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Abstract: The biological process of pearl formation is an ongoing research topic, and a number of genes
associated with this process have been identified. However, the involvement of microRNAs (miRNAs)
in biomineralization in the pearl oyster, Pinctada fucata, is not well understood. In order to investigate
the divergence and function of miRNAs in P. fucata, we performed a transcriptome analysis of small
RNA libraries prepared from adductor muscle, gill, ovary, and mantle tissues. We identified 186
known and 42 novel miRNAs in these tissues. Clustering analysis showed that the expression patterns
of miRNAs were similar among the somatic tissues, but they differed significantly between the somatic
and ovary tissues. To validate the existence of the identified miRNAs, nine known and three novel
miRNAs were verified by stem-loop qRT-PCR using U6 snRNA as an internal reference. The expression
abundance and target prediction between miRNAs and biomineralization-related genes indicated
that miR-1990c-3p, miR-876, miR-9a-3p, and novel-3 may be key factors in the regulatory network
that act by controlling the formation of matrix proteins or the differentiation of mineralogenic cells
during shell formation in mantle tissue. Our findings serve to further clarify the processes underlying
biomineralization in P. fucata.
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1. Introduction

The pearl oyster (Pinctada fucata) is a well-studied organism, owing to the economic potential of pearl
production as well as the fascinating biology of mollusks. P. fucata is also a representative experimental
model for biomineralization analysis [1,2]. A number of genes involved in biomineralization have
been identified, and their functions in pearl and shell formation have been clarified [3–7]. Recently,
transcriptomics [8,9], proteomics [10–12], genomics [1,2,13,14], and gene interference techniques [15,16]
have been used to investigate genetic components of shell and pearl formation in mollusks.
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MicroRNAs (miRNAs) are a class of small endogenous noncoding RNAs, 20–25 nucleotides (nt)
in length. They are embedded within the stem regions of hairpin transcripts that exist in a wide range of
invertebrates and vertebrates [17]. A single miRNA can regulate hundreds of target genes. Up to 30% of
human protein coding genes may be regulated by miRNAs [18]. miRNAs play a vital role in the regulation
of gene expression at the post-transcriptional level, especially for signaling pathways involved in cellular
development, proliferation, apoptosis, oncogenesis, and differentiation [19,20]. miRNAs negatively
regulate gene expression through sequence-specific interactions with the 3′ untranslated regions (UTRs)
of target genes, and thereby cause translational repression or mRNA destabilization [21,22]. Prior research
has shown that some miRNAs, such as miR-223, miR-125b and, miR-302a, participate in the control of
biomineralization during bone formation in animals [23–25].

Mollusks are the second largest phylum in Metazoa, yet very few studies have addressed
the diversity and function of miRNAs in mollusks. So far, five miRNAs have been identified from
Holiotis rufescens, 60 miRNAs from Lottia gigantean [26], 258 miRNAs from Pinctada martensii [27],
199 miRNAs from Crassostrea gigas [28], and 289 miRNAs from Crassostrea hongkongensis [29].
Moreover, a computational prediction of candidate miRNAs was performed for the Patella vulgata [30]
and P. martensii [31] genomes. In addition, prior work revealed that miR-2305 participates in nacre
formation by targeting pearlin in P. martensii [32]. However, data regarding the involvement of
miRNAs in pearl formation remain limited.

To obtain various miRNAs and explore their potential functions in biomineralization, we constructed
and sequenced eight small RNA libraries prepared from adductor muscle, gill, mantle, and ovary tissues
of two P. fucata. The genomic and transcript sequences of P. fucata are very helpful for performing
functional analysis of miRNAs in this organism. The clarification of the functions of miRNAs in
P. fucata will provide new insights to further understand the molecular mechanisms of biomineralization.
In addition, this will provide useful information for further research into various biological processes in
P. fucata. The aims of this study were (1) to identify known and novel miRNAs of P. fucata, (2) to clarify
the expression profile of identified miRNAs in the tissues examined, (3) to predict genes targeted by
the miRNAs, and (4) to identify the miRNAs involved in biomineralization.

2. Materials and Methods

2.1. Ethics

This study was conducted in strict accordance with the recommendations in the Guide for the Care
and Use of Laboratory Animals of the University of Tokyo. All efforts were made to minimize
the suffering of the animals.

2.2. Small RNA Isolation and cDNA Library Construction

Two female pearl oysters (approximately two years old) were collected from Mikimoto Pearl
Research Institution Base, Mie Prefecture, Japan in 2014. Adductor muscle (Ad for short), gill
(Gi for short), mantle (Ma for short), and ovary (Ov for short) tissues were collected from the pearl oysters.
Eight RNA samples in total were extracted from the tissues, and small RNA extraction was performed
following the protocol of the mirVana miRNA Isolation Kit (Life Technologies, California, USA). In brief,
the sequencing libraries were constructed as per the Ion Total RNA-seq Kit v2 small RNA libraries
construction protocol (Life Technologies, California, USA). This was followed by adapter ligation,
synthesis of cDNA by reverse transcription, purification of the small RNA fraction, and amplification
by PCR to construct cDNA libraries. An Agilent 2200 TapeStation (Agilent Technologies,
Waldbronn, Germany) was used to determine the cDNA concentration. The cDNA libraries were
then used to prepare a template for loading onto the analysis chip, according to the Ion PI™ Template
OT2 200 Kit v3 protocol (Life Technologies, California, USA). Sequencing was then performed following
the manufacturer’s protocol for the Ion PITM Sequencing 200 Kit v3 (Ion Proton Sequencer and Ion
Proton Server, Life Technologies).
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2.3. Small RNA Sequence Analysis

The raw sequencing data were saved as FASTQ files. We first filtered out the reads with low
quality, containing poly-A tails, and those outside the range of 15–31 nt length (Step 1). After filtering,
quality and length distribution statistics for these sequencing data were examined. Then, the filtered
reads were evaluated by a homology search using basic local alignment search tool (BLAST) against
the NCBI non-coding RNA database [33] and Rfam database [34] to remove rRNA, tRNA, snRNA,
and snoRNA sequences (Step 2). Subsequently, the filtered reads were mapped onto the P. fucata genome
by bowtie (-v1) (Step 3) [35]. Then, miRNA identification was performed by comparing the sequences
with the known mature miRNAs and miRNA precursors in miRBase 22.0 [36]. Unannotated sequences
that failed to match with the sequences in the databases above were analyzed by miRDeep2 to predict
novel miRNA candidates [37]. The base bias composition at each nucleotide position of all identified
miRNAs was analyzed. The genome of P. fucata (version 2.0) [2] was used as the reference genome for
miRNA precursor prediction.

2.4. Analysis of Differentially Expressed miRNAs among Tissues

The total miRNA reads of each library were used for normalization to analyze differentially
expressed miRNAs between two tissues’ libraries. The miRNA counts were normalized according to
the reads per million reads (RPM) method. The expression levels of known and novel miRNAs in
the various tissues were compared to identify differentially expressed miRNAs. DESeq2 software
(version 1.14.1) [38] was used to analyze the differences in the expression levels of the miRNAs between
two tissues with the criteria: |log2(FoldChange)| > 1 and p-adj < 0.05. Six paired comparisons were
evaluated by DESeq2, including Ad vs. Gi, Ad vs. Ov, Ad vs. Ma, Gi vs. Ov, Gi vs. Ma, and Ov
vs. Ma. Each tissue had two individuals as replicates.

2.5. Target Analysis for miRNAs and Biomineralization-Related Genes

Complete sequences of 105 biomineralization-related genes from the Pinctada genus were
downloaded from NCBI GenBank [39], and the 3′ UTRs were used for miRNA-target prediction.
Target predictions for miRNAs and biomineralization-related genes were analyzed by RNAhybrid [40],
miRanda [41] and RNA22 [42]. For the RNAhybrid algorithm, the free energy (e) and p-value (p)
were used to estimate the interaction between miRNAs and mRNAs. The conditions for functional
targets were e < −20 kcal/mol and p < 0.05. Functional target genes of miRNAs identified using
the miRanda algorithm were restricted by the conditions of score > 100 and free energy < −10
kcal/mol. The RNA22 algorithm was used to determine the most favorable hybridization site between
miRNA and mRNA with a sensitivity of 63%, specificity of 61%, and seed size of 7, allowing a maximum
of one unpaired base in the seed.

2.6. Validation of P. fucata miRNAs by Stem-Loop qRT-PCR

Stem-loop qRT-PCR analysis [43] was employed to validate and determine the specific expression
of miRNAs in P. fucata. Ten adult female P. fucata were obtained for tissue collection from Mikimoto
Pearl Research Institution Base in May 2018. Total RNA was isolated from adductor muscle, gill, ovary,
and mantle tissues using an RNeasy Mini Kit (QIAGEN, Maryland, USA). RNA quality and purity were
assessed using RNA ScreenTape (Agilent, California, USA). Each RNA sample (0.5 µg) was reverse
transcribed into cDNA using a cDNA Synthesis Kit (TaKaRa, Shiga, Japan) as per the manufacturer’s
instructions. The stem-loop primer was used for small RNA reverse transcription; qRT_PCR forward
primer and common reverse primer were used to amplify small RNA sequences. PCR assays
were carried out in a quantitative thermal cycler (Applied Biosystems 7300 Real-Time PCR System)
(Life Technologies) in a 20 µL reaction volume containing 10 µL SYBR Premix Ex Taq II (TaKaRa), 2 µL
cDNA, 0.4 µL ROX Reference Dye (50×) (TaKaRa), 6 µL sterile distilled water, and 0.4 µM of each
primer. Primer sequences are listed in Table 1. The thermal program included 95 ◦C for 30 s, 40 cycles
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of 95 ◦C for 5 s, 60 ◦C for 31 s, and a dissociation stage of 95 ◦C for 15 s, 60 ◦C for 60 s and 95 ◦C for 15 s.
The expression of each miRNA quantified by stem-loop qRT-PCR was presented as n = 10 done for
three replicates, and U6 snRNA was used as the internal reference for the stem-loop qRT-PCR. Ct values
were represented by the mean values of three independent replicates, and the relative expression levels
were calculated using the 2−∆∆Ct method [44].

Table 1. Primers used in the present study.

Small RNA Stem-Loop Primer qRT-PCR Forward Primer

let-7a CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAACTATAC ACACTCCAGCTGGGTGAGGTAGTAGGTTGT
miR-1493 CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACTGATGT ACACTCCAGCTGGGAGAACTGTGTATGGAC

miR-1990c-3p CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCAAGTAG ACACTCCAGCTGGGCGGGACTACGTCAACT
miR-1993 CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCTCGTGA ACACTCCAGCTGGGTATTATGCTGTTATTC
miR-279 CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGGATGAGT ACACTCCAGCTGGGTGACTAGATCCACAC
miR-876 CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCACGGAT ACACTCCAGCTGGGTGGATTTCCCAAGAT

miR-9a-3p CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCCTCCGGT ACACTCCAGCTGGGATAAAGCTAGGTTAC
miR-183 CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCCGTGAAT ACACTCCAGCTGGGAATGGCACTGGTAGAAT
miR-200a CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGACATCTT ACACTCCAGCTGGGTAATACTGTCAGGTAAA
novel-1 CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCGGAATC ACACTCCAGCTGGGAGGCGAGCCTAAACGA
novel-3 CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCAGGTAG ACACTCCAGCTGGGTGCCGTCACAAGGACT
novel-10 CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGATACTGG ACACTCCAGCTGGGTGCACCAAACTAATGCC

miRNA reverse primer TGGTGTCGTGGAGTCG
U6 forward primer TTGCTTCGGCGGTACATATA
U6 reverse primer ATTTGCGTGTCATCCTTGC

2.7. Data Accessibility

The raw sequencing reads obtained in the present study are deposited at DNA Data Bank of Japan
(DDBJ) Sequence Read Archive (DRA) under submission accession number DRA006953.

3. Results

3.1. Overview of Small RNA Library Sequencing

Eight small RNA libraries from the adductor muscle (Ad), gill (Gi), ovary (Ov), and mantle
(Ma) tissues of two individual P. fucata were sequenced by Ion Proton sequencing to survey
the miRNA diversity in P. fucata. In total, 50.32 million raw reads were obtained from all libraries
(Table 2). After the removal of low-quality sequences, adaptor sequences, poly-A tail sequences,
and sequences shorter than 15 nt or longer than 31 nt, 41.72 million reads remained for the statistical
analysis of sequence length (Figure 1 and Table 2, Step 1). The length distribution of each tissue
library is shown in Figure S1. Two obvious small RNA peaks with different lengths were found in
the sequencing data. After removing known RNAs and genome unmapped reads, 33.26 million reads
(66.1% of raw reads) were remaining for miRNA identification in this study.

Table 2. Counts of filtered sequencing reads (in millions) for the small RNAs from different tissues.

Libraries Ad1 Ad2 Gi1 Gi2 Ov1 Ov2 Ma1 Ma2 Total

Raw reads 1.96 5.14 13.59 5.74 6.74 3.04 5.57 8.54 50.32
Step 1 1.58 4.61 11.36 5.38 5.63 2.7 3.64 6.82 41.72
Step 2 1.57 4.61 11.35 5.37 5.63 2.7 3.64 6.81 41.68
Step 3 1.33 3.59 9.42 4.31 3.97 1.92 3.07 5.65 33.26

Step 1: Remove adapter sequences and remaining reads of 15–31 nt in length. Step 2: Remove known RNAs. Step 3:
Remove unmapped reads from the reference genome.
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3.2. Identification of Known and Novel miRNAs

To identify known miRNAs in P. fucata, we compared our dataset with the known miRNAs in
miRBase 22.0. First, the remaining sequencing reads were mixed for miRNA identification. A read
found more than five times was considered as a possible miRNA in P. fucata. Allowing no more than
one mismatch between sequences, 186 known miRNAs were identified (Table S1). We then analyzed
the abundance of the known miRNA, which revealed a large distribution in the expression levels.
The read numbers of known miRNAs ranged from 1 to 1359669 in a single library, indicating that not
only highly expressed miRNAs but also weakly expressed miRNAs were present in P. fucata.

One of the important characteristics that distinguish miRNAs from other endogenous small
RNAs is the capacity of the precursor miRNA sequences to fold back into a canonical stem-loop
hairpin structure [27]. The genomic data of P. fucata were used for miRNA precursor identification
and were further parsed through the miRDeep2 software for the prediction of precursor sequences
and secondary structures. A total of 280 sequences could form proper secondary hairpins and were
considered miRNA precursors. Moreover, 186 known and 42 novel miRNAs were identified based
on expression levels and precursor identification. The base bias at each position of all identified
miRNAs is shown in Figure S2. The majority of miRNAs tended to start with 5′-U, which is consistent
with typical miRNA sequence patterns [17]. Of these miRNAs, 38 (32 known and six novel miRNAs)
have multiple (from two to five) precursor sequences (Table S1). For example, miR-9649 and novel-18
have five and three precursors, respectively.

3.3. Expression Levels of miRNAs in P. fucata

Among 228 miRNAs identified, 165, 198, 159 and 185 miRNAs were found in adductor muscle,
gill, ovary and mantle tissues, respectively. Of these, 119 miRNAs (52.19% of total miRNA) were
ubiquitously expressed in all examined tissues. On the contrary, 19 miRNAs (11.95% of ovary
miRNAs) and eight miRNAs (4.04% of gill miRNAs) were uniquely expressed in ovary and gill tissues,
respectively (Figure S3). One miRNA, miR-8871, was also uniquely expressed in mantle tissues,
albeit with a low expression level. The expression levels of P. fucata miRNAs were calculated by reads
per million reads (RPM), and these data are shown in Table S2. The novel miRNAs were expressed
at lower levels than the previously known miRNAs (Figure 2).
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Among the miRNAs identified in P. fucata, miR-279 showed the highest expression levels in
gill and mantle tissues, whereas miR-100 and miRNA-549a showed the highest expression levels in
adductor muscle and ovary tissues. Let-7a, miR-184-3p, miR-71, and miR-87a also demonstrated high
expression in all examined tissues in P. fucata, while miR-133a, miR-549a, and miR-1990c-3p were
highly expressed in adductor muscle, ovary and mantle tissues, respectively. The expression patterns
of miRNAs in ovary tissue showed rather different features from those in the somatic tissues (Figure 3).
In Figure 3a, four clusters of miRNAs are shown based on their expression patterns, in which each
cluster corresponds to highly and specifically expressing miRNA groups in each tissue based on
the average expression levels of two replicates. The expression pattern of ovary tissue differed from
somatic tissues, and 24 (57.14% of novel miRNAs) novel miRNAs were highly expressed in ovary
tissue. Essentially identical clustering patterns were observed based on individual expression levels
(Figure 3b,c). However, when we examined clustering patterns of the eight samples (four tissues of
the two individuals), mixed and complicated patterns were observed in somatic and ovary tissues
(Figure 3d). Then, we examined clustering patterns of the six somatic samples, in which a pair for
each tissue clustered together, indicating that the expression of miRNAs in the somatic tissues showed
similar patterns between the two individuals (Figure 3e). The principal component analysis (PCA)
also showed large differences in miRNA expressions between ovary and somatic tissues (Figure S4).
Data regarding the miRNA expressions as obtained from high-throughput sequencing are shown in
Table S2. For mantle tissues, eight miRNAs, including miR-1493, miR-1993, miR-9a-3p, miR-9b-3p,
novel-3, miR-876, miR-1990c-3p, and miR-10a, were significantly highly expressed when compared
with the other three tissues (Figure S5).
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Figure 3. Heat map of expression levels of miRNAs in P. fucata somatic and ovary tissues, based on
(a) average expression levels of the two individuals, (b) individual expression levels of individual 1,
(c) individual expression levels of individual 2, (d) all examined samples of the two individuals, and (e)
six somatic samples of the two individuals. The details regarding miRNA expression are shown in
Table S2. RPM: reads per million reads. Ad: adductor muscle; Gi: gill; Ov: ovary; Ma: mantle.

3.4. Validation of miRNA by Stem-Loop qRT-PCR

The total RNA extracted from adult P. fucata was subjected to stem-loop qRT-PCR to validate
the authenticity of miRNA expression shown by the transcriptome analysis. Twelve miRNAs,
including nine known miRNAs and three novel miRNAs, were selected for the checking of
miRNA expression. Of those, six miRNAs, namely miR-1493, miR-1990c-3p, miR-1993, miR-876,
miR-9a-3p, and novel-3, were selected because of their high expression in mantle tissues. The other
miRNAs were selected randomly. All of these miRNAs could be readily detected by stem-loop
qRT-PCR. Except for inconsistency in the expression of miR-1493 and miR-1993 in adductor muscle
between the transcriptome and qRT-PCR data, the other ten miRNAs demonstrated consistent levels
of relative expression by qRT-PCR when compared with those obtained from the high-throughput
sequencing data (Figure 4). Let-7a, novel-1, miR-279, and miR-200a were ubiquitously expressed in
all examined tissues, while miR-279 and miR-200a were highly expressed in gill, ovary, and mantle
tissues. Among these miRNAs, miR-1990c-3p, miR-876, miR-9a-3p, and novel-3 were highly expressed
in mantle tissues, while miR-183 and novel-10 were highly expressed in ovary tissue when compared
with the other three tissues.



Biology 2019, 8, 47 8 of 15Biology 2019, 8, x 8 of 15 

 

 

Figure 4. qRT-PCR validation of miRNAs expressed in P. fucata somatic and ovary tissues. Ad: 

adductor muscle; Gi: gill; Ov: ovary; Ma: mantle; RPM: reads per million reads; Seq: high-throughput 

sequencing. 

3.5. Functional Prediction of miRNA in Biomineralization 

To elucidate the functions of the identified miRNAs in biomineralization, the putative target 

associations between miRNAs and the biomineralization-related genes were analyzed using three 

informatics software packages, RNAhybrid, miRanda, and RNA22, which were programmed to 

predict the miRNA:mRNA interaction sites. One hundred and five biomineralization-related genes 

from the Pinctada genus with completed 3’UTR sequences were downloaded from the NCBI 

database. As shown in Table S3, 248, 323, and 577 miRNA:mRNA interaction sites were predicted by 

RNAhybrid, miRanda, and RNA22, respectively. The results also demonstrated that the majority of 

these genes could be targeted by more than one miRNA. For example, Fam20c could be targeted by 

27 miRNAs, of which twenty-five were known miRNAs and two were novel miRNAs. The predicted 

interaction sites for the same miRNA:mRNA pair varies widely among the software packages used. 

For example, when RNA22 was employed, the MPN88 family genes were predicted to be regulated 

by miR-872 (Figure 5a), while RNAhybrid predicted that MPN88 family genes were also regulated 

by miR-463-3p (Figure 5b). 

Figure 4. qRT-PCR validation of miRNAs expressed in P. fucata somatic and ovary tissues. Ad: adductor
muscle; Gi: gill; Ov: ovary; Ma: mantle; RPM: reads per million reads; Seq: high-throughput sequencing.

3.5. Functional Prediction of miRNA in Biomineralization

To elucidate the functions of the identified miRNAs in biomineralization, the putative target
associations between miRNAs and the biomineralization-related genes were analyzed using three
informatics software packages, RNAhybrid, miRanda, and RNA22, which were programmed to predict
the miRNA:mRNA interaction sites. One hundred and five biomineralization-related genes from
the Pinctada genus with completed 3′UTR sequences were downloaded from the NCBI database.
As shown in Table S3, 248, 323, and 577 miRNA:mRNA interaction sites were predicted by RNAhybrid,
miRanda, and RNA22, respectively. The results also demonstrated that the majority of these genes
could be targeted by more than one miRNA. For example, Fam20c could be targeted by 27 miRNAs,
of which twenty-five were known miRNAs and two were novel miRNAs. The predicted interaction
sites for the same miRNA:mRNA pair varies widely among the software packages used. For example,
when RNA22 was employed, the MPN88 family genes were predicted to be regulated by miR-872
(Figure 5a), while RNAhybrid predicted that MPN88 family genes were also regulated by miR-463-3p
(Figure 5b).
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Figure 5. The predicted interactions of miR-872 and miR-463-3p with the 3′ untranslated regions
(UTRs) of MPN88 family genes. The target sites of miR-872 (a) and miR-463-3p (b) in the 3′UTRs of
eight MPN88 family genes identified by RNA22 and RNAhybrid, respectively.

Of these predictions, twenty-two genes are shown to be regulated by multiple miRNAs by all
three programs (Table S3). On the other hand, no interaction sites were predicted in eight genes
by all three programs. Moreover, some miRNAs are predicted to regulate multiple genes, whereas
some genes are predicted to be regulated by multiple miRNAs. For example, while let-7a was
predicted to regulate 13 genes, including BMP3/7, CaM, Cathepsin-B, GRP, Nacrein, PfCHS1, PFMG6,
PFMG7, Pif177-like, and shematrin-5/6/8, the gene BMP3, a subgroup of the bone morphogenetic protein
(BMP) family, could be regulated by either let-7a, miR-133a, or miR-9007. Among these potential
target genes, most of them are shell matrix proteins, such as GRP, KRMP, Linkine, Pif177-like, PFMG,
Prismalin-14, SGMP1, Shematrins etc., which constitute the basic calcium carbonate and organic matrices
formed during the biomineralization process. Moreover, many protein kinases (ALP, CaM, and MMP)
and transcription factors (OCT4) are also regulated by miRNA according to target site predictions
(Table S3).

miR-1990c-3p, miR-876, miR-9a-3p, and novel-3 were highly expressed in mantle tissues, and each
of these miRNAs has multiple target genes related to biomineralization. Therefore, these miRNAs are
very likely to be involved in the biomineralization process. Indeed, miR-1990c-3p was predicted to
regulate MMP and SGMP1; miR-9a-3p regulated Pif177-like; miR-876 regulated Fam20c, GRP, PMMG1,
Prismalin-14, shematrin-2/2β, and Tyr-1; and novel-3 regulated GRP, Linkine, MMP, and OCT4 (Figure 6).
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Figure 6. Hairpin structure of miRNAs and the potential target sites. (a) The potential target sites
between miRNA-1990c-3p and MMP by miRanda, and between miRNA-1990c-3p and SGMP1 by
RNAhybrid. (b) The potential target site between miR-9a-3p and Pif177-like protein by miRanda.
(c) The potential target sites between novel-3 and GRP, between novel-3 and Linkine by RNAhybrid,
and between novel-3 and OCT4 by miRanda, and between novel-3 and MMP by RNA22. (d) The potential
target sites between miR-876 and Prismalin-14 by RNAhybrid and RNA22, and between miR-876
and Fam20c, between miR-876 and PMMG1 by miRanda, between miR-876 and GRP, between miR-876
and shematrin-2/2β, and between miR-876 and Tyr-1 by RNA22. The position of target genes is numbered
from the 3′UTR starting position.
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4. Discussion

Prior research has demonstrated that miRNAs are a major class of post-transcriptional regulatory
molecules that have critical functions in diverse biological processes [45]. Abundant miRNAs have
been identified in various organisms, while only a small number of miRNAs have been identified
and undergone functional prediction in mollusks such as P. fucata [31]. In the present study, two main
peaks of different sizes of small RNAs were observed in the distribution of small RNA lengths by
high-throughput sequencing, with small RNAs with a length of 21–23 nt likely representing miRNAs,
while those 29–31 nt in length mainly represented putative Piwi-interacting RNAs (piRNA) [46].
Separate analyses were conducted on these two different sets of small RNAs (we focused on
the miRNA fraction in this study).

A total of 228 miRNAs, including 186 known and 42 novel miRNAs, were identified by
high-throughput sequencing in P. fucata. To gain a better understanding of miRNA expression
in P. fucata, the normalized RPM of each miRNA was used to compare miRNA expression among tissues.
More than 50% of miRNAs were commonly expressed in all tissues, while a few miRNAs were specifically
expressed in a single tissue. Clustering analysis and PCA of miRNA expression patterns, based on
average expression levels, clustered the somatic tissues together, indicating that the miRNA expression
patterns in P. fucata differ between the somatic and ovary tissues. These results demonstrate that
the expression of miRNAs in P. fucata is both common and tissue-specific, which may play an important
role in development, differentiation, and biological processes. The results of the eight samples
in Figure 3d showed mixed and complicated clustering patterns. This result might be caused by
the perturbation of relatively differential expression levels of miRNAs in ovaries and mantles between
the two individuals.

Among these 228 miRNAs, many known miRNAs were highly expressed in P. fucata. miR-279
has been observed as being well preserved in arthropods, but is rarely observed in vertebrates [47].
Previous studies showed that the miR-279 family is involved in the proper development of CO2 sensory
neurons and the maintenance of circadian rhythm in Drosophila [48,49]. miR-100 was also ubiquitously
expressed in all examined tissues by high-throughput sequencing (Table S2). In previous studies, it was
considered a tumor suppressor miRNA in patient tissue, and the decreased expression of miR-100
appears to play an important role in the development and progression of disease and may contribute
to reduced sensitivity to ionizing radiation [50,51]. Since no predicted interaction site was identified
between these two miRNAs and the biomineralization-related genes (Table S3), miR-279 and miR-100
may be involved outside of the biomineralization process in P. fucata. Let-7a was also found in most
animals, suggesting that these miRNAs, which regulate cell proliferation and differentiation, are
evolutionarily well conserved [52,53].

In addition, 42 novel miRNAs were identified in P. fucata. The expression density of novel
miRNAs was lower than that of the majority of the known miRNAs. This result is consistent with
previous observations suggesting that novel miRNAs are often expressed at lower levels than known
miRNAs [27]. Many of the novel miRNAs (57.14%) are likely specialized for reproductive functions
given their tissue-specific biases in expression. This finding indicates that these novel miRNAs may
have not general but specific functions. Further experiments could provide further insight into
the functions of these novel miRNAs in P. fucata.

To verify the authenticity of miRNAs identified by Ion Proton sequencing, we performed stem-loop
qRT-PCR to detect and measure the relative expression levels of miRNAs in P. fucata. All of the selected
miRNAs were easily detected by stem-loop qRT-PCR. Most of the miRNA expression levels obtained by
stem-loop qRT-PCR are consistent with those measured by Ion Proton sequencing, except for miR-1493
and miR-1993 in adductor muscle. This inconsistency may be caused by stem-loop qRT_PCR primer
amplification efficiency, sequencing errors during the complex sequencing protocols [27] or differences
among individual P. fucata. Nevertheless, the overall results of sequencing technology and stem-loop
qRT-PCR in our study are highly consistent, suggesting that expression analysis was largely able to
reveal accurate miRNA expression levels in P. fucata.
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The biomineralization process is very complex and precise, and the expression of each related
protein is subject to fine regulation [31]. Therefore, it would be beneficial to gain a better understanding
of the regulators involved in biomineralization. Generally, miRNAs are fine regulators that function
by silencing the expression of endogenous genes. In the present study, hundreds of interaction sites
between miRNAs and biomineralization-related genes were predicted by RNAhybrid, miRanda,
and RNA22, which were widely used in many reports, especially in the initial research when there
was little knowledge about the miRNAs in this species [54–56]. Many biomineralization-related genes,
such as ALP, BMP, CaM, GRP, KRMP, MMP, N16, OCT4, Pif177, PFMG, Prismin, SGMP, shematrin,
etc., are regulated by miRNA according to the target sites’ prediction. Shematrins are synthesized in
the mantle edge and secreted into the prismatic layer of the shell, where the protein family is thought
to provide a framework for calcification in P. fucata [5]. Matrix metalloproteinases (MMPs), which can
be regulated by miR-1990c-3p, digest proteins to prepare the peptides that contribute to calcium
carbonate crystallization [57]. The transcription factor Pf-POU3F4 (OCT4), which is predicted to be
regulated by novel-3, regulates the expression of the matrix protein genes Aspein and Prismalin-14 [58].
These results suggest that miRNAs are involved in the biomineralization process, not only through
targeting the shell matrix protein, but also through the regulation of protein kinases and transcription
factors. Here, we provided an important set of resources for future studies of the miRNA-dependent
regulation of expression in the biomineralization process that forms pearls.

5. Conclusions

A total of 228 miRNAs were identified in P. fucata by high-throughput sequencing in
the present study. Novel miRNAs demonstrate weaker expression than previously known miRNAs.
Clustering analysis showed that the expression patterns of miRNAs were similar within the somatic
tissues, but differed significantly between the somatic and ovary tissues. Hundreds of potential target
sites of miRNAs and target genes were detected using multiple software tools. miR-1990c-3p, miR-876,
miR-9a-3p, and novel-3, which were highly expressed in mantle tissues, may play a core role in
biomineralization by regulating the formation of matrix proteins or protein kinase and transcription
factor genes. These results further clarify the range of miRNAs found in P. fucata and their possible
functions in biomineralization in mollusks.
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miRNAs in P. fucata. Figure S4: PCA of miRNA expression patterns in P. fucata. Figure S5. Highly expressed
miRNAs in P. fucata mantle tissues identified by high-throughput sequencing. Table S1: Detailed information
miRNAs identified in P. fucata by high-throughput sequencing. Table S2: Read counts and normalized RPM of
miRNA expression in P. fucata by high-throughput sequencing. Table S3: miRNA functioning in biomineralization
as predicted by RNAhybrid, miRanda, and RNA22.
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