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Background: Prostate adenocarcinoma (PRAD)-related bone metastases are a leading

source of morbidity and mortality; however, good diagnostic biomarkers are not known

yet. The aim of this study was to identify biomarkers and prognostic indicators for the

diagnosis and treatment of PRAD-associated bone metastases.

Methods: By combining the data from The Cancer Genome Atlas(TCGA) and PRAD

SU2C 2019, We performed a comprehensive analysis of the expression differences,

biological functions, and interactions of genes associated with PRAD bone metastasis.

Annotation, visualization, and integrated discovery were accomplished through the use

of gene ontology enrichment and gene set enrichment analysis. The protein-protein

interaction network was constructed using the STRING database, and the diagnostic

value of prognostic genes was validated using receiver-operating-characteristic and

Kaplan-Meier curves.

Results: Six genes (DDX47, PRL17, AS3MT, KLRK1, ISLR, and S100A8) associated

with PRAD bone metastases were identified; these had prognostic value as well. Among

them, enrichment was observed for the biological processes extracellular matrix tissue,

extracellular structural tissue, steroid hormone response, and cell oxidative detoxification.

KEGG analysis revealed enrichment in interactions with extracellular matrix receptors,

diseases including Parkinson’s disease and dilated cardiomyopathy, and estrogen

signaling pathways. The area under the curve values of 0.8938, 0.9885, and 0.979,

obtained from time-dependent receiver-operating-characteristic curve analysis for 1,

3, and 5-year overall survival confirmed the good performance of the model under

consideration. S100A8 expression was not detected in the normal prostate tissue but

was detected in PRAD.

Conclusions: We identified ISLR as a potential biomarker for PRAD bone metastasis.

Moreover, the genes identified to have prognostic value may act as therapeutic targets

for PRAD bone metastasis.

Keywords: differentially expressed genes, prostate adenocarcinoma, diagnostic value, bone metastasis, gene

ontology, prostate cancer prognosis
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INTRODUCTION

Prostate adenocarcinoma (PRAD) is one of the top causes of
cancer-related death among male cancer patients. A typical
symptom of advanced PRAD is the presence of bone metastasis
(1), which is often detected at autopsy in 90% of men who
die from the disease (2). Among the patients with metastatic
PRAD, 42.9% have bone metastases (3). Globally, the incidence
of prostate cancer has risen by 169.11% since 1990, with
the majority of the increase occurring in men over the age
of 50 (4). The mechanisms that lead to bone metastases
and eventually aggravate PRAD is not well understood, even
though these are leading causes of morbidity and mortality
in individuals with advanced PRAD (5). Taken together, bone
metastases from prostate cancer are a challenging clinical
problem that needs to be addressed. Therefore, to improve the
prognosis, identifying potential target molecules and clarifying
the underlying mechanisms of PRAD bone metastasis is of
utmost importance.

Many markers of bone metastases in prostate cancer have
been reported; for example, RUNX2 is expressed ectopically,
indicating that its function is influenced by the tumor
microenvironment (6). It was recently discovered that the
TMPRSS2-ERG gene fusion enhances osteogenic bone metastasis
in prostate cancer, implying that particular mutations are
responsible for bone metastasis (7). Genes including FZD8 and
DKK1 have been associated with bone metastases in prostate
cancer (8, 9); excessively elevated UCP1 expressions have been
reported as a marker (10). NF-κB has been identified as a
major transcription factor in the progression to bone metastases
in patients with prostate cancer (11). Cadherin-11 may be a
suitable marker for bone metastases progression, which was not
expressed in normal prostate epithelial cells, but expressed in
prostate cancer, and the expression in lymph nodes, especially
in bone, increased gradually from primary lesion to metastatic
lesion (12).

Using microarray analysis, it was recently found that
several differentially expressed genes (DEGs) and biologically
functioning pathways are involved in the development of bone
metastases in PRAD (13). Several studies have been carried
out to better understand the molecular mechanisms of DEGs
identified using microarray analysis. Different microarray types
(including gene expression microarray and tissue microarray),
tissues [including those of mouse (14) and human (3)], cells
(15), and serum prostate specific antigen (16), have been used
to conduct genome-wide expression analyses. However, Due
to limited sample sizes, use of multiple tissues, and multi-
platform analyses, the results of such studies may be inconsistent.
Recently, differential gene expression was studied in 38 bone
metastatic and 115 non-bone metastatic PRAD tissue and serum
samples found that miR-218-5p may be a new serum marker
for bone metastasis (17). Furthermore, although numerous
bioinformatics analyses have comprehensively studied the known

Abbreviations: BP, Biological Process; MF, molecular function; CC, molecular
function; TCGA, The Cancer Genome Atlas; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes.

biomarkers, the mechanisms by which functional systems and
factors other than biomarkers influence bone metastatic PRAD
remain unknown. Thus, there is a need to identify more reliable
and accurate markers.

In this study, we used data from TCGA and PRAD SU2C
2019 to analyze significantly DEGs between primary PRAD tissue
samples and bone metastatic PRAD using gene ontology (GO)
enrichment and gene set enrichment analysis (GSEA) methods
to identify the involved biological process (BP). The molecular
pathways driving the advancement of PRAD in bone metastases
were also investigated using network analysis. Our findings will
help to elucidate the molecular mechanisms underlying PRAD
bone metastasis at a systems biology level by establishing a
complete gene network for this condition.

MATERIALS AND METHODS

Data Preparation
We retrieved a dataset for PRAD (prad_su2c_2019) fromWassim
Abida et al. (18) comprising RNA expression profile data, FPKM
values of 82 PRAD bone metastasis samples, and 5 in situ PRAD
tissue samples, survival data, and clinicopathological information
of patients, such as gender, and the tissue site. Since the number
of PRAD samples was small, we integrated the data fromWassim
Abida et al. (18) with TCGA-PRAD data. Gene expression
data and FPKM values from RNA sequencing of TCGA-PRAD
patients (1 metastatic PRAD sample and 504 in situ PRAD
tissue samples) were downloaded from UCSC xena (http://
xena.ucsc.edu/) (19). This also included survival information
and clinicopathological information of patients, such as sex,
age, and cancer stage. Then, we randomly selected the same
number of samples for in situ PRAD and bone metastasis PRAD
from the prad_su2c_2019 dataset and TCGA and integrated
the expression profile and clinical information. This integrated
dataset was divided into a training set (70%) and a validation
set (30%).

Identification of Prognosis-Related Genes
and Construction of Prognostic Models
To identify genes for prognosis, we first screened genes
closely associated with bone metastases (|logFC| ≥ 2 and
adjusted p-value < 0.05) for association with PRAD bone
metastasis and in situ PRAD using the limma package (version
3.48.3) (20). To further assess the impact of bone metastasis-
associated gene expression combined with clinicopathological
characteristics on disease prognosis, we performed one-way
regression analysis for genes associated with bone metastasis (p
< 0.05). Subsequently, we performed the prognostic analysis of
bone metastasis-associated genes, using gene expression quartiles
(25% quartiles) as a criterion to classify the samples into
high- and low-expression groups. We analyzed the relationship
between gene expression and prognosis based on survival
information. Moving further, we used these bone metastasis-
prognostic genes to construct a multiple regression model and
calculated the risk score. For categorizing patients into high-
and low-risk categories, the median risk score was utilized as
the cutoff point. The Wilcoxon test was applied for comparing
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and analyzing the statistical significance between two sets of
categorical variables.

Enrichment Analysis and Protein-Protein
Interaction Network Construction
To identify differences between the high- and low-risk groups,
DEGswere analyzed using the limma package (R software version
3.48.3) (20), with |logFC| ≥ 2 and adjusted p-value < 0.05 set as
thresholds for the differential expression of genes.

Large-scale functional enrichment studies, such as for
Biological Process (BP), molecular function (MF), and cellular
component (CC), often use the Gene Ontology (GO) analysis
approach. Data on genomes, biological pathways, diseases,
and medications are stored in Kyoto Encyclopedia of Genes
and Genomes (KEGG). GO annotation and KEGG pathway
enrichment analyses were performed using clusterProfiler
(version 4.0.5) (21) for both high- and low-risk groups of DEGs,
and FDR < 0.05 was considered statistically significant. The

GOplot package (version 1.0.2) (22) was used to visualize the
enrichment analysis results.

GSEA is a computational method for analyzing whether a
particular gene set is statistically different between two biological
states. This method is commonly used to estimate changes
in the pathway and BP activity in samples of expression
datasets (23). To investigate the differences in BPs between
subgroups based on the gene expression profile dataset of
PRAD patients, we performed GSEA of Hallmark genes using
clusterProfiler (version 4.0.5) (21). The Hallmark gene set
(h.all.v7.4.symbols.gmt) was downloaded from MSigDB (https://
www.gsea-msigdb.org/gsea/index.jsp) (24) and used for GSEA;
corrected p-values< 0.05 were considered statistically significant.
The results were visualized using the enrichplot package (version
1.12.2) (25).

To further analyze the differences in bone metastasis-
related pathways in high- and low-risk groups, we specifically
focused on the differences in the expression activity of different
pathways including angiogenesis, apoptosis, cell cycle, and

FIGURE 1 | Methodology for screening prognostic genes for bone metastases and constructing prognostic models.
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DNA replication. The Hallmark (angiogenesis and apoptosis)
and KEGG (cell cycle and DNA replication) gene sets of
different pathways are available at MSigDB (https://www.gsea
-msigdb.org/gsea/index.jsp) (24). Gene set variation analysis
(GSVA) is a new, non-parametric, unsupervised method that
assesses the pathway enrichment of each sample using the given
expression dataset. The new GSVA enrichment scoring facilitates
the application of functional enrichment in a pathway-centric
manner. The R package GSVA (version 1.40.1) (26) was used to
assess the differences in the activity of these five pathways in high-
and low-risk groups.

STRING (https://string-db.org/) (27), a database of protein-
protein interactions (PPIs), contains data on 9.6 million proteins
and 13.8 million interactions among proteins. Using this
database, PPI networks can be constructed for selected genes.
PPI networks help understand the number, type, and extent of

interactions proteins can undergo. To explore their interactions,
we mapped the DEGs in high- and low-risk groups to the PPI
network of the STRING database. To filter out the gene pairs
with weak interactions and retain those with strong interactions,
the minimum required interaction score was calculated using
high confidence setting (0.900); all other parameters were used
at default settings. A visual network model was then constructed
using Cytoscape (version 3.8.2) (28). The molecular complex
detection (MCODE) plugin is used to find key sub-networks and
genes in a large network based on the relationships of edges
and nodes, facilitating downstream analysis (29). The modules
in the network were mined using the MCODE plugin (using
default parameters), whereas hub genes were mined using the
ClusteringCoefficient algorithm of the CytoHubba plugin (30)
using default parameters and selecting the top five genes as
hub genes.

FIGURE 2 | Screening of prognostic genes for bone metastases. (A) Differentially expressed genes in PRAD bone metastasis and in situ PRAD; (B) regression

coefficients of each gene in Lasso Cox regression analysis, with certificates representing positive correlations and collaterals representing negative correlations; and

(C) selection of the best parameter λ in Lasso regression.
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Assessment of the Prognostic Model
To assess the impact of bone metastasis-related prognostic
gene expression on prognosis, a risk regression model was
constructed by combining clinicopathological characteristics. To
assess the independent predictive ability of risk scores on overall
survival (OS), the Kaplan-Meier survival curve analysis was
performed using the survival package (version 3.2.11) (31). Time-
dependent receiver-operating curve (ROC) performance was
further evaluated using the R survival ROC package (version
1.0.3) (32) by assessing the area under the curve (AUC) at 1, 3,
and 5 years.

To explore the impact of bone metastasis-related prognostic
genes on survival, we conducted a risk factor analysis to examine
the association between gene expression levels and survival.
Subsequently, we considered the ROC curves for each gene to
assess the likelihood of the gene being used to predict prognosis.
To validate the accuracy of the association of prognostic genes
with bone metastasis, we used the validation set to construct a
prognostic model based on bone metastasis-related prognostic
genes. The dataset was divided into high- and low-risk groups
based on risk scores, and Kaplan-Meier survival curve analysis
was performed using survival information. Moreover, the AUC
of ROC for subjects at 1, 3, and 10 years was evaluated.

Relationship Between Clinical Factors and
Prognosis
To validate the prognostic model of bone metastasis-related
genes, we incorporated clinical indicators (markers) into the

model and performed univariate and multifactor prognostic
analyses using the SURVIVAL package (version 3.2.11) (31). The
results are presented as a forest plot. We also performed survival
curve analysis after taking clinical factors into consideration.
Briefly, data were divided into two groups of prostate and
other tissues based on tumor site, and into high- and low-risk
groups using the median risk score as a threshold. Survival curve
analyses were performed for each group separately. Similarly,
data were divided into high- and low-neuroendocrine prostate
cancer (NEPC) score groups based on the median scores, and
into high- and low-risk groups using the median risk score
as the threshold. Survival analysis was then performed for
each group.

In addition, we incorporated clinical factors to construct a
clinical prediction column line graph (Nomogram). To assess the
effect of including clinical factors in the model, we performed
decision curve analysis (DCA) using the ggDCApackage (version
1.1) (33).

RESULTS

Screening of Bone Metastasis
Prognosis-Associated Genes
We analyzed transcriptomic data from 82 primary PRAD
and 82 PRAD bone metastasis samples obtained from
TCGA and prad_su2c_2019 to identify prognostic genes.
We identified 563 DEGs (Figures 1, 2A) between primary
PRAD and bone metastases. Univariate Cox regression

FIGURE 3 | Prognostic analysis of genes associated with bone metastases. (A-F) Kaplan-Meier analysis of the survival rates of the high- and low-expression groups

of DDX47, PRPL17, AS3MT, KLRK1, ISLR, and S100A8.
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analysis yielded 375 bone metastasis genes associated with
OS (p < 0.05). Screening of these candidate prognostic genes
using Lasso Cox regression analysis yielded six prognostic
genes (DDX47, PRL17, AS3MT, KLRK1, ISLR, and S100A8)
(Figures 2B,C).

Construction of Prognostic Model
Using the identified prognostic genes, we constructed
a PRAD bone, metastasis-related prognostic model.
Multivariate Cox regression analysis was performed for
each prognostic gene, and regression coefficients were
obtained for each gene. The model was defined as follows:
risk score = 0.1317∗exp(DDX47) + 0.0101∗exp(RPL17)
+ 0.4348∗exp(AS3MT) + 0.0555∗exp(KLRK1)
+−0.6110∗exp(ISLR) + 0.2019∗exp(S100A8)). Samples from
the training set were evaluated using this risk score formula,
and each sample was assigned a risk score and assigned to a
risk group.

Subsequently, to determine the role of each gene in PRAD
prognosis, we performed a differential analysis of patient survival
by comparing the survival differences between the high- and

low-expression groups for each prognostic gene. The results
showed that five of the identified prognostic genes (DDX47,
RPL17, AS3MT, KLRK1, and S100A8) were unfavorable factors
for patient survival, whereas only one (ISLR) was a favorable
factor (Figure 3). On assessing the differences in gene expression
in both risk groups (Figure 4), we found that the expression of
DDX47, RPL17, AS3MT, KLRK1, and S100A8 was significantly
higher in the high-risk group than in the low-risk group, and that
of ISLR was significantly lower in the high-risk group than in the
low-risk group.

GO and KEGG Enrichment Analyses
Of the identified 580 DEGs between the two groups, 314
were upregulated and 266 were downregulated. Subsequently,
GO enrichment analysis and KEGG functional enrichment
analysis were performed on the DEGs (Figure 5). Of the 187
GO entries that were enriched, BP accounted for 120 entries,
MF for 33, and CC for 34 entries. BP was mainly enriched
for extracellular organization, external encapsulating structure
organization, antimicrobial humoral response, response to
steroid hormone, and cellular oxidant detoxification. MF was

FIGURE 4 | Differential expression of bone metastasis prognostic genes in high- and low-risk groups. (A–F) Differential expression analysis of DDX47, PRPL17,

AS3MT, KLRK1, ISLR, and S100A8 in high- and low-risk groups. **** represents significant differences, p < 0.0001.
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FIGURE 5 | GO and KEGG enrichment analyses of differentially expressed genes in high- and low-risk groups. (A–C) Top 10 entries of biological process (BP),

molecular function (MF), and cellular component (CC) in GO enrichment results. (D,E) Results of KEGG enrichment for upregulated and downregulated genes.

mainly associated with extracellular matrix (ECM) structural
constituent, haptoglobin binding, and antioxidant activity,
whereas CC was associated with collagen-containing ECM,
hemoglobin complex, and contaminant activity. For KEGG
pathways, upregulated genes were enriched for ECM-receptor
interaction, diabetic cardiomyopathy, and Parkinson’s disease,
whereas the downregulated genes were enriched for dilated
cardiomyopathy, Staphylococcus aureus infection, estrogen
signaling pathway, adrenergic signaling in cardiomyocytes,
vascular smooth muscle contraction, and cAMP signaling
pathway (Table 1).

GSEA
GSEA was performed based on the Hallmark gene set
(Figure 6). The HALLMARK_ANDROGEN_RESPONSE was
enriched to the low-risk group. In clinical practice, clinicians
often use anti-androgen therapy to treat advanced prostate
cancer where the disease has developed bone metastases
(34). HALLMARK_MYC_TARGETS_V1 was enriched to the

TABLE 1 | KEGG enrichment analysis.

ID Description P.adjust

Enriched by upregulated DEGs

hsa04512 ECM-receptor interaction 0.000248

hsa05415 Diabetic cardiomyopathy 0.017731

hsa05012 Parkinson’s disease 0.017731

Enriched by downregulated DEGs

hsa05414 Dilated cardiomyopathy 0.001973

hsa05150 Staphylococcus aureus infection 0.007365

hsa04915 Estrogen signaling pathway 0.01166

hsa04261 Adrenergic signaling in cardiomyocytes 0.016359

hsa04270 Vascular smooth muscle contraction 0.027833

hsa04024 cAMP signaling pathway 0.043702

high-risk group. MYC overexpression has been reported to
synergize with KRAS to induce aggressive hepatocellular
carcinogenesis and metastasis (35).
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FIGURE 6 | GSEA of high- and low-risk groups. (A–F) Top six results for high- and low-risk gene groups.

We also investigated the internal interactions of bone
metastasis-associated genes, mapping them to the PPI network
using the STRING database. As a result (Figure 7A), the
network PPI was enriched at p < 1.0e-16; we identified
355 pairs of reciprocal relationships corresponding to 202
network nodes. Mining of these data showed that module 2
(Figure 7B) contained the bone metastasis prognosis-related
gene RPL17, which is overexpressed in breast cancer-associated
brain metastases (36). Module 14 (Figure 7C) contained three
genes: S100A8, S100A9, and S100A12. Among them, S100A8
can promote bile duct cancer metastasis by upregulating VEGF
expression through TLR4/NF-κB pathway activation (37). The
hub node TOP5 mined by the CytoHubba plugin (Figure 7D)
contained modules consisting of S100A8, S100A9, and S100A12,
indicating the robustness of the association between S100A8
expression and bone metastasis prognosis.

In addition, we specifically focused on the pathways associated
with PRAD bone metastasis (such as angiogenesis, apoptosis,
cell cycle, DNA replication), and examined the differences in
activity between high and low stratification groups in these
pathways. The results (Figure 8) showed that the angiogenic
activity was high in the high-risk group than in the low-risk
group. Angiogenesis is necessary for aggressive tumor growth
and metastasis and is an important link in controlling cancer
progression (38); moreover, the high-risk group had lower
apoptotic activity than the low-risk group. Escape from apoptosis
is important for metastases (39, 40). Cell cycle and DNA
replication activities were higher in the high-risk group than in
the low-risk group. High gene replication rate is associated with
the aggressiveness and metastasis of pancreatic cancer (41). Han

et al. found that betulin could inhibit lung metastasis by inducing
cell cycle arrest, autophagy, and apoptosis inmetastatic colorectal
cancer cells (42).

Evaluation of the Prognostic Model
We used a survival difference analysis to compare the high- and
low-risk groups and assess the effectiveness of the prognostic
model. The results revealed that patients in the high-risk group
had a considerably worse outcome than those in the low-risk
group (p < 0.0001; Figure 9A). Specifically, the median OS for
patients in the high-risk group was 622 days, compared to 844
days for patients in the low-risk group. To further estimate the
predictive performance of this risk model, time-dependent ROC
analyses were performed for 1-year, 3-year, and 5-year OS. They
corresponded to the AUC values of 0.8938, 0.9885, and 0.979,
respectively, which demonstrated the good performance of our
model (AUC > 0.5; Figure 9B). Except for ISLR, the higher the
risk score, the higher the expression of the genes associated with
it, and the earlier the patient death event occurred (Figure 9C).
To compare the reliability of our prognostic model consisting of
six genes, we compared the ROC analysis of individual genes. The
results showed (Figure 9D) that the six-gene model had better
prognostic prediction ability than the single-gene model. These
results suggest that the established prognostic model is valid and
related to bone metastasis in PRAD.

Validation of the Prognostic Model
We also used the validation set to check the accuracy of
our prognostic model. A significant difference in median OS
between the high- and low-risk groups (750 vs. 910 days; p <
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FIGURE 7 | PPI network analysis of differentially expressed genes in high- and low-risk groups. (A) PPI networks of differential genes in high-risk and low-risk groups.

(B,C) MCODE mining of modules 2 and 14. (D) Top five hub genes identified using the CytoHubba plugin. Red represents upregulation and green represents

downregulation of expression. The size of the dots represents the degree in the network; the line thickness represents the combined interaction score between genes

obtained from the STRING database.

0.0001) was observed (Figure 10A), which was in line with the
results from the training set. The results of the validation data
showed that the AUC for 1, 3, and 10-year OS was 0.7767,

0.9641, and 0.8423, respectively (Figures 10B–D). These results
indicate that our PRAD bone metastasis-related risk model
is robust.
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FIGURE 8 | Differences in GSVA activity scores of transfer-related pathways in high- and low-risk groups. Differences in GSVA activity scores of cancer hallmarks:

angiogenesis (A), apoptosis (B), cell cycle (C), and DNA replication (D) in the high- and low-risk groups. *** p < 0.001; **** p < 0.0001.

Prognostic Independence of the Validation
Model
We investigated whether the clinical characteristics and risk
scores of PRAD patients in the training set were associated
with prognosis. The results of univariate Cox regression analysis
showed that risk score, T-stage, NEPC score, tissue site, and
OS were significantly associated. These four factors were used
as covariates in a multivariate Cox regression analysis, which
showed that risk score (HR = 1.3, 95% CI = 1.1–1.6, p <

0.05) was an independent prognostic factor for OS in patients
(Figure 11A). The results of univariate and multifactorial Cox
analyses showed that NEPC score and tissue site were risk factors
for the prognosis, although these were not independent risk
factors. Then, we performed a prognostic analysis of NEPC
score (continuous variable) and tissue site (discrete variable).
We divided the data into two groups according to the median
value and found that the group with higher NEPC score had a
lower survival rate (Figure 11B). For tissue site, we looked at the
prognosis in the high- and low-risk groups individually for each

classification. The results (Figures 11C,D) showed that the risk
score is an independent prognostic factor regardless of the tissue
site, which further illustrates the independent prognostic value of
the risk model.

Construction and Evaluation of Column
Line Graphs
To evaluate whether our model can effectively predict the
prognosis of PRAD in a clinical setting, we incorporated
factors associated with the OS of PRAD (risk score combined
with clinicopathological characteristics) into the model and
constructed a column line plot (Figure 12A) to predict the
1, 3, and 5-year OS patients. The column line plot model
validated the reliability of the model and has prospective clinical
applications. On performing DCA of PRAD patients —to assess
the utility of the model in clinical application after incorporating
clinical factors—we found that the inclusion of clinical factors
significantly increased patient benefits (Figure 12B).
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FIGURE 9 | Evaluation of prognostic models related to bone metastases. (A) Kaplan-Meier analysis of patients in the high- and low-risk groups. (B) ROC analysis of

risk scores to assess sensitivity and specificity. (C) Risk factor analysis to assess the relationship among risk score, death, and characteristic gene expression. (D)

ROC analysis of the six identified bone metastasis-associated prognostic genes.

Immunohistochemistry(IHC) of Proteins
Encoded by Bone Metastasis-Related
Prognostic Genes
To determine the expression of bone metastasis-prognostic genes
in PRAD, we searched theHuman Protein Atlas database (https://
www.proteinatlas.org/) (43) for immunofluorescence data of
the proteins encoded by the six identified genes (Figure 13).
DDX47 expression was not detected in the normal prostate tissue,
Medium intensity staining was detected in PRAD (Figure 13A).
The results indicated low expression of AS3MT in PRAD tissue,
but not detected in the normal tissue (Figure 13B); HPA050811
antibody was used for ISLR (Figure 13C), in PRAD, expression
of ISLR was moderate the normal prostate tissue was low;
HPA002791 antibody was used for analyzing the expression
of S100A8, the expression of S100A8 was not detected in the
normal prostate tissue, however, S100A8 expression was detected
in PRAD (Figure 13D). The results of immunohistochemical
analysis of these genes in the HPA database (Table 2).

DISCUSSION

Approximately 64% of patients with advanced prostate cancer
have bone metastases (44), which are linked to increased
risks of morbidity and mortality (45), and poor prognosis
(46). Many researchers are trying to establish a clinical trial
protocol/methodto map disease progression. However, owing
to the lack of clinical indicators that accurately represent
disease progression, it is difficult to predict the prognosis of
patients with PRAD bone metastases. Individual differences
have a significant impact on treatment success in PRAD
patients with bone metastases. The Discovery of new biomarkers
and prognostic indicators to understand the mechanisms
involved in the development of PRAD with bone metastases is
therefore critical for proper disease diagnosis and therapy. We
analyzed 82 primary samples and 82 bone metastasis PRAD
samples in this study. mRNA expression was determined using
genome-wide microarray data, yielding a total of 563 PRAD
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FIGURE 10 | Validation of bone metastasis-associated prognostic models. (A) Kaplan-Meier analysis of the high first risk group in the validation set. (B–D) Validation

of time-dependent ROC analyses focused on 1, 3, and 10 years.

bone metastasis-related genes. Of these, 375 OS-related bone
metastasis-related genes were obtained using univariate Cox
regression analysis, and these potential prognostic genes were
further evaluated using Lasso Cox regression analysis. A six-
gene model performed better than a single-gene model in terms
of prognostic power. Univariate Cox regression analysis showed
that the risk score, T-stage, NEPC score, tissue site, and OS
were all significantly linked. GO and KEGG enrichment showed
that the DEGs were largely related to collagen-containing ECM,
hemoglobin complex binding bead protein, and antioxidant
activity contractile fibrils.

In the first phase of this study, to investigate the biological
differences between the high- and low-risk groups, 580 DEGs
were identified; of these, 314 were upregulated genes and
266 were downregulated genes. GO and KEGG enrichment
analyses were then performed to identify the BP associated
with DEGs involved in PRAD bone metastases. Among the
BP annotations, ECM tissue, extracellular structural tissue,

outer envelope structural tissue, antimicrobial humoral response,
steroid hormone response, and cellular oxidative detoxification
were all significantly linked to the development of PRAD
bone metastasis. Prostate cancer cells, osteoblasts, osteoclasts,
bone stroma, and endothelial cells interact in complicated ways
during bone metastasis (47). In an intraosseous prostate cancer
xenograft model, overexpression of estrogen related receptors
was reported to increase prostate cancer cell proliferation in
bones by activating osteoblasts and controlling ECM protein
secretion in the stroma (48). Matrix metalloproteinase-9 is
involved in prostate cancer metastasis via its role in epithelial to
mesenchymal transition and the degradation of the ECM. Only
the p53-like isoform, which is enriched in ECM biomarkers and
cancer-associated fibroblasts, has been demonstrated to cause
bone metastases (49). The prostate is an organ that responds
to sex steroid hormones (50), including androgens, which
affect the development of male sexual traits and reproductive
function, are important regulators of prostate cancer cell growth
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FIGURE 11 | Validation of independence of bone metastasis-related prognostic models. (A) Forest plot of single-factor regression analysis and multifactor regression

analysis. (B) Kaplan-Meier analysis of prognosis for the high- and low-NEPC score groups. (C,D) Kaplan-Meier analysis of the high- and low-risk groups for the clinical

factor tissue site (bone and prostate).

and proliferation (51, 52), and are responsible for the clinical
progression of prostate cancer (53). Prostate cancer research has
shown that steroid hormones stimulate cancer cell proliferation
and invasiveness (54). Endogenous steroid hormones and the
cellular response to hormones have been identified as cancer
prevention targets, indicating that endogenous risk factors can
be modified (51).

In the second phase of this study, the biological function of
DEGs associated with PRAD bone metastases was investigated
using GSEA. Upregulated genes were enriched for ECM-receptor
interactions, diabetic cardiomyopathy, Parkinson’s disease, and
downregulated genes were enriched for dilated cardiomyopathy,
Staphylococcus aureus infection, estrogen signaling pathway,

adrenergic signaling in cardiomyocytes, vascular smooth muscle
contraction, and cAMP signaling pathway. The ’ECM-receptor
interaction’ pathway is known to contribute significantly to the
development and spread of prostate cancer (55) integrin alpha
V beta 3 is abundantly expressed in the vascular matrix and is
upregulated in advanced stages of prostate cancer (56). Moreover,
it is thought to be necessary for prostate tumor invasion and
bone metastases (57). Development of prostate cancer results in
the alteration of ECM composition and the cellular receptors for
ECM ligands (58). The cAMP signaling pathway is an important
signaling pathway in biological systems (59), and abnormal
cAMP signaling is closely linked to prostate cancer progression
(60). In an in vitro study, researchers used a specific isoform
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FIGURE 12 | Benefit assessment of bone metastasis-related prognostic

models applied to the clinical setting. (A) Nomogram with bone metastasis

prognostic genes and clinical factors for predicting OS in PRAD. (B) DCA of

benefit rates for models of bone metastasis prognostic genes and clinical

factors vs. clinical factor models, and bone metastasis prognostic genes.

of the DN-PDE4 beta-inhibitory protein to alter the perinuclear
cAMP signaling, resulting in desensitization of the β2-adrenergic
receptor and increased cell growth (61).

The PPI network identified in this study showed multiple
interactions, with 355 pairs of reciprocal relationships
corresponding to 202 network nodes. Further detailed study
of these genes may reveal the pathophysiological mechanisms
of PRAD in bone metastases. The pro-apoptotic protein
calmodulin A/B (S100A8/9) is produced by immune cells
and can also be released by post-hypoxic necrosis of tumor
cells (in actively growing tumors). Interestingly, S100A8/A9
expression has also been linked to tumor development, invasion,
or metastasis (62, 63). Tumor cell migration and invasion are
facilitated by the upregulation of matrix metalloproteinase
expression and inhibited by the downregulation of S100A8
or S100A9, which correlates with their abnormal expression
in many cancer types (64–66). Targeting S100A8 and S100A9
may help stop tumor cells from migrating to places where
they can spread (67). Upregulation of S100A8/A9 occurs as

FIGURE 13 | Immunohistochemistry of bone metastasis-associated

prognostic genes in normal prostate tissue (left) and PRAD (right) samples.

(A) Immunohistochemistry of DDX47 in normal prostate tissue (left) and PRAD

(right). Patient information: normal (patient id: 2,053, male, age 51); PRAD

(patient id: 3,571, male, age 71). (B) Immunohistochemistry of AS3MT in

normal prostate tissue (left) and PRAD (right) samples. Patient information:

normal (patient id: 3,376, male, age 72); PRAD (patient id: 5,412, male, age

63). (C) Immunohistochemistry of ISLR in normal prostate tissue (left) and

PRAD (right) samples. Patient information: normal (patient id: 3,497, male, age

37); PRAD (patient id: 4,365, male, age 71). (D) Immunohistochemistry of

S100A8 in normal prostate tissue (left) and PRAD (right). Patient information:

normal (patient id: 2,053, male, age 51); PRAD (patient id: 3,190, male, age

72) samples.

a result of immune cells or the tumor itself infiltrating the
tumor microenvironment, helping to create a pre-metastatic
milieu (68). For example, increased expression of S100A8
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TABLE 2 | IHC validation in HPA.

Gene Antibody Tissue Staining Intensity Quality Location

DDX47 HPA014855 Nomal Not detected Weak <25% Nuclear

PRAD Medium Strong <25% Nuclear

AS3MT HPA017856 Nomal Not detected Negative None None

PRAD Low Weak 75%-25% Cytoplasmic/membranous

SLR HPA050811 Nomal Low Weak 75%-25% Cytoplasmic/membranous

PRAD Medium Moderate >75% Cytoplasmic/membranous

S100A8 HPA002791 Nomal Not detected Negative None None

PRAD Low Moderate <25% Cytoplasmic/membranous

in prostate cancer models was found to alter the tumor
stroma (69).

Six prognostic genes, DDX47, PRL17, AS3MT, KLRK1, ISLR,
and S100A8, were discovered to have prognostic value in the
study. The survival disparities between the high- and low-
expression groups for each prognostic gene were compared. Five
prognostic genes DDX47, RPL17, AS3MT, KLRK1, and S100A8
were found to be unfavorable for the survival of PRAD bone
metastases; their expression was considerably higher in the high-
risk group than in the low-risk group. The ISLR gene was found
to be a favorable factor for PRAD bone metastasis survival,
with the survival rate in the high-risk group being much lower
than that in the low-risk group. Time-dependent ROC studies
performed for the 1-, 3-, and 5-year OS for quantifying the
predictive performance of this risk model resulted in AUC values
of 0.8938, 0.9885, and 0.979, respectively, showing that ourmodel
performed well. We performed ROC analyses of individual genes
to compare the reliability of the six-gene prognostic model. The
results revealed that the six-gene model outperformed the single-
gene model in terms of prognostic power. All these findings point
to the development of a reliable prognostic model for PRAD
bone metastases.

Our study has certain limitations. First, while microarray-
based bioinformatics analysis is a powerful tool for
understanding molecular mechanisms and identifying potential
biomarkers of PRAD bone metastasis, more experimental
studies, such as those using real-time PCR, western blot,
immunohistochemical analysis, and cellular and animal
experiments, are needed to elucidate the role of key genes and
the underlying mechanisms of PRAD bone metastasis. Second,
functional investigations on the activities of DEGs and hub genes
in PRAD bone metastases in terms of tissue-type specificity
and cell-type specificity are still needed. PRAD bone metastasis
signaling networks are more complex than previously assumed,
including estrogen signaling pathways, vascular smooth muscle
contraction, and signaling pathways. Investigation of molecular
mechanisms is also needed to provide more precise and robust
evidence for the putative genes and pathways related to the
PRAD bone metastasis prediction genes. Finally, this study is
limited to single histology, which does not provide a complete
picture of gene function. Therefore, multi-omics studies,

particularly at the protein and functional levels, are needed to
fully understand the relevance of the identified genes.

In conclusion, we aimed to investigate the molecular
mechanisms driving PRAD bone metastasis progression using a
complete bioinformatics analysis to discover the key biological
functions and pathways involved. We performed PPI network
analysis, functional similarity analysis, ROC curve analysis,
Kaplan-Meier survival analysis, and Cox regression analysis for
exploring six additional candidate genes for use as diagnostic
biomarkers. The findings of the present study need further
validation through molecular biological studies.
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