their activation, recruitment, and proliferation. Such activation may be reversed by reprogramming; alternatively,
activated MSCs may undergo apoptosis upon completion of the repair process. (3) Chronic inflammation and/or the presence of a tumor
induces prolonged activation of MSCs (tumor-associated MSCs, T-MSCs), which may gain further secretory properties (e.g. high secretion of
IL-6), specialized ECM remodeling ability, and robust autocrine activation and dynamic immunomodulatory signaling functions. Epigenetic
regulation may help to maintain such activated states. T-MSCs gain enhanced proliferative properties and their functional diversity adds to
the dynamic complexity of the evolving tumor microenvironment. For a complete list of abbreviations see supplementary material, Table S1.

The secretome and proteome of MSCs reflect their
pleiotropic functions and plasticity [75]. In response to
soluble mediators derived from the microenvironment
of injured tissues, including tumor necrosis factor-alpha
(TNF-α), interleukin-1 (IL-1), interferon-gamma
(IFN-γ), and toxins from infectious agents, MSCs can
release a wide repertoire of soluble mediators that
includes epidermal growth factor (EGF), fibroblast
growth factor (FGF), platelet-derived growth factor

(PDGF), transforming growth factor-beta (TGF-β),
vascular endothelial growth factor (VEGF), hep-
atocyte growth factor (HGF), insulin-like growth
factor-1 (IGF-1), angiopoietin-1 (Ang-1), keratinocyte
growth factor (KGF), TNF-stimulated G6 protein
(TSG-6), interleukin-1 receptor antagonist (IL-1RA),
prostaglandin E2 (PGE2), indoleamine 2,3 dioxygenase
(IDO), nitric oxide (NO), and stromal-derived factor
1 (SDF-1). These mediators promote the activation of
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fibroblasts, endothelial cells, and tissue progenitor cells,
leading to angiogenesis, inhibition of apoptosis, ECM
deposition, and damaged cell replacement [6,76–79],
which in turn ensure tissue regeneration and repair
[80–82]. In addition to helping orchestrate regeneration
and repair, MSCs can actively participate in bactericidal
activity (through LL-37) [83].

Several in vivo studies have shown the beneficial
effect of allogeneic or xenogenic MSCs in a vari-
ety of disorders that require tissue regeneration and
repair, including acute graft-versus-host disease, sepsis,
acute asthma, acute renal failure, multiple sclerosis, and
myocardial infarction [76,84–86]. Currently, more than
785 studies are underway or have been submitted to
ClinicalTrials.gov (https://clinicaltrials.gov) under the
terms ‘mesenchymal stem cells’ or ‘mesenchymal stro-
mal cells’.

MSCs and cancer cell crosstalk

Accumulating evidence suggests that MSCs have the
ability to migrate toward tumor sites [87] and MSC
mobilization has been observed in response to a wide
range of solid cancer-derived cell types. Within the
tumor microenvironment (TME), MSCs can exert both
stimulatory and inhibitory effects on cancer cell growth,
invasion, and metastasis through direct or indirect
interactions with tumor cells (Table 1 and Figure 2).
However, their net effect seems to be predominantly
pro-tumorigenic, which may reflect an imbalance
between pro- and anti-tumorigenic activity dictated by
the tumor type, intratumoral heterogeneity, the ecology
of the host milieu, and possibly the composition of the
MSC population itself.

MSCs interact with and may affect the function
of cancer cells at multiple stages of cancer progres-
sion. Within the primary tumor, MSCs have been
observed to drive tumor cells toward acquiring invasive
and metastatic properties. MSCs induce expression
of epithelial–mesenchymal transition (EMT)- and
hypoxia-related genes in primary tumor cells and pro-
mote tumor cell dissemination [70]. They also deposit
ECM [88]; participate in the remodeling of the TME;
secrete IL-6 and TGF-β, which induces EMT; and help
to create a niche that promotes angiogenesis and tumor
invasion [5,89]. These observations are consistent with
the predominantly pro-tumorigenic effect of MSCs
in vivo. The tumor inhibitory effects that have been
reported may be due to differences in experimental
design, models used, and MSC heterogeneity, which
may reflect variable responses to a given set of stimuli
(explored more extensively in a review by Klopp et al)
[6,90].

Effect of the tumor microenvironment on the MSC
phenotype
Tumor-derived signals have the capacity to modulate
the phenotype of tissue-resident and tumor-recruited

MSCs (T-MSCs), which become constituents of the
tumor mass and harbor features distinct from those
of normal tissue MSCs (N-MSCs) or bone mar-
row MSCs (BM-MSCs) [91]. Differences between
non-tumor-associated MSCs and T-MSCs may arise
in large part in response to cytokines and exosomes
produced by the tumor microenvironment. This notion
is supported by observations that MSCs treated with
IFN-γ and TNF-α upregulate TGF-β and VEGF expres-
sion [92,93]. TGF-β can then promote EMT, which
may facilitate invasion and metastasis [92]. In addition,
IFN-γ and TNF-α can enhance the immunosuppressive
effects of MSCs [94], further helping tumor cell dis-
semination. Exosomes derived from breast and ovarian
cancer cells can cause adipose tissue MSCs to adopt
a CAF phenotype, characterized, in part, by upregu-
lated α-SMA expression, and can also promote MSC
expression of SDF-1, VEGF, CCL5 (RANTES), and
TGF-β [95,96]. Recently, Raz et al [97] have shown
in breast tumors that resident and BM-derived MSCs
differentiate toward a subpopulation of CAF-like cells
that express distinct immune-response-related genes.
Analysis of gene expression in these resident and
BM-derived CAF-like cells from mammary tumors
or their lung metastases revealed tissue-specific tran-
scriptional changes, implicating a microenvironmental
influence on the reprogramming of stromal cells. Inter-
estingly, BM-derived CAF-like cells were shown to be
functionally important for tumor growth and were more
efficient than their resident counterparts in promoting
angiogenesis. Thus, MSCs recruited to neoplastic tis-
sues can be reprogrammed in a local, tissue-specific
manner to induce tumor-promoting inflammation and
to facilitate angiogenesis and tumor growth [97].

Characteristics of tumor-associated MSCs (T-MSCs)
Tumor-associated MSCs do not undergo transforma-
tion and are euploid [98,99]. Moreover, MSCs are more
prevalent in tumor tissues than in adjacent normal tis-
sues [33,70] and exhibit a significantly greater pro-
liferative capacity than their normal tissue-associated
counterparts [99–102]. In addition, T-MSCs exhibit a
stronger migratory capability than N-MSCs and more
potent immunosuppressive activity than BM-MSCs [99,
101–107]. Finally, T-MSCs have been shown to promote
tumor cell proliferation [99] and to increase the propor-
tion of cancer stem cells [99,108], suggesting a possible
role in tumor cell reprogramming.

Pro-inflammatory and immunosuppressive effects
of MSCs in the TME: Dr Jekyll and Mr Hyde
behavior?

As discussed above, MSCs affect the immune response
by secreting immunomodulatory molecules as well as
by cell–cell contact. Several studies have also high-
lighted the role of exosomes and other extracellular

© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2020; 250: 555–572
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Figure 2. Summary of MSC effects on the tumor microenvironment. MSCs have multiple effects on tumor cells, mainly promoting tumor
growth due, at least in part, to their role in regulating inflammation and tissue repair (1). They affect tumor cell survival and stemness (2 and
3) and contribute to tumor vasculature by producing angiogenic factors and by differentiating into pericytes (4). MSCs promote tumor cell
motility, EMT, and metastasis, and secrete chemokines, including CXCL1, CXCL2, and CXCL12, and cytokines, including IL-6 and several matrix
metalloproteinases (MMPs), which degrade the ECM and facilitate tumor cell migration (5). They exert an important immunomodulatory
function, which is primarily immunosuppressive (6) and can enhance tumor cell resistance to drugs, at least in part by releasing exosomes,
which harbor numerous mediators, including miRNAs that may alter tumor cell properties (7). Although MSCs are primarily pro-tumorigenic,
several studies have shown that they may display anti-tumor effects (8) as well. For a complete list of abbreviations see supplementary
material, Table S1.

vesicles (EVs) on MSC-mediated immune modulation
[109,110]. Two major functional features of MSCs
that are relevant to immunity include their ability to
induce immunosuppression and to exert immunoprivi-
lege. Immunosuppression has primarily been associated
with BM-MSCs, whereas studies using other sources
of MSCs have shown both immunosuppressive and
pro-inflammatory effects. These seemingly contradic-
tory observations may be due to species-specific factors
but possibly also to the tissue from which the MSCs
were harvested and to priming by their microenviron-
ment. The mechanisms underlying immunoprivilege are
largely unknown but are most probably related to low
expression of MHC I and MHC II molecules coupled
to the immunosuppressive functions of MSCs. Further-
more, immunoprivilege is not a stable property: cellular
differentiation and priming by IFN-γ upregulate MHC-I
and, to a lesser extent, MHC-II expression, enhancing
MSC antigen-presenting capacity and immunogenicity
and reducing immunoprivilege [111].

The immunosuppressive effects of MSCs require
proximity to their target cells, which include T and
B lymphocytes as well as NK cells (Figure 3). Acti-
vated/primed MSCs upregulate MHC class I molecules,
ICAM-1 and VCAM-1 adhesion receptors, and the

immunosuppressive molecule PD-L1 (programmed
death-ligand 1). The latter three molecules recognize
ligands on immune cells, promote cell–cell adhesion,
and facilitate immune cell exposure to secreted immuno-
suppressive mediators [139]. Following activation,
the MSC-derived secreted immunosuppressive arsenal
includes HLA-G, TGF-β, PGE2, TSG-6 (tumor necrosis
factor-inducible gene 6 protein), HO-1 (heme oxyge-
nase 1), HGF, IL-10, IL-6, IDO1 (indoleamine-pyrrole
2,3-dioxygenase), ARG1/2 (arginase), NOS2 (nitric
oxide synthase 2A), adenosine, and LIF (leukemia
inhibitory factor), as well as PD-L1/2 and Fas ligand
(FasL) [140]. TGF-β and PGE2 are two key mediators
of immunosuppression. TGF-β directly inhibits the
function of anti-tumor effector cells (NK, CD8+ T cells,
and γδ T cells) by downregulating the activating recep-
tor NKG2D and generating and recruiting regulatory T
cells and γδ T cells [4,112,143–150].

MSCs and innate immunity
MSCs exert their pro- and anti-inflammatory effects by a
variety of mechanisms. They have a functional relation-
ship with the complement system, as BM-MSCs express
the anaphylatoxin receptors C3aR and C5aR, suggest-
ing that C3a and C5a may be chemotactic for MSCs

© 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2020; 250: 555–572
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Figure 3. MSC and immune cell interactions. (1) MSCs can inhibit the proliferation, cytotoxicity, and cytokine production by NK cells by
secreting several mediators, including PGE2, IDO, and sHLA-G5. In turn, MSCs can be killed by cytokine-activated NK cells through the
engagement of NKG2D by its ligand ULBP3 or MICA expressed by MSCs, and of DNAM-1 by MSC-associated PVR or nectin-2. (2) MSCs
inhibit differentiation of monocytes to DCs, skew mature DCs toward an immature DC state, and inhibit TNF-α and IL-12 production by DCs
through PGE2 secretion. (3) MSCs dampen the respiratory burst and delay spontaneous apoptosis of neutrophils by constitutively releasing
IL-6. (4) MSCs affect CD4+ T cells through PGE2, IDO, TGF-β, HGF, iNOS, and HO1 release. MSCs increase the production of IL-4 and IL-10
by Th2 cells and reduce the release of IFN-γ by Th1 and NK cells. IDO can reduce tryptophan levels and inhibit the growth of B cells, T
cells, and NK cells. Defective CD4+ T-cell activation impairs helper function for B-cell proliferation and antibody production. CD8+ T-cell
cytotoxicity is inhibited mainly by sHLA-G5, as well as by the increase of the regulatory T-cell population, also induced by IL-10. Adapted
from Refs. [9,112,116]. For a complete list of abbreviations see supplementary material, Table S1.

toward sites of injury. MSCs also express the comple-
ment inhibitors CD46, CD55, and most predominantly
CD59, which protect them from complement opsoniza-
tion and lysis and secrete the complement inhibitor, fac-
tor H [144,152,153].

MSCs play an active role in neutrophil recruitment
by secreting chemotactic cytokines and chemokines,
including IL-6, IL-8, IFN-β, GM-CSF, and macrophage
inhibitory factor (MIF). They also promote neutrophil
survival, which helps to eliminate pathogens [114] and
to respond to histamine released by mast cells by induc-
ing IL-6 production [117].

MSCs directly and indirectly interfere with the pro-
liferation, cytokine production, and, in some cases,
cytotoxicity of NK cells. MSC–NK cell interactions
are complex and largely dependent on the microenvi-
ronment and activation status of the NK cells. Bone
marrow-derived MSCs can inhibit NK cell prolifera-
tion, cytotoxicity, and cytokine production by secret-
ing IDO1, TGF-β, HLA-G, and PGE2 [103,116–120].
However, they are also vulnerable to lysis by activated

NK cells, depending on their expression of activat-
ing NK receptor ligands, including the MHC class I
polypeptide-related sequence (MICA, B), UL16 bind-
ing proteins (ULBPs), CD112, and CD155 [120–122].
In human lung cancers, T-MSCs have been shown
to be more immunosuppressive than N-MSCs, mainly
through PGE2 and, to a lesser extent, IL-6 secre-
tion. They decrease IFN-γ production and downregulate
expression of the activating NK cell receptors NKp44,
NKp30, NKG2D, DNAM-I, and NKG2A. T-MSCs also
induce an inversion in the CD56bright/dim NK cell ratio
in favor of the CD56dim phenotype, which is associated
with degranulation rather than elevated cytokine produc-
tion, in a contact-dependent manner [103].

Dendritic cell (DC) function is affected by MSCs,
which can directly inhibit both the maturation of mono-
cytes and CD34+ precursor cells toward DCs as well as
activation of DCs via PGE2, IL-6, TSG-6, and M-CSF
(macrophage colony-stimulating factor) secretion, and
Jagged-2 mediated signaling [136–138]. Both imma-
ture and mature DCs (iDCs and mDCs) are affected
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by MSCs. In the presence of MSCs, iDCs display
diminished capacity to present antigen and stimulate
T-cell proliferation and naïve T-cell differentiation,
resulting in ineffective T-cell activation. MSCs can
also revert mDCs to an immature phenotype associated
with downregulation of their cell surface expression of
antigen-presenting and co-stimulatory molecules, sup-
pression of IL-12 secretion, and the inability to stimulate
lymphocyte proliferation in vitro [138].

MSCs seem to favor the emergence of the myeloid
suppressor cell (MDSC) phenotype by secreting IL-6,
HGF, and CXCL3 (C-X-C motif chemokine ligand
3), which stimulate MDSC production of COX2
(cyclooxygenase-II enzyme, PTGS2), IDO, PD-L1,
and PD-L2, and MMP9 (matrix metalloproteinase 9)
[156,157].

Mesenchymal stromal cells direct monocyte mobi-
lization from the BM and macrophage recruitment to
sites of inflammation to promote wound repair through
secretion of the chemokine (C-C motif) ligands CCL2,
CCL3, and CCL12. They also participate in the differ-
entiation of monocytes to M2 (tissue repair-associated)
macrophages via direct cell contact and secretion of
PGE2, IL-6, and IDO [124,125]. The capacity of MSCs
to regulate the macrophage phenotype (M1 or M2) and
to promote immunosuppression strongly depends on
macrophage IL-6 signaling [126]. Finally, as discussed
above, MSCs impair the maturation and differentiation
of antigen-presenting cells (APCs) [123].

Current research is exploring the effect of MSCs on
γδ T cells. γδ T cells have the ability to produce the
pro-inflammatory cytokines IFN-γ, TNF-α, and IL-17,
as well as the anti-inflammatory cytokines TGF-β, IL-4,
and IL-10, depending on the types of signals that pre-
dominate in the tissue microenvironment, and exert both
anti- and pro-tumoral effects [158]. TGF-β acts as a
key player in the MSC-mediated regulatory response by
inducing CD4+ regulatory T cells (Treg) and γδ reg-
ulatory T cells. On the other hand, MSCs are potent
suppressors of γδ-cell proliferation, cytokine produc-
tion, and cytolytic responses (anti-tumor effect) in vitro
through COX2-dependent production of PGE2 [134].

MSCs and adaptive immunity
MSCs can regulate the activation and function of T and
B lymphocytes [9,113]. Many factors have been reported
to be critical in MSC-mediated suppression of T-cell
proliferation, including iNOS (inducible NO synthase),
IDO, semaphorin-3A, B7-H4, HLA-G, LIF, galectin(s),
HO-1, IL-6, IL-10, PD-L1/2, FasL, and PGE2 [127–
129]. MSCs exert inhibitory effects toward Th1 and
Th17 (pro-inflammatory) cells through PD-1, PGE2, and
IL-10, and promotion of Th2 secretion of IL-4 [130].
However, stimulatory effects on Th17 cells have also
been observed. MSCs can promote Treg differentiation
by secreting TGF-β, IL-6, and IL-10, and expressing
IDO [135].

The immunosuppressive function of MSCs is elicited
by IFN-γ, which induces the production of chemokines,

IDO, PGE2, HGF, and TGF-β in humans to attract
and to suppress T cells [131,159]. Although soluble
factors are critical to mediate the immunosuppressive
functions of MSCs, cell–cell contact is involved in
MSC-based immunosuppression of T cells, includ-
ing ICAM-1–LFA-1 and PD-1/PD-L1 interactions.
Additional mechanisms of suppression occur through
microRNA and exosome release [159–161].

B-cell–MSC interactions are less well studied,
although observations suggest an inhibitory effect on
B-cell activation, proliferation, differentiation, and
chemotactic responses [132,133].

Priming: Toll-like receptors and the level
of inflammation
MSC immunomodulatory activity is reported to be
primed by cytokines from a pro-inflammatory microen-
vironment (for example, inflammation, cancer or
infection), particularly IFN-γ, TNF-α, and IL-1β, and by
Toll-like receptor (TLR) stimulation [162–168]. MSCs
express TLR1–6 transcripts and TLR2–4, 7, and 9 pro-
teins, and can be polarized toward a pro-inflammatory
or an immunosuppressive phenotype following specific
TLR stimulation [169–172]. Thus, TLR4-primed MSCs
are polarized toward a pro-inflammatory MSC1 pheno-
type (tumor-growth inhibition), whereas TLR3-primed
MSCs are polarized toward the more classical immuno-
suppressive MSC2 phenotype (Figure 4) [173,175]. The
degree of inflammation, as assessed by the cytokine
repertoire and production level within the microenvi-
ronment, appears to be critical in MSC polarization.
MSCs become immunosuppressive only when exposed
to high levels of pro-inflammatory cytokines (TNF-α,
IFN-γ), which corresponds to late stages of inflam-
mation [139,176], but the MSC2 phenotype is also
influenced by TLR3 stimulation [176]. In the presence
of low levels of TNF-α and IFN-γ, at the early phase
of inflammation, MSCs may adopt a pro-inflammatory
phenotype (MSC1) and enhance immune responses, in
part through TLR4 expressed on their surface [175].
TLR4 stimulation promotes IL-6, IL-8, and TGF-β
secretion, whereas TLR3 stimulation increases IL-4,
IL-1RA (interleukin-1 receptor antagonist), IDO, and
PGE2 [164,175,177,178]. However, results are dis-
cordant among research groups and MSC activation
through TLR3 and 4 is also reported to lead to the
secretion of IL-1, IL-6, IL-8, TRAIL (TNF-related
apoptosis-inducing ligand), and CCL5 [174,175,179].
Some studies have shown that both TLR3 and 4 enhance
immunosuppression through IDO [141], whereas oth-
ers have reported an increase in pro-inflammatory
cytokines in both [142,151,154,179,180]. Thus, MSC
licensing to become activated depends on stimulation
by pro-inflammatory cytokines, priming signals deliv-
ered by TLRs, and the timing of MSC engagement in
immune effector cell activation (Figure 5) [164].

Experimentally, the duration of TLR stimulation of
MSCs seems to play a role in their subsequent activa-
tion profile. Brief stimulation of MSCs with poly(I:C)
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Figure 4. The MSC polarization paradigm. The level of inflammation and/or TLR agonists polarizes MSCs toward a
pro-inflammatory/anti-tumor (MSC1) or an anti-inflammatory/immunosuppressive/pro-tumor (MSC2) phenotype. Low levels of
TNF-α, IFN-γ (low level of inflammation), and/or TLR4 agonists (LPS) polarize MSCs toward a pro-inflammatory phenotype, whereas the
downstream consequences of high TNF-α/IFN-γ/TLR3 [poly(I:C)] stimulation skew MSCs toward an anti-inflammatory MSC2 phenotype.
MSC1 and MSC2 have divergent cytokine and chemokine secretion repertoires, differences in differentiation capability, extracellular
matrix deposition, TGF-β signaling pathways, and Jagged, IDO, and PGE2 expression. The most compelling outcome is the opposite effect
of the two cell types on immunomodulation. As shown in the figure, existing data are conflicting regarding the repertoire of cytokines
and chemokines secreted in response to the numerous stimuli from the microenvironment. MSCs are a heterogeneous cell population, and
the range of the observed responses may be explained, at least in part, by their diversity itself. For a complete list of abbreviations see
supplementary material, Table S1.

led to an MSC2, whereas LPS stimulation induced an
inflammatory MSC1 phenotype [175]. However, MSCs
at an infection site are likely to be continuously exposed
to TLR agonists.

In contrast to the study of Waterman et al [175],
other investigators have shown that TLR3 stimulation of
MSCs leads to a pro-inflammatory response [181–184].
The dichotomous pro- and anti-inflammatory effects
of TLR3-stimulated MSCs may be time-related. Thus,
upon arriving at an infection site, MSCs may initially
respond by secreting pro-inflammatory IFN-α/β and
later switch to production of the regulatory factors IL-6
and TGF-β (Figure 5). They observed that the effect of
constitutively produced TGF-β was modulated by the
presence of inducible IL-6. MSCs may thereby actively
contribute to each phase of wound healing, progressively
driving the process to completion and restoration of tis-
sue function [184].

Several mediators, including COX1, COX2, LIF,
HGF, Gal-1, HO-1, IL-11, IL-8, IL-6, and TGF-β, were
observed to display variable constitutive expression
in BM-MSCs. Inflammatory priming of the cells dif-
ferentially modulated expression of these mediators,
strongly increasing expression of COX2, LIF, HGF,
IL-11, IL-8, and IL-6, while decreasing that of COX1,
Gal-1, and TGF-β [185]. According to one model
[186], strong inflammation, characterized by IFN-γ,
TNF-α, IL-1, and IL-17 production, induces NO/IDO
production by MSCs, leading to an immunosuppressive
phenotype, with secretion of TGF-β, sHLA-G, IL-6,
IL-10, and IDO. In contrast, MSCs subjected to a
microenvironment enriched in TGF-β and IL-10 acquire
a pro-inflammatory phenotype. Interestingly, MSCs
themselves produce abundant TGF-β, which can act
in an autocrine manner to modulate their immunoreg-
ulatory functions [187]. Thus, TGF-β can reverse the
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Figure 5. TLR priming of MSCs. (1) The classical view of MSC polarization: different levels of inflammation and/or TLR agonist stimulation
polarize MSCs toward a pro-inflammatory/anti-tumor (MSC1) or anti-inflammatory/immunosuppressive/pro-tumor (MSC2) phenotype.
Low levels of TNF-α, IFN-γ (low level of inflammation), and/or TLR4 agonists polarize MSCs toward a pro-inflammatory phenotype,
whereas stimulation with high TNF-α/IFN-γ/TLR3 levels promotes induction of an anti-inflammatory MSC2 phenotype. (2) In the tumor
microenvironment, MSCs are continuously exposed to pro-inflammatory cytokines and tend to express both TLR3 and TLR4. They acquire
features that help to sustain tumor progression and that overlap with those defined by the classical MSC1 and MSC2 phenotypes. (3) Petri
et al showed that the dichotomous pro- and anti-inflammatory effects of TLR3-stimulated MSCs may be time-related [184]. MSCs may
initially respond by secreting pro-inflammatory IFN-α/β and later switch to production of the regulatory factors IL-6 and TGF-β. MSCs
may thereby actively contribute to each phase of wound healing, progressively driving the process to completion and restoration of tissue
function. For a complete list of abbreviations see supplementary material, Table S1.

immunosuppressive effect of MSCs induced by IFN-γ
and TNF-α [186].

MSC-derived exosomes

Mesenchymal stromal cell-derived extracellular vesi-
cles (MSC-EVs) play a significant role in the TME
[188,189]. Release of EVs is a mechanism of intercellu-
lar communication used by tumor cells and stromal cells
within the TME. EVs include exosomes, the smallest
EV fraction arising from intracellular endosomes, and
microvesicles generated by budding from the plasma
membrane. EVs can directly activate target cell surface
receptors through protein and bioactive lipid ligands,
and by delivering different effectors, including transcrip-
tion factors, oncogenes, proteins, growth factors, and
non-coding regulatory RNAs, thus inducing functional
changes in recipient cells.

MSC-EVs are regulators of tumor cell survival
and growth
Similar to their effects on immunity and the inflamma-
tory response, MSCs have shown divergent effects on
tumor cells, some of which are anti-, whereas others
are pro-tumorigenic. Similar to MSCs, MSC-EVs have
a dual effect on tumor progression. Exosomes derived
from MSCs in non-small cell lung cancer have been
shown to promote chemoresistance [190]. Tumor-EVs
can also mediate drug resistance through mechanisms
that include drug sequestration; delivery of specific
mRNAs, miRNAs, and proteins; and crosstalk between
cancer cells and MSCs [191,192]. MSC-EVs have been
found to modulate the tumor microenvironment, cre-
ating favorable conditions for cancer cell metastasis,
and have been shown to mimic the effects of MSCs on
tumor growth promotion [193]. Kalluri [194] described
tumor-associated and circulating exosomes as heteroge-
neous populations that generate a unique tumor nanoen-
vironment (TNE).
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Immunomodulation
By fulfilling the role of vehicles that deliver
immunomodulatory mediators, MSC-EVs display
functions similar to those of their parent cells [195].
Cytokines (including IL-6, IDO, PGE2, IL-10) and
chemokines (including CXCL2, CCL2, CXCL8) may
be packaged into EVs together with nucleic acids and
post-transcriptional modulators which can influence
the inflammatory response when released [195,196].
Exosomes can inhibit B-cell proliferation [197] and
increase Treg activity [198]. In physiological conditions,
MSC-EVs have been reported to modulate the immune
cell response to facilitate tissue repair, through promo-
tion of anti-inflammatory and pro-regenerative (M2)
macrophages over pro-inflammatory M1 macrophages
and concomitant enhancement of the expression of the
anti-inflammatory cytokines IL-10 and TGF-β [199].
In tumors, chronic inflammation promotes immuno-
suppression, at least in part through EV release, which
contributes to tumor progression [200,201].

Interleukin-6

Aside from TGF-β and PGE2, IL-6 appears to play a
major role in MSC communication with their microenvi-
ronment. IL-6 is a pleiotropic cytokine, highly secreted
by tumor stromal cells, including MSCs. The IL-6 sig-
naling pathway consists of IL-6Rα (CD126) and gp130
(CD130), JAK/STAT signaling, and negative regula-
tion by SOCS molecules. IL-6 supports cancer cell
proliferation, survival, and metastatic dissemination.
Moreover, IL-6 can act on numerous cell types within
the tumor microenvironment to sustain a pro-tumoral
milieu by supporting angiogenesis and tumor evasion of
immune surveillance. However, IL-6 may also promote
anti-tumor adaptive immunity [202,203].

MSCs, especially MSCs isolated from the tumor
stroma, secrete higher levels of IL-6 [70,103] than
other non-tumor cells, which together with PGE2 can
participate in suppression of NK cell activity and facil-
itate tumor cell dissemination and metastasis [70]. IL-6
secretion by MSCs has been shown to be part of the
late regulatory response [184], which includes TGF-β,
to induce senescent-like NK cells. TGF-β secreted
by MSCs in osteosarcoma can increase the migratory
capacity of tumor cells, which, in turn, stimulate the
secretion of IL-6 that fosters cancer cell stemness
and aggressiveness [204,205]. In a model of arthritis,
IL-6-dependent PGE2 secretion by MSCs inhibits local
inflammation [206]. Indeed, IL-6 modifies the soluble
mediator secretion profile of MSCs, increasing PGE2
and VEGF, among others. MSC-derived IL-6 and PGE2
skew monocyte differentiation toward the formation
of IL-10-expressing macrophages [207]. IL-6 clearly
plays an important role in the crosstalk between MSCs
and the tumor microenvironment, and additional work
is needed to elucidate the full spectrum of its effects. In
different tumor models, targeted inhibition of IL-6 may
enhance the efficacy of anti-PD-L1 [208–210].

MSCs and anti-tumor therapy

The potential therapeutic benefit of exogenous MSCs
has been under preclinical investigation since the late
1990s. Tissue regeneration-related candidate MSC
applications include bone marrow transplantation,
graft-versus-host disease (GVHD), acute myocar-
dial infarction, heart failure, stroke, lung diseases,
acute kidney failure, liver fibrosis, juvenile diabetes,
osteoarthritis and rheumatoid arthritis, inflammatory
bowel disease, multiple sclerosis, Parkinson’s disease,
and sepsis [211,212], some of which are approved
(GVHD being one example) [213–215]. There are
currently also ongoing clinical trials that use MSCs to
treat tumors [7]. In the context of such cell therapeutic
approaches, MSCs are used as gene delivery vehicles
for tumor-targeted therapies [216–218]. MSCs have
been engineered to deliver interleukins to improve
anti-cancer immune surveillance, as delivery agents
of interferons (IFN-α and -β) [159], and as carriers of
prodrugs or oncolytic viruses [219,220]. MSCs have
also been tested as deliverers of anti-angiogenic agents,
pro-apoptotic proteins (TRAIL, for example) [221], and
growth factor antagonists. Moreover, after exposure to
high doses of chemotherapeutic drugs such as paclitaxel
or gemcitabine, MSCs have been shown to accumulate
and deliver the anti-neoplastic agent without undergoing
genetic modifications and to decrease tumor growth
[222,223]. Their ability to preferentially migrate toward
tumor sites (primary and metastatic neoplasms) in
addition to their availability, non-immunogenic nature,
and relative ease of manipulation in vitro renders them
attractive candidates for cell-based therapies. However,
as discussed above, increasing evidence regarding the
tumor-promoting activity of MSCs, especially when
subverted by the TME, raises issues as to their safety
and cautions their use in clinical trials. In addition,
using engineered MSCs may be a problem after erad-
ication of the tumor they are designed to target [224].
A recent systematic review by Christodoulou et al
addresses these issues in the settings of preclinical
cancer cytotherapy [225].

MSC-EVs for anti-tumor therapy
Several studies suggest that the cell source may condi-
tion EV homing to specific sites and that their membrane
can be engineered to increase tissue-specific targeting
[226,227]. These observations open new possibilities for
potential future applications of MSC-EVs as cell-free
therapeutic agents [228]. MSC-derived exosomes may
thus be used as delivery vehicles to transfer genetic
materials, including mRNA and non-coding RNAs to
recipient cells [160,229–232].

Targeting the pro-tumor effects of MSCs
Approaches that could be used to target MSCs in the
TME and counteract their immunosuppressive effects
include direct blockade of their immunosuppressive
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function and reprogramming to render their immunos-
timulatory properties dominant over their immunosup-
pressive ones [5]. MSC activity could be modulated
in a variety of ways using, among others, drugs that
inhibit one or, preferably, several of the MSC-derived
immunosuppressive molecules (e.g. IDO, TGF-β);
inhibitory antibodies (e.g. anti-PDGF, anti-EGFR anti-
bodies) that block the effect of growth factors involved
in MSC–tumor cell crosstalk [233–235] and elicit
ADCC (antibody-dependent cellular cytotoxicity);
inhibitors of sheddases/ADAMs (a disintegrin and met-
alloproteinases); and tyrosine kinase inhibitors. Some of
these approaches have the advantage of targeting both
MSCs and tumor cells. HMG-CoA reductase inhibitors
(statins) decrease mevalonate, its metabolic product that
is essential for MSC and tumor cell metabolism. How-
ever, mevalonate is also required to develop an immune
response and kill tumor cells. Thus, it is important to
design inhibitors that can be directly and specifically
delivered to MSCs [236].

PD-L1 expression is upregulated in MSCs by IFN-γ
[237], and PD-L1/PD1 is involved in MSC regulation of
T- and B-cell proliferation [238,239]. ADAM proteins
release MSC ligands for NK cells and decrease NK-cell
recognition of tumor cells. ADAMs can be released in
exosomes and microvesicles.

Reprogramming MSCs from an immunosuppressive
to an immunostimulatory phenotype may constitute
another potentially promising approach. The effects of
bisphosphonates [240,241], as well as immunomodula-
tory drugs such as thalidomide and lenalidomide, that
target the TME and decrease IL-6 by regulating SOCS1
[242] are being assessed by several groups.

Preclinical models
Studies on the effect of MSCs on cancer growth and
their immunomodulatory properties have been based
mainly on in vitro 2D co-culture systems and on in vivo
cancer models using primarily BM-MSCs and adipose
tissue-isolated MSCs. New approaches using more com-
plex in vitro 3D models are under development and are
gaining interest, as they are more prone to mimic the in
vivo features of the tumor microenvironment [204]. For
a more detailed review, the recent publication of Avnet
et al [204] summarizes the different 3D preclinical mod-
els available, as well as their limitations.

Concluding remarks

Mesenchymal stem cells may be heralded as key pre-
servers of tissue homeostasis. Their pleiotropic nature
provides them with the unique ability to act as sensors
of tissue state and as both coordinators of and partic-
ipants in the effector functions required to repair and
regenerate injured tissues. By sensing the degree of
an inflammatory response to injury, MSCs may adapt
their own regulatory and effector functions to temper or
boost the response as required. Thus, they can become

immunosuppressive upon exposure to elevated levels of
pro-inflammatory cytokines while providing support to
tissue repair by secreting ECM components and stimu-
lating regeneration by resident stem cells. By contrast, in
the presence of low levels of IFN-γ and TNF-α, MSCs
may adopt a pro-inflammatory phenotype and enhance
T-cell responses as well as tissue remodeling.

Despite its highly beneficial effects in the mainte-
nance of homeostasis, MSC plasticity is a double-edged
sword as it can be readily exploited by tumors to serve
tumor cell needs. In response to tumor-derived cytokines
and signals generated by direct physical contact with
tumor cells, MSCs can adopt a potent immunosuppres-
sive phenotype that acts on both innate and adaptive
immunity. As a result, they may facilitate tumor progres-
sion, which entails acquisition by tumor cells of addi-
tional genetic and epigenetic changes that may shield
them from cytotoxic cells and drugs and support their
formation of metastases.

Although a plethora of studies have been conducted
on MSCs in recent years, several key issues remain to
be resolved. Perhaps the most pressing one is the hetero-
geneity of MSCs, which requires the identification and
definition of their putative subpopulations and the deter-
mination of their mutual relationships. For example,
are the different subpopulations stable or are they tran-
sient and can one subpopulation transform itself into
another in response to microenvironmental stimuli? Sev-
eral other questions need to be addressed as well. What
is the relationship between MSCs and ‘resting’ fibrob-
lasts – are they distinct entities or one and the same,
perhaps at different stages of differentiation? What pro-
portion of the stromal response to injury is directed by
MSCs versus other more differentiated stromal cells?
These and other issues will need to be resolved if we
hope to effectively disrupt the functional support that
MSCs provide to tumor growth.
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