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This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management
(SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial
immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which
is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing
complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often
provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design
and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

1. Introduction

Supply chains are a kind of network with facilities and
distribution entities (suppliers, manufacturers, distributors,
retailers). The supply chain performs the functions of pro-
curement of raw materials, transformation of raw materials
into intermediate and finished products, and distribution of
finished products to customers [1]. Due to rising product
and market complexity, expanding competition, shorter
product lifecycles, and changing customer demands, today’s
supply chain management (SCM) systems increasingly
involve complex sets of objectives and constraints, and
variations of uncertainty and randomization [2], and thus
static and/or centralized models are insufficient to effectively
plan, coordinate, and optimize activities in a supply chain.

Modeling and optimization of an SCM system provide a
critical support for decision making in a competitive market.
According to [3], the basic approaches to supply chain
modeling and optimization can be divided into five classes:

(1) fundamental formulation of supply chains,

(2) integer-mixed programming optimization,

(3) stochastic programming,

(4) heuristic methods,

(5) simulation-based methods.

Traditional simulation methods for large-scale complex
systems require huge amounts of computing resources [4].
In recent years, bioinspired methods have gained increasing
interest in the research of modeling and optimization
for SCM systems which are typically dynamic, open self-
organizing systems maintained by flows of information,
materials, goods, funds, and energy. Bioinspired and living
system mechanisms, such as learning, growth, evolution,
collaboration, and competition, bring an innovative solution
for the analysis and improvement of emergent complex
behaviors in virtually computing modules. In this paper,
we review the recent major accomplishments in bioinspired
solution methods and tools for SCM systems. In particular,
we concentrate on the modeling and optimization methods
based on a class of metaheuristics inspired by biologically
living beings, including genetic algorithms (GAs) [5], evo-
lutionary programming (EP) [6], evolution strategies (ESs)
[7, 8] and differential evolution (DE) [9], swarm intelligence
[10, 11], and artificial immune [12]. These heuristic methods
usually do not require deep mathematical knowledge, and
have been demonstrated to be quite useful and efficient
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in optimization search for large-scale problems. We believe
that this work will help researchers and practitioners to
gain knowledge about the major developments emerged
throughout the years and find valuable approaches that can
be referred in the research or applied in the practice of SCM
modeling and optimization.

The rest of the paper is synthesized as follows: Section 2
describes modeling and optimization methods based on
GA, Section 3 depicts three other evolution-related methods
including EP, ES, and DE, Section 4 describes methods based
on swarm intelligence, and Section 5 introduces some other
biological methods. Finally we discuss some future trends in
Section 6 and conclude in Section 7.

2. Genetic Algorithms

2.1. Design of Supply Chain Network. Network design plays
a key role in achieving efficient and effective management
of SCM systems. Typically, a supply chain can be repre-
sented as a form of multistage-based structure, the optimal
design of which has been recognized as NP-hard problems
that combine the multiple choice knapsack problem with
the capacitated location-allocation problem [13]. The first
attempt to use the GA approach to solve the SCM network
design problems has been proposed by Zhou et al. [14].
They developed a balanced star-spanning forest formulation
for encoding the solutions and then used uniform crossover
and exchange mutation operators in the algorithm. The
experiment showed that for a maximum of 10 distributors
and 100 customers, the algorithm can balanced all the
distributors. Gen et al. [15] proposed a set of spanning
tree-based for a class of network design problems such
as degree-constrained minimum spanning tree problems,
capacitated minimum spanning tree problems, fixed charge
transportation problems, and network topological design
problems, which were applied to some real-world SCM
systems.

A multistage distribution problem is a standard one with
supply chain network design. Many works focus on the two-
stage supply chain distribution problem [16–20], which can
be represented in Figure 1. That is, each of the m plants can
ship to any of the n distribution centers, and each of the
n distribution centers can ship to any of the p customers.
Typically, each plant i has si units of supply, each customer
k has dk units of demand, and each distribution centre j
has t j units of stocking capacity, and the main purpose is
to minimize the total cost which may include transportation
cost, fixed cost, and transportation time.

Aiming at the demand allocation optimization of a
two-stage and single product supply chain design problem,
Chan et al. [18] implemented a multicriteria optimization
algorithm which combines GA with the decision-making
technique of the Analytic Hierarchy Process (AHP). Jawahar
and Balaji [19] considered a two-stage distribution problem
of a supply chain that is associated with a fixed charge and
presented a GA that evolves the solution for best fitness
of total cost of distribution. By fine-tuning its parameters,
the algorithm can work out optimal solutions for small-
size problem instances, but its performance on large-size
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Figure 1: Illustration of the two-stage supply chain network design
problems.
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Figure 2: Design problem in three-stage supply chain networks.

instances has not been demonstrated. Feng and Zhang [20]
extended the problem by involving multiple transportation
modes and proposed a GA that can deal with middle-size
problem instances.

Since that today’s market environment becomes more
and more complex, supply chains with multiple (three
or more) stages are common. To model a single product
three-stage supply chain network (as illustrated in Figure 2),
Altiparmak et al. [21] proposed a GA that uses a three-
segment chromosome string which is decoded through
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a backward procedure from the third stage up to the first
stage connecting suppliers and plants. They also extended
their priority-based encoding in a new GA for the multi-
product case in [22]. However, their decoding structure can
require some repair procedures when the upper limits are
exceeded; otherwise the capacities will be not enough to
meet the customers’ demand. Costa et al. [23] presented a
new chromosome encoding and a complementary decoding
procedure able to overcome the drawbacks and thus improve
the efficiency and effectiveness of three-stage supply chains.

Considering that in a multistage supply chain network
the flow can be only transferred between two consecutive
stages, Yeh [24] presented a memetic algorithm for the design
optimization of distribution network, which combined GA,
linear programming, a greedy-heuristic based method, and
three local search methods. Yun et al. [25] indicated that,
when applying GA to multistage-based supply chains, con-
ventional GA can do global search but there is no way for
local search around the convergence area generate, and they
proposed a new hybrid GA with an adaptive local search
scheme which can automatically control whether local search
technique is used in GA loop or not, and thus can reliably
solve various optimization problems without trial-and-error
experimentation.

2.2. Supply Chain Planning and Scheduling. The success of
SCM highly depends on the timely and efficient produc-
tion/distribution in the supply chain network, which can be
typically regarded as a combination of planning and schedul-
ing problems, each seriously affected by nearly prohibitive
combinatorial complexity. In general, the development of an
effective approach for SCM planning and scheduling can be
divided into two steps:

(1) developing a precise mathematical model of the
problem considered, explaining the objective function(s),
decision variables, and problem constraints;

(2) selecting one or more effective metaheuristics suited
to the problem, and developing a problem-solving algo-
rithm-based on the heuristics.

Şerifoǧlu and Ulusoy [26] considered the problem of
scheduling independent jobs on identical parallel machines
to minimize earliness/tardiness, which incorporates distinct
due dates and arrival times for jobs, different processing rates
for machines, and sequence-dependent set-up times into
the problem formulation. They developed a GA with a new
multicomponent uniform order-based crossover (MCUOX)
operator and demonstrated that the GA outperforms other
simple heuristic methods especially in larger-sized problems.
Min and Cheng [27] also proposed a GA for solving the
problem of scheduling identical parallel machines, where the
objective is formulated as the minimization of the makespan.

Garcia et al. [28] considered the problem of scheduling
a single production plant in order to satisfy delivery time
constraints. They proposed two approaches, an exact method
for simple cases and a GA for instances of more realistic size.
Feng et al. [29] considered the problem of scheduling a single
depot equipped with a fleet of vehicles with identical capacity
and fixed loading/unloading times. They proposed a GA for
searching a production sequence maximizing a predefined

performance index, taking truck waiting times and a penalty
for violating the unloading continuity of multitruck orders
into consideration.

In [30], Lee et al. studied an operation-level advance
planning and scheduling problem in supply chain, the model
of which is to determine the best schedule using alternative
operation sequences and machines, considering scheduling
with outsourcing and strong constraints of the due dates of
customer orders. They developed a genetic algorithm-based
heuristic to solve it. Karabuk [31] studied the assignment of
jobs to suppliers and aims to determine optimal production
scheduling that minimizes the makespan, where each sup-
plier requires a different length of time to process each job.
The research proposed an adaptive GA with a new dominated
gene crossover operator to solve this problem. Zegordi et
al. [32] considered the scheduling of products and vehicles
in a two-stage supply chain environment, assuming that the
various output products occupy different percentages of each
vehicle’s capacity and proposed a gendered GA with two
different chromosomes with nonequivalent structures that
performs better than standard GA with a unique chromo-
somal structure.

There are also a number of reports on the applica-
tions of genetic algorithm in different trades, for example,
[33–40]. Considering a semiconductor supply chain for
reflecting the nonlinear throughput time of manufacturing,
Chidambaram and Armbruster [33] proposed a hybrid LP
and GA framework to solve the non-linear programming
problem in order to avoid significant differences between
the planned and realized output. Naso et al. [34] considered
the problem of finding an optimized schedule for the just-
in-time production and delivery of ready-mixed concrete
on a set of distributed and coordinated production centers.
They proposed a hybrid evolutionary algorithm in which
the GA constitutes the core of the search strategy, while
multiple heuristic rules called in specific circumstances
contribute to reconstruct a feasible solution that satisfies all
the constraints and objectives. The algorithm can guarantee
the determination of a feasible schedule for any given set
of requests and can address the highly complex scheduling
problem of an entire supply-chain for just-in-time pro-
duction. Dong and Ding [35] introduced a dynamic berth
allocation model for container terminal and proposed a GA-
based heuristic method that improves the existing research
on static berth allocation models. The GA-based approach
explores detailed capabilities of a complex problem solution
using these two encoding methods. Recently, Delavar et
al. [36] considered coordinated scheduling of production
and air transportation and proposed two GA approaches
to optimize customer service at minimum total cost: the
first uses a portion of the search time to seek for the best
transportation allocation and dedicates the remaining time
to search for the best production-transportation solution;
the seconds allocates some definite number of generations
to search for the best production-transportation solution
only after finding a better solution in each generation of
transportation. In both algorithms, the Taguchi parame-
ter design method was employed to adjust the parame-
ters.
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2.3. Multiobjective Optimization. In most cases, the design,
planning, and scheduling of complex supply chains will
involve trade-offs among different goals. Since 2000, multi-
objective optimization of SCM systems has gained a lot of
interests of the researchers. Generally, for a multiobjective
optimization problem we need to search for a set of Pareto
optimal solutions rather than a single optimal one. Using
a minimization problem for illustration, let f1, f2, . . . , fm be
objective functions; a solution x is said to dominate y if and
only if

(i) fi(x) ≤ fi(y) for all i ∈ {1, 2, . . . ,m},
(ii) fi(x) < fi(y) for existing i ∈ {1, 2, . . . ,m}.
Regarding this, a Pareto-optimal front of the prob-

lem consists of all solutions for which the corresponding
objective vectors cannot be improved in a given dimension
without worsening another [41].

A typical multiobjective genetic optimization algorithm
was proposed by Chan and Chung [42] for simultaneously
minimizing the total cost of the system, total delivery
days, and the equity of the capacity utilization ratio for
manufacturers. In [43] Chan et al. proposed a hybrid GA for
production and distribution problem, which utilized AHP
to construct these criteria and calculate the fitness value of
chromosome, and considered operating cost, service level,
and resources utilization as objectives. Considering that all
organizational units that participate on a single SC network
are distributed by nature, constrained, and self-interested,
Al-Mutawah et al. [44] used a distributed multiobjective
GA to solve a three-subchain optimization problem, and
their test results showed that the distributed GA provided
an improved computational performance, because real-
world supply chain applications are distributed in nature-
distributed approach.

Altiparmak et al. [45] considered SCM optimization
problem with three objectives: minimizing total cost, max-
imizing of customer services, and maximizing capacity
utilization balance for distribution centers. To deal with
the objectives and enable the decision maker for evaluating
a number of alternative solutions, they proposed a GA
which was designed to generate Pareto-optimal solutions
considering two different weight approaches. Farahani and
Elahipanah [46] adopted a hybrid non-dominated sorting
GA to optimize total cost and service level for JIT distribu-
tion in a supply chain, whose results were compared with
Lingo software to evaluate the performance of proposed
algorithm. Che and Chiang [47] established a multiobjective
optimization mathematical model for the build-to-order
supply chain model which are defined as “the system that
produces goods and services based on individual customer
requirements in a timely and cost competitive manner by
leveraging global outsourcing, the application of information
technology and through the standardization of components
and delayed product differentiation strategies” [48]. Consid-
ering three evaluation criteria including costs, delivery time,
and quality, they proposed a modified Pareto GA to improve
efficiency of the crossover and mutation operators of basic
Pareto GA.

3. EP, ES, and DE

Besides GA, other evolutionary algorithmic methods have
also been applied to many SCM modeling and optimization
problems. EP was devised in order to evolve finite state
machines for the prediction of events on the basis of
former observations and has been demonstrated useful
for searching the optimum of nonlinear functions [49].
Huang and Lu [50] proposed an interactive EP approach
based on the relativistic error and selection of some other
parameters to improve initial value determination, mutation,
and variance parameter selective operation. The simulation
results of supply chains showed that the improved EP is much
more appropriate of nonline model with a great volume
of data. Based on EP approach, Li et al. [51] proposed a
heuristic strategic safety stock optimization algorithm for
reverse logistics SCM considering the modeling complexity
of external as well as internal product returns and reuses of
supply chains.

Original ES uses a mutation operator that produces a
single descendent from a given ancestor [7, 8], denominated
ES-(1 + 1), and was progressively generalized to ES-(μ + λ),
that is, several ancestors (μ > 1) and descendents (λ > 1)
in each generation. Homberger [52] proposed an approach
that combines the (1+λ)-selection procedure with the Borda
maximin voting rule, to coordinate decentral planning of a
group of independent and self-interested decision makers,
who are searching for an agreeable contract regarding
multiple interdependent issues, in the case of asymmetric
information presented. In [53] Dalkilic et al. developed
an ES algorithm to solve a multiple-supplier multiple-item
problem with stochastic lead times, which was successfully
applied to some real-world healthcare SCM cases.

DE approach combines simple arithmetic operators with
the classical operators of crossover, mutation, and selection
to evolve a randomly generated starting population to a
final solution. It is similar to a (μ + λ) ES, but in DE the
mutation is not done via some separately defined probability
density function [54]. Routroy and Kodali [55] developed
a DE algorithm for minimizing the total systemwide cost,
which consists of supply chain inventory capital, supply
chain ordering/set-up cost, and supply chain stock-out cost.
The result showed that the algorithm helps in determining
ordering/production quantity and inventory/service level
that should be maintained by each member of the supply
chain. The algorithm was further extended for multiechelon
supply chain inventory problems [56] and the problems with
demand and leadtime uncertainty [57]. Prasertwattana and
Shimizu also [58] applied a similar DE algorithm to optimize
material ordering and inventory control of SCM systems.

DE was used for multiobjective optimization of SCM
systems first by Babu and Gujarathi [59]. In their algorithm,
crossover is carried out between the target vector and the
noisy random vector to generate a trial vector, the cost
of trial and target vectors is compared, and the variables
corresponding to best cost are passed into next generation.
The algorithm was successfully applied to a three-stage
SCM problem. Dos Santos Coelho and Lopes [60] firstly
developed a chaotic DE algorithm for the optimization of
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a supply chain, which was based on different DE approaches
combined with chaotic sequences and led to better results
than basic DE approaches. In [61] Xu et al. proposed a
migration DE algorithm by imitating nomadic migration
for this supply chain problem and presented an ensemble
method based on different DE methods for not only avoiding
the premature convergence but also improving the global
search capability.

Falcone et al. [54] compared the performance of GA,
EP, ES, and DE based on a case of integrated production-
inventory-distribution SCM system. Their results showed
that the robustness of the evolutionary methods is in general,
and the efficiency of DE, in particular, suggests their great
utility for the supply chain optimization problem.

4. Swarm Intelligence

4.1. Ant Colony Optimization. Ant colony optimization
(ACO) algorithm mimics the behavior of real ants living in
colonies that communicate with each other using phero-
mones in order to accomplish complex tasks such as
establishing a shortest path from the nest to food sources
[62]. Silva et al. [63] proposed an ACO algorithm for
distributed optimization of a logistic system, but the work
only considered only the allocation of suppliers in the system.
In a successive work [64], the authors modeled a distributed
optimization problem for a generic supply chain with
suppliers, logistics, and distributers and developed an ACO
algorithm that allows the exchange of information between
different optimization problems by means of a pheromone
matrix. The experimental results showed that the approach
can significantly improve global supply chain performance
with respect to other simple decentralized approaches.

Wang [65] studied the partner selection and production-
distribution planning problem in a supply chain with the
losses of production, which is called the defective supply
chain. He developed for this problem a two-phase ACO
algorithm, which finds out the combination of the maximum
yield rate and the minimum number of partners in the first
phase and implements the distribution with the partners
and seeks out the minimum value of T-score in the second
phase. Comparative numerical experiment showed that his
algorithm achieves better performance than the common
single-phase ACO algorithms.

In a very recent work, Moncayo-Martı́nez and Zhang
[66] studied the multiobjective ACO for supply chain
optimization. They considered the problem for minimizing
the total cost while keeping the total lead-times within
required delivery due dates. They formulated the design
problem into an ACO optimization form and implemented a
number of ant colonies in a sequence to explore the solution
space and search for successively better nondominated set of
supply chain designs.

4.2. Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO) [10] is another population-based global opti-
mization technique that enables a number of individual
solutions, called particles, to move through a hyperdimen-
sional search space to search for the optimum. Each par-

ticle has a position vector and a velocity vector, which
are adjusted at iterations by learning from a local best
found by the particle itself and a current global best found
by the whole swarm. Modeling a system where multiple-
candidate solution coexists and collaborates simultaneously,
PSO approaches embed problem-solving attempts in a social
network and are suitable in nature for the optimization of
very complex systems [67] and thus have been successfully
applied in the research of SCM, for example, [68–74].

Izquierdo et al. [68] applied a PSO algorithm to a supply
chain for searching optimal biomass flows from sources to
energy production plants. Kadadevaramath et al. [70] pro-
posed a PSO algorithm for the modeling and optimization of
a four-stage supply chain and gained satisfying results. Bach-
laus et al. [71] considered the design of a multiechelon supply
chain network that integrates production, distribution and
logistics activities and developed a hybrid PSO algorithm
based on Taguchi robust design optimization tool [75].
The algorithm incorporates the characteristics of statistical
design of experiments and random search techniques, which
is an attractive way for determining flexible location and
distribution strategies.

In [73] Sinha et al. considered the optimization of re-
source allocation for agents in a petroleum supply chain.
They developed a coevolutionary PSO algorithm with two
populations, and the decision vectors and the Lagrangian
multipliers are taken to be constant in the first population
and to be variables in the second population. The algorithm
also uses a Cauchy random number distribution which is
proved to be much better than a Gaussian distribution.

Soares [76] et al. utilized four kinds algorithms (includ-
ing EP, GA, PSO, and EDA—estimation of distribution
algorithm) to solve a multiple-retailer SCM problem, which
is for finding an optimal balance of quantities ordered from
suppliers and acceptable lead time costs while taking into
account limiting factors such as the time each retailer will
wait for a backorder. According to the results on the test-
suite, three PSO algorithms of the 32 attempted algorithms
demonstrate great flexibility and high performance.

4.3. Artificial Bee Colony Optimization. There are several
optimization algorithms [77–80] that simulate the intelligent
foraging behavior of a honeybee swarm. A more recent
and popular approach is the artificial bee colony (ABC)
algorithm that divides a bee colony into three groups,
namely, employed bees exploiting on current food sources,
onlookers waiting in the hive for choosing existing food
sources, and scouts bees exploring new food sources. In
[81] Kumar et al. analyzed the complexities of a remanu-
facturing problem in which the return rate is a function
of environmental factor and proposed an ABC algorithm
for the problem model. In their test results, the ABC
algorithm significantly outperformed a PSO algorithm for
comparison. In [82], Pal et al. considered a problem of
integrated procurement, production, and shipment planning
for a three-echelon supply chain. They developed two
ABC-based algorithms for optimizing the order scheduling
and production-shipment planning to achieve a minimum
cost.
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Considering the problem of a milk production, schedul-
ing, and supply network design with extensively multiple
conflicting objectives, Banerjee et al. [83] proposed a Pareto
BCO approach, which was demonstrated to be better than
some other bioinspired algorithms by simulation and com-
parison. For improving machine utilization and reducing
cycle-time in manufacturing industry, Li et al. [84] applied
a Pareto bee colony optimization (BCO) algorithm for a
multiobjective flexible job shop scheduling problem and
gained good computational result.

5. Other Methods from Biological Intelligence

Provoked by the theoretical immunology, observed immune
functions, principles and models, artificial immune system
(AIS) stimulates the adaptive immune system of a living
creature to unravel the various complexities in real-world
engineering optimization problems [85]. Shukla et al. [86]
employed an AIS approach to a batch sequencing problem in
a multistage supply chain, which considers three objectives
including minimization of lead time, blocking time, and due
date violation, and the experimental results showed that the
AIS outperforms GA and simulated annealing (SA).

Prakash and Deshmukh [85] considered a multiple
vendor transportation problem with time and cost criteria
and proposed an AIS algorithm strengthened by a fuzzy
logic controller (FLC) to solve the multicriteria problem. AIS
works as an evolutionary search algorithm to find out the
Pareto optimal front, whereas FLC is implemented to change
the hypermutation rate adaptively on the basis of the fitness
values at each iteration. They also employed a web-based
supply chain to facilitate the SCM enterprise by e-learning.

In [87] Hajiaghaei-Keshteli considered a two-stage sup-
ply chain network of distribution centers and customers.
To solve the problem for selecting some potential places
as distribution centers in order to supply demands of all
customers with minimum opening cost plus shipping cost,
he, respectively, developed a GA and an AIS algorithm, and
the results showed that the AIS algorithm exhibits robust
performance improvements in large size problems versus
GA.

6. Discussion

We have summarized the main bioinspired methods for SCM
system design and optimization. It is deserved to note that
swarm-based methods and artificial immune systems are not
yet mature and thus are expected to gain more research
interests. With the increasing importance and complexity
of SCM systems, researchers are facing the challenges to
promote the performance, reliability, and scalability of
SCM problem-solving methods, and here we highlight the
following future trends in bioinspired computation in SCM
systems.

6.1. Hybrid. Different bioinspired methods have different
design principles and application areas. As we mentioned
in previous sections, there are a number of studies that

exploit the strengths of several individual methods to obtain
a more powerful approach to dealing with complex SCM
problems, and to a great extent, these hybrids methods are
shown to be more competitive than individual methods. It
can be anticipated that future research will continuously put
great emphasis on the hybridization of bioinspired methods,
for example, swarm-based evolutionary algorithms [88–90],
and the hybridization of bioinspired methods with other
approaches such as local search [91], tabu search [92], and
simulated annealing [93].

6.2. Extension with New Computing Paradigms. We are see-
ing that innovative informational/computational paradigms,
such as chaotic systems, quantum informatics, and DNA
computing, provide valuable inspiration to create new
heuristics for complex optimization problems including a
host of NP-hard problems. Thus, the extensions of cur-
rent bioinspired methods based on these new paradigms
are expected to achieve dramatic improvement on com-
putational performance. For example, chaotic sequencing
and local search operations have been successfully applied
for helping evolutionary algorithms avoiding premature
convergence effectively [94, 95]. Also, quantum-inspired
evolutionary algorithms are regarded as one of the three
main research areas related to the complex interaction
between quantum computing and evolutionary algorithms
[96–98] and have been applied in some SCM optimization
problems in very recent research [99]. These approaches are
expected to show great promises for the future.

7. Conclusion

Today’s SCM systems have to deal with ever-changing
markets and intrinsic structural complexity emerging from
virtually infinite number of interacting entities. There-
fore, the community requires effective artificial intelligence
methods and tools for modeling and optimizing large-
scale complex supply chains. The paper has reviewed the
recent development of bioinspired methods in SCM appli-
cations. Typical illustrations are addressed for evolutionary
algorithms including GA, EP, ES, and DE, swarm-based
intelligent algorithms including ant colony, particle swarm
and artificial bee colony, and other bioinspired methods
like AIS. Representative works are summarized for helping
readers to have a general overview of the state of the
art and to easily refer to suitable methods in practical
solutions. Over the last decade, bioinspired methods have
experienced a rapid growth and have successfully applied
to the design and optimization of highly complex systems
such as SCM systems. The fruits of these researches are
continuously becoming new technological solutions to new
open problems, and the full potential is far from being
reached.
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