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Abstract: Mitochondrial function, including oxidative phosphorylation (OXPHOS), mitochondrial
biogenesis, and mitochondria dynamics, are essential for the maintenance of renal health. Through
modulation of mitochondrial function, the kidneys are able to sustain or recover acute kidney injury
(AKI), chronic kidney disease (CKD), nephrotoxicity, nephropathy, and ischemia perfusion. Thera-
peutic improvement in mitochondrial function in the kidneys is related to the regulation of adenosine
triphosphate (ATP) production, free radicals scavenging, decline in apoptosis, and inflammation.
Dietary antioxidants, notably polyphenols present in fruits, vegetables, and plants, have attracted
attention as effective dietary and pharmacological interventions. Considerable evidence shows that
polyphenols protect against mitochondrial damage in different experimental models of kidney dis-
ease. Mechanistically, polyphenols regulate the mitochondrial redox status, apoptosis, and multiple
intercellular signaling pathways. Therefore, this review attempts to focus on the role of polyphenols
in the prevention or treatment of kidney disease and explore the molecular mechanisms associated
with their pharmacological activity.

Keywords: kidney; mitochondrial function; polyphenols; acute and chronic renal diseases

1. Introduction

Kidneys are one of the most energy-demanding organs and play a vital physiological
role in the maintenance of salt and water homeostasis [1]. Kidneys receive approximately
25% of the cardiac output and are responsible for the regulation of blood pressure and
continuous blood filtration [2]. Physiologically, kidneys consume about 7% of the total
oxygen available for overall human function, indicating a significant role of mitochondria in
their physiology [2]. Mitochondria are abundant in metabolically active organs, including
kidneys, especially in the renal tubule cells [3,4]. Indeed, the kidney is a metabolically active
organ containing more mitochondria per weight than any other human organ [5,6]. Acute
and chronic kidney diseases, such as renal ischemia, toxicity, and acute injury, include
underlying mitochondrial dysfunction [7–9]. Research has established links between both
acute and chronic kidney diseases with impaired mitochondrial biogenesis, OXPHOS,
and mitochondria mitophagy [10]. The mitochondrial dysfunction in kidneys is also
linked to inflammation, apoptosis, and tissue injury, thus, contributing to mortality and
morbidity rates [11]. Studies have shown that dietary patterns and dietetic components
could modulate renal function and disease [12,13]. A diet rich in plants, vegetables, and
fruits is related to a lower incidence of chronic diseases, such as cardiovascular disease,
cancers, type 2 diabetes, and kidney disease(s) [14,15]. These biological functionalities
are associated with the presence of active antioxidants, particularly polyphenols [15].
‘Polyphenol’ is not a strict chemical term and is used to refer to flavonoids, tannins, and
phenolic acids and their various chemically modified or polymerized derivatives [16]. Over
the last two decades, multiple polyphenols have attracted attention as nephro-protective
agents, particularly owing to their ability to maintain oxidative homeostasis and activate
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cytoprotective signaling in vivo (Figure 1) [17]. Recent studies have shown the therapeutic
effects of bioactive compounds and their beneficial health effects; however, little effort
has been put into summarizing the impact of polyphenol interventions on mitochondrial
dysfunction in various renal diseases [12,18,19]. This literature review attempts to focus on
the role of polyphenols in the prevention and/or treatment of kidney disease and explore
the cellular mechanisms associated with their pharmacological activity. We mainly focus
on preclinical studies, both cellular and animal, that displayed the ability of polyphenols to
decrease physiological complications and enhance mitochondrial function.
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Figure 1. Chemical structures of polyphenols, which exhibit kidney-protective activities. CAPE,
caffeic acid phenethyl ester.

2. Bioavailability of Polyphenols

Recent studies have reinforced the health-promoting evidence of polyphenols based
on diverse experimental models [20,21]. However, their chief problems are their low
bioavailability and rapid metabolism [22]. Therefore, the bioavailability of polyphenols has
been considered a significant limitation for their clinical evaluation and translations.

After polyphenol administration, oxidation, reduction, hydrolysis, and conjugation
cause the production of different water-soluble conjugate metabolites, which can pass the
enteric barrier for further distribution to organs [20,23]. These processes are mediated
by lactase phlorizin hydrolase (LPH) and cytosolic β-glucosidase (CBG) [24]. Multidrug-
resistance-associated proteins (MRP-1 and MRP-2) also play essential roles in polyphenol
bioavailability and tissue accumulation [25]. During intestinal transit, MRP-2 on the
apical surface of cells transports intracellular polyphenols to the lumen of the intestine.
MRP-1, located in the vascular pole of enterocytes, promotes polyphenol passage from
the enterocyte into the bloodstream [24]. MRP-3 and the glucose transporter 2 (GLUT2)
efflux polyphenol metabolites from the enterocytes basolateral membrane to the portal
circulation and reach the liver [24]. It is reported that small intestines can only absorb
about 5–10% of the total polyphenol intake after deglycosylation [26]. About 90–95% of
unmodified polyphenols and the conjugated forms pass through the intestinal tract to the
large intestine for gut microbiota action. Gut microbiota can produce various metabolites
to exert physiological impacts [27].

Despite the relatively few studies demonstrating lower mitochondrial uptake of
polyphenols, their lipophilicity and pKa make them more suitable for mitochondrial enrich-
ment [28]. A recent study showed that polyphenols were more bioavailable and could reach
mitochondrial sites of action than previously assumed [29]. The pH value of cells affects
the diffusion of polyphenols. Polyphenols are neutral phenols and form phenolate anions
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in the cytosol [29,30]. Their lipophilicity determines their ability to cross cell membranes
and inner- and outer-mitochondrial membranes. Due to their pKa values close to the
cytosol’s and mitochondria’s pH and distribution coefficients, many polyphenols can reach
the mitochondrial matrix and release a proton in a relatively basic environment. [29]. At
that time, phenolate anions move back down the electrochemical gradient to the relatively
acidic intermembrane space. Protons are then transported from the inner-mitochondrial
membrane to the matrix to regulate the electrochemical gradient (∆Ψm) [29,30]. In general,
studies have shown that polyphenols are bioavailable and their metabolism via different
mechanisms is responsible for their biological activities [31,32].

3. Mitochondria and Kidneys
3.1. Oxidative Phosphorylation (OXPHOS) System

Mitochondria are the central site for over 90% ATP production in cells [33,34]. ∆Ψm
in mitochondria is critical for mitochondrial function and is widely used as an indicator
for mitochondrial function and oxidative stress [35]. The overproduction of reactive oxy-
gen species (ROS), primarily superoxide anion (O2·−), during the transfer of electrons to
oxygen, and a deficiency in antioxidant enzymes, such as superoxide dismutase (SOD)
and glutathione (GSH) [36], leads to oxidative stress, mitochondrial dysfunction, and
apoptosis [37]. Because mitochondrial ROS can inhibit multiple signaling pathways and
prevent redox-dependent proteins’ proper function and activity, it is reported that mito-
chondrial ROS could be detrimental to cell survival and the health of a kidney cell [38].
ROS are produced in both the renal cortex and medulla, resulting in altering renal blood
flow, inflammation, fibrotic changes, and proteinuria [39].

3.2. Mitochondrial Biogenesis

Mitochondrial biogenesis is an intricate and adaptive cellular response process [40]. It
requires coordinated transcription and replication of mitochondrial DNA accompanied by
the synthesis and import of proteins [5]. The mitochondrial biogenesis is regulated by the
proliferator-activated receptor-gamma coactivator-1α (PGC-1α) family of transcriptional
coactivators [12]. Mitochondrial biogenesis, respiration, fatty acid β-oxidation, and OX-
PHOS are all controlled by the interaction of PGC1-α with different transcription factors,
such as nuclear respiratory factors 1 and 2 (Nrf1/2) and peroxisome proliferator-activated
receptors (PPARα) [38]. The PGC-1α transcriptional coactivator is highly expressed in the
proximal tubules of the kidney and plays a critical role in tubular homeostasis [11]. AMP-
activated protein kinase (AMPK) and family of NAD+-dependent deacetylases known
as Sirtuins (SIRT1–7), including SIRT1, are essential modulators of energy metabolism.
AMPK with phosphorylation and SIRT1 through deacetylation can positively regulate
PGC-1α [41–43]. Stimulation of PGC-1α through deacetylation or phosphorylation can
stimulate the pathway followed by activation of nuclear transcription series factors, such
as Nrf1, Nrf2, and transcription factor A mitochondria (TFAM) expression, consequently
leading to mitochondria DNA (mtDNA) transcription and replication [44]. Moreover,
PGC-1α activation improves the nicotinamide adenine dinucleotide (NAD+) biosynthesis,
a key molecule critical for oxidative metabolism and cell protection [11]. It is reported that
transgenic expression of PGC-1α leads to increased mitochondrial content and expression
of mitochondrial genes. Conversely, loss of PGC-1α results in reducing the mitochon-
drial genes expression and causes mitochondrial dysfunction in mice [38]. There has been
widespread evidence of reduced mitochondrial biogenesis as well as low PGC-1α levels
in AKI and CKD [45]. Further, the Nrf2 antioxidant pathway was established to cope
with CKD-induced oxidative stress in renal cells. Nrf2 is bound to its repressor under
normal physiological conditions; under oxidative stress, Nrf2 is rapidly dissociated and
translocated to the nucleus, encoding the antioxidant enzyme gene [46]. On the other hand,
ROS, oxidative stress, and inflammation suppress the antioxidant potential of renal cells by
suppressing the expression of Nrf2 [47]. Cellular homeostasis is integrated with function of
mitochondria and biogenesis. It leads to metabolic syndrome, neurodegenerative diseases,
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and cancer if the intracellular pathway is malfunctioned [44]. According to the broad
involvement of PGC-1α and Nrf1/2 as the important factors of mitochondria biogenesis,
they can serve as a vital pharmacological target in metabolic diseases.

3.3. Mitochondrial Dynamics

To maintain cellular homeostasis and mitochondrial function, mitochondrial dynamics,
such as division, fusion, and movement, are indispensable [48–50]. There are also fission
proteins regulating mitochondrial dynamics, including mitochondrial fission 1 (Fis1), fusion
proteins, and optical atrophy (OPA1) [7,51]. For the optimal function of mitochondria,
there must be a balance between fission and fusion events, since imbalanced mitochondrial
dynamics will eventually result in diseases, such as insulin resistance and type 2 diabetes,
hypertension, cardiovascular diseases, and obesity [11,38,52]. Further, kidney disease
and impairment are related to an increased mitochondrial fragmentation [53]. These
findings suggest that a balanced mitochondrial fission and fusion is necessary for optimal
mitochondrial function in kidney cells.

3.4. Mitophagy

Mitophagy is the autophagy of accumulated dysfunctional mitochondria modulated
by PTEN-induced putative kinase 1 (PINK1)-parkin RBR E3 ubiquitin protein ligase
(PARK2) pathways (ubiquitin-dependent mechanism) and B-cell lymphoma 2 (Bcl2) in-
teracting protein 3 (ubiquitin-independent mechanism) [3,54–56]. There is an association
between disturbed mitophagy and kidney diseases, such as acute kidney injury, diabetic
nephropathy, and glomerulosclerosis [11]. In PINK1 and/or PARK2 knockout models, ROS
production, inflammation, mitochondrial fragmentation, and cell apoptosis were enhanced
in kidney cells, resulting in severe kidney injury. This suggests that PINK1 and PARK2
pathways act as a protective mechanism in AKI to maintain renal tubular integrity and
kidney function [57].

4. Kidney and Mitochondria

Chronic and acute kidney injuries are linked with the production of ROS and reac-
tive nitrogen species (RNS) [11]. Oxidative stress in AKI results from sepsis, ischemia-
reperfusion injury, exposure to nephrotoxic reagents, and diabetic nephropathy. It was
revealed that a balance between fission and fusion tended toward fission, contributing
to mitochondrial fragmentation in AKI [58]. As a consequence, fragmentation could be
related to the release of apoptotic factors, such as cytochrome C, activation of caspase,
and apoptosis [53]. Additionally, AKI in cell and mouse models showed a decrease in
mitophagy, ROS production, inflammation, and increase in mitochondrial damage [59].
Renal fibrosis and, consequently, CKD usually results from repeated or severe AKI [60–62].
Further, CKD may arise from environmental exposure to metal, pesticides, and infectious
agents, decreased glomerular filtration rate, and higher urinary albumin excretion [63,64].
Enhanced fragmentation of mitochondria in kidney tubules, the reduced mitochondrial
biogenesis, loss of mitochondria membrane potential (MMP), drop in ATP generation,
and overproduction of mitochondrial ROS were reported in CKD [38,65]. Thus, CKD and
AKI might perturb mitochondria biogenesis, dynamics, and mitophagy clearance. The
conditions are all likely to lead to an accumulation of inflammatory cytokines, release of
pro-apoptotic factors, and tissue damage [11].

An ischemic/reperfusion (I/R)-injury-induced AKI is a cellular injury that is trig-
gered by a pathological condition that results in blood returning to tissues that have been
ischemic [66]. I/R contributes to kidney dysfunction and AKI [67]. It is accompanied
by inflammation, ROS and cytokine generation, lipid peroxidation, changes in mitochon-
drial function, and mitochondria injury [68,69]. I/R could increase the protein levels
of pro-inflammatory factors, including tumor necrosis factor α (TNF-α), interleukin 1β
(IL-1β), and interleukin 6 (IL-6), and levels of the ROS and malondialdehyde (MDA),
while decreasing SOD and GSH [70]. In mitochondria, cytochrome oxidase (complex IV)
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is able to catalyze electron transfer from cytochrome C to oxygen to produce a proton
gradient for ATP synthesis [71]. ROS and lipid peroxidation products effectively inhibit
mitochondrial complex IV activity [36,72], thus, influencing the electron flow across the
electron transport chain and ATP production [73]. As a result of lipid peroxidation, dif-
ferent pathways lead to apoptosis and autophagy [74]. In another study, the Nrf2/heme
oxygenase-1 (HO-1) signaling pathway decreased renal I/R injury by mediating oxidative
stress [75]. Ca2+ at physiological concentrations is an essential regulator of mitochondrial
energy metabolism [76]. Ca2+ influx into the mitochondria is a noteworthy factor in trig-
gering mitochondrial ROS production [77]. Overproduction of ROS might result from
increased mitochondrial Ca2+ accumulation, leading to inhibition of electron transport
and/or increase in the enzymes responsible for ROS generation [78]. The mitochondrial
Ca2+ load reduces the transmembrane potential and opens the mitochondrial permeabil-
ity transition pore (MPT), damaging mitochondria and mitochondrial respiratory chains
and subsequent ROS surge [79]. On the other hand, it was found that ischemic injury
decreased the OXPHOS and Ca2+ uptake in kidney mitochondria, which could impact mi-
tochondrial metabolism [69]. These studies demonstrated that I/R-induced inflammation,
oxidative stress, and apoptosis might be related to kidney mitochondria. Acute kidney
injury resulting from nephrotoxicity could damage mitochondria and, consequently, impair
renal functions [80].

Cadmium is a toxic heavy metal, which has extensive nephrotoxic impact [81]. The
expression of PGC-1α, Nrf1, SIRT1, and TFAM involved in mitochondrial biogenesis were
impaired in cadmium-induced nephrotoxicity [82]. Nephrotoxicity caused mitochondrial
fission by inhibiting mitochondrial membrane fusion and activating mitophagy mediated
by the PINK/Parkin pathway [83]. Cadmium-induced renal impairment might alter tissue
redox status by increasing lipid peroxidation products, such as MDA and nitrite oxide
(NO), and decreasing SOD and catalase (CAT) enzymes in the kidneys [84]. This leads to
disruption in mitochondria function, mitochondrial membrane potential, and eventually,
renal hemostasis [82,85,86].

The antibiotic gentamycin is widely used to treat bacterial infections [87]. Nephro-
toxicity caused by gentamycin also triggers ROS production in mitochondria, stimulating
the opening of the MPT pore [88]. Thus, the MPT pore opening triggers the release of
cytochrome C into cytosol which leads to swelling of mitochondria, activation of caspase
cascade, and finally culminates to apoptosis [89]. In addition, the Bcl-2/Bcl-2-associated
X (Bax) ratio, which is a vital factor to control cell apoptosis, decreased in the kidney
following nephrotoxicity [90].

Anticancer drugs, such as cisplatin, cause DNA crosslinking and apoptosis [91]. Like-
wise, cisplatin-induced nephrotoxicity elevated protein oxidation and lipid peroxidation in
the kidney mitochondria of rats, resulting from increasing ROS production or decreasing
antioxidant status [92]. After cisplatin administration, the levels of the lipid peroxidation
end-product MDA were significantly increased along with GSH and SOD depletion in
rats [93]. The enhanced lipid peroxidation in mitochondria might cause decreased mito-
chondrial membrane fluidity, an increase in the distribution of negative surface charge, and
an altered ionic membrane permeability [94]. Cisplatin triggers signaling cascades, such
as p53, MAP kinase (MAPK), and nuclear factor kappa B (NF-κB), by ROS formation [95].
Further, cisplatin released pro-inflammatory cytokines, for instance, interleukin 12 (IL-12),
TNF-α, and IL-1β to induce kidney damages [96]. Therefore, cisplatin was able to damage
the kidney by generating oxidative stress, inflammation, DNA damage, apoptosis, and
mitochondrial dysfunction [97].

Cyclosporine A is an immunosuppressive drug used to treat autoimmune diseases
and to prevent organ rejection [98]. Studies indicated that cyclosporine A could cause acute
and chronic nephrotoxicity by inhibiting mitochondrial respiration and decreasing ATP
production in vivo and in vitro [99–102]. Cyclosporine A might suppress mitochondria
biogenesis to induce nephrotoxicity [103]. Human kidney proximal tubule epithelial cells
treated with cyclosporine A showed increased mitochondrial dysfunction and cellular
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death induced by H2O2. ROS production during H2O2 injury could activate the p53
pathway. In addition to binding DNA, activated p53 could accumulate in the mitochondrial
matrix and trigger necrotic cell death by opening the MPT pore [104].

Doxorubicin, an anticancer agent, is widely used in the treatment of leukemia, breast
cancer, and solid tumors [105]. Similar to other nephrotoxic drugs, there was an association
between doxorubicin exposure and declining antioxidant parameters, such as glutathione
peroxidase (GPx), SOD, and CAT, as well as SIRT1 activity [106,107]. Research showed
that doxorubicin elevated thiobarbituric acid reactants (TBARS) and MDA, an indicator
of oxidative damage [108]. NF-κB activation plays a critical role in the pathogenesis of
doxorubicin-induced renal inflammation [109]. According to this, NF-κB was responsible
for inflammatory reactions by mediating TNF-α, IL-1β, and IL-6 expressions in rats treated
with doxorubicin [110]. The formation of superoxide radical(s) by doxorubicin exposure led
to apoptosis [111,112]. Further, doxorubicin-treated animals showed cell death and apopto-
sis characterized by upregulation of Bax, down-regulation of Bcl2, increased mitochondrial
permeability, and activation of caspase-3 in kidneys [106].

Diabetic nephropathy, a complication of microvascular in diabetes, could cause renal
disease [113]. Redox changes are caused by persistent hyperglycemia and the accumulation
of advanced glycation end products (AGEs) [114]. The resulting chronic inflammatory
response leads to aberrant redox changes, albuminuria, proteinuria, glomerulosclerosis,
and tubule-interstitial fibrosis [115]. Complications associated with diabetes are caused by
ROS production, can damage mitochondrial DNA, and induce cell dysfunction [116,117].
These changes in renal cells, including glomerular endothelial cells, mesangial cells, and
renal epithelial cells, disrupt ATP synthesis, cause intracellular calcium imbalances, and
contribute to apoptosis and necrosis [118]. Diabetic rats’ kidney tissues showed higher
levels of ROS, MDA, TNF-α, IL-6, and NF-κB p65 [119]. Apoptosis was also observed with
higher Bax protein and cleaved caspase-3 levels, increased cytochrome c cytoplasmic levels,
and Bcl2 down-regulation. In addition, the kidneys of diabetic rats revealed a significant
decrease in the mRNA levels and nuclear levels of Nrf2, with a reduction in SOD mRNA
levels and SOD and GSH protein levels. This disruption in cellular viability and oxidative
homeostasis was possibly backed by hyperglycemia-induced ROS surge and depleted Nrf2
pool [120]. In diabetic nephropathy, the oxidative stress might increase GSH degradation or
lower innate GSH synthesis. Moreover, ROS also lower the enzymatic activities of SOD and
CAT [121]. Further, free radicals induced during diabetic nephropathy lowered the activity
of AMPK and SIRT1, the critical regulators of PGC1α activity and energy metabolism
of mitochondria [122]. The injury of the podocyte cells that cover the outer surfaces
of glomerular capillaries, related to Nrf1 and mitochondrial dysfunction, contributed
to diabetic kidney disease [123]. Studies have also shown that mitochondrial damage
contributed to chronic and acute kidney injury as a result of a reduction in mitochondrial
DNA, mitochondrial membrane potential, and ATP production along with increase in
inflammation, and apoptosis [65].

5. Antioxidants and Kidney Diseases
5.1. Caffeic Acid Phenethyl Ester

Caffeic acid phenethyl ester (CAPE) is a natural phenolic compound possessing anti-
inflammatory, antioxidant, and immunomodulatory effects [124]. CAPE exhibits a strong
antioxidant potential by scavenging free radicals and facilitating oxidative homeostasis [125].
Further, CAPE improved OXPHOS of mitochondria through complex-I-dependent sub-
strate(s) glutamate/malate [69]. It was later shown that CAPE pre-treatment protected
complex II (SDH) activity and inhibited ROS formation at the Complex II F [68]. CAPE re-
duced Fe3+ (oxidized form of cytochrome C) into Fe2+, inhibiting the release of cytochrome
C to cytosol and apoptosis. This protection decreased MDA and xanthine oxidase (XO),
while increasing antioxidant enzyme GSH [68]. Therefore, CAPE inhibited lipid perox-
idation in renal tissues [126]. Further, CAPE pre-treatment ameliorated mitochondrial
swelling and dissipation of membrane potential following renal toxicity by cadmium [127].
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Özeren et al. [128] showed that CAPE prevented kidney ischemia/reperfusion injury by
inhibiting lipid peroxidation and improving mitochondrial Ca2+ uptake, resulting in
improved mitochondrial energy metabolism [69]. Furthermore, CAPE treatment also
boosted levels of NO from endothelial cells, thus preventing the pathological damage in
ischemia [129]. Consequently, CAPE increased mitochondrial function to uptake calcium
and boost OXPHOS [69,129]. Lastly, CAPE was able to lower oxidative stress, increase
antioxidant enzyme activity and GSH content, and inhibit MPT pore opening, resulting in
improved renal health [130]. Additionally, CAPE blocked ROS production and augmented
the activity of antioxidant enzymes, such as SOD and CAT [126]. Since CAPE exhibits
potent antioxidant, anti-inflammatory, and mitochondrial protective effects in kidney cells
and tissues, this promotes CAPE as a promising new therapeutic agent that has the potential
to protect the kidney from damage [126].

5.2. Curcumin

Curcumin is a natural polyphenol product derived from the rhizome of the Curcuma
longa, exerting anti-inflammatory, antioxidative, anti-tumor, and anti-fibrotic effects [131].
The presence of conjugated double bonds in the curcumin structure allows it to donate
an electron and scavenge ROS [132]. Curcumin has shown a protective effect in kidney
damage models via its antioxidant activity, leading to the preservation of mitochondrial
function [133]. Further, curcumin prevented mitochondrial dysfunction by protecting the
mitochondrial respiratory complexes [134]. Some drugs, including gentamycin, reduce
the activity of complexes I, II, and IV [134]. The complexes I and IV concentration and
activities were recovered through curcumin treatment [134]. Consequently, the phosphory-
lation efficiency (Adenosine di-phosphate (ADP)/Oxygen) ratio in mitochondria oxidizing
malate/glutamate and uncoupled respiration was recovered and redox homeostasis was
maintained to prevent mitochondrial dysfunction. Curcumin suppresses TNF-α-mediated
NF-κB activity in the development of chronic renal failure and inflammation [135,136].
Further, curcumin reduced interferon gamma (IFNγ) expression, but increased IL-10 levels
in the renal ischemia/reperfusion model [137].

Curcumin also exhibited protective impacts against various nephrotoxic agents, such
as cisplatin, gentamicin, and cadmium [138]. Particularly, curcumin treatment increased the
PGC-1α levels and TFAM expression in nephrotoxcity-induced AKI [139,140]. Curcumin
also protected the kidneys from oxidative stress in cisplatin-induced nephrotoxicity [141].
For example, curcumin attenuated oxidative stress and lipid peroxidation by scavenging
ROS, restoring manganese superoxide dismutase (MnSOD) activity, enhancing glutathione
s transferase (GST) activity, and modulating the GSH levels in kidney mitochondria [142].
Mechanistically, curcumin protected against cisplatin-induced oxidative damage by activat-
ing transcription factor EB (TFEB), leading to the regulation of autophagy and decreased
levels of ROS after elimination of damaged mitochondria [143]. Moreover, curcumin
was also able to restore the imbalance of mitochondrial dynamics in cisplatin nephro-
toxicity through attenuation of Fis1 levels and restoring OPA1 levels [144]. Curcumin
significantly regulated SIRT3, leading to mitochondrial integrity, a decrease in mitochon-
drial fission, and improved mitochondrial fusion. SIRT3 upregulation by curcumin also
reduced dynamin-related protein 1 (DRP1) levels and prevented depolarization of the
mitochondrial membrane in nephrotoxicity with cisplatin [142,145]. Further, curcumin
treatment showed a higher number of normal-structure mitochondria and lower swollen
mitochondria in gentamicin-induced kidney damage, owing to its ability to recover oxygen
consumption of mitochondria [134]. Additionally, curcumin also ameliorated the MPT
pore opening and protected them from the detrimental effects by preserving mitochondrial
integrity [134]. Curcumin also showed protective effects in rats with a renal interstitial
fibrosis model. In this study, curcumin inhibited the PI3K/Akt mammalian target of the
rapamycin (mTOR) signaling pathway activation and upregulated essential proteins, medi-
ating autophagosome formation. This led to suppressing the inflammatory response and
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mitochondrial dysfunction development [131]. Furthermore, the ability of curcumin to
boost mitochondrial biogenesis warrants its exploration and use for renal disease [146].

5.3. Quercetin

Quercetin, a natural flavonoid abundant in fruits, vegetables, and leaves, is a potent an-
tioxidant, which alleviates cell senescence by reducing oxidative stress [107,147]. Quercetin
alleviates oxidative stress, prevents kidney damage, and inhibits renal inflammation in
animal models of diabetic nephropathy [148]. Further, quercetin treatment prevented
structural and functional damage of renal tissue and suppressed oxidative stress in the
rats with tubulointerstitial necrosis and cadmium nephrotoxicity [149]. Recently, it was
found that quercetin had chemo-protective and anti-apoptotic effects as a result of elevated
expression of p53, p21, and p27 and lowered Bax expression in vitro [150]. Quercetin
chelated metal ions, such as iron and copper, which were able to scavenge free radicals
in in vitro experiments [151]. Quercetin also suppressed NF-κB, lipid peroxidation, and
expression of pro-inflammatory matrix metalloproteases, whereas it might elevate nitric
oxide levels and non-enzymatic antioxidant capacity of plasma [107]. Quercetin also ame-
liorated nephrectomy-induced oxidative stress by increasing GPx and decreasing MDA
levels in rats [46,152]. In addition, quercetin restored mitochondrial function and protected
against DNA double-strand breaks after doxorubicin treatment in H9c2 cells [153]. It was
shown that quercetin could increase the expression of Nrf2 in the nucleus to enhance the
encoding of antioxidant enzymes and gene expression of HO-1 in rats with CKD [46]. In
renal interstitial fibrosis, quercetin significantly enhanced mitophagy by activating SIRT1
and inducing the PINK1-Parkin signaling pathway [153]. Moreover, a reduction in systolic
blood pressure was associated with a reduction in epithelial Na+ channel (ENaCs) expres-
sion in the kidneys of hypertensive Dahl salt-sensitive rats treated with quercetin [154,155].
Based on the studies, quercetin can be considered a polyphenol with the ability to lower
oxidative stress and apoptosis, while improving mitochondria mitophagy and biogenesis
in the kidney.

5.4. Resveratrol

Resveratrol is a natural stilbenoid polyphenol found in grapes, blueberries, and
peanuts [156]. It exhibits anti-inflammatory, anti-cancer, and anti-aging effects, both in cells
and in animals [157]. Further, resveratrol has potential in the treatment of kidney diseases
to improve overall health [34]. Studies observed that resveratrol enhanced the NADH entry
into electron transport, thus, increasing the NAD+-NADH ratio, which might influence
SIRT1 activity [72,158]. There is ample evidence indicating that resveratrol increased all
SIRT1 target proteins, which were critical to mitochondrial function and oxidative stress re-
duction in kidneys [159]. Resveratrol-induced SIRT1 activity triggered a decrease in fibrosis,
mesangial expansion, oxidative stress, and inflammatory cytokine levels, resulting in im-
proved kidney function [160,161]. In the kidneys of SIRT1 KO db/db mice, the expression
of pro-inflammatory factors mediated by NF-κB and signal transducer and activator of tran-
scription 3 (STAT3) rose dramatically, supporting resveratrol-induced SIRT1’s crucial role in
kidney inflammation [162]. Likewise, resveratrol protected against diabetic kidney disease
in db/db mice with type 2 diabetes via an AMPK/SIRT1-independent mechanism [163].
The treatment of db/db mice with 20 mg resveratrol/kg/day for 12 weeks led to a reduc-
tion in kidney damage and modification of renal diabetes phenotypes [164]. A recent study
revealed that resveratrol was essential in restoring mitochondrial function and biogenesis
via SIRT1/PGC-1α activation in kidneys of diabetic mice [165]. It was shown that activation
of SIRT1-dependent pathways by resveratrol attenuated kidney injury by upregulation of
mitochondrial biogenesis factors [72]. Further, in chickens that were treated with resvera-
trol, Nrf2 signaling was activated to reverse renal oxidative damage caused by cadmium
injury and activate downstream phase II detoxification factors, such as HO-1, NAD(P)H
dehydrogenase quinone 1 (NQO1), and GSTs [82]. Likewise, Kim et al. proved that a reduc-
tion in oxidative stress through Nrf2 activation ameliorated renal function, proteinuria, and
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pathological changes in aging mice [157]. Alternatively, resveratrol treatment prevented
a decrease in the activity of complex II and complex IV following hemorrhagic shock, which
decreased ROS production and damage in a rat model of kidney disease [72]. Additionally,
Hui et al. showed that resveratrol treatment raised MMP and activities of complex I and
III; therefore, the production of ATP improved and reduced the generation of ROS in a rat
model of CKD [34]. Further, Zhang et al. showed that resveratrol reversed mitochondrial
injury, diminished the autophagic vacuole number, and ameliorated mitochondrial fission
in chicken kidney [82]. In addition, by improving mitochondrial elongation, resveratrol
facilitated autophagy, suppressed Parkin and PINK1 phosphorylation, and degraded mi-
tochondria that were removed [82]. Generally, these studies suggested that treating renal
injuries with resveratrol might attenuate nephrotoxicity, I/R, oxidative stress, and apop-
tosis, while increasing antioxidant enzyme activities. In addition, resveratrol treatment
might affect mitochondrial biogenesis and dynamics in kidney diseases to ameliorate
mitochondrial dysfunction and metabolic stress.

5.5. Catechin

Catechin, as a part of the flavonoids family, is present in plants, fruits, teas, red wine,
and cacao [166]. In addition to having antioxidant properties, it also exhibits potent anti-
inflammatory properties [167]. Catechin protects the kidneys by scavenging free radicals,
inhibiting intracellular ROS, chelating redox-active metals, and enhancing antioxidant
defense mechanisms [168,169]. In addition, catechin had the potential to prevent MMP loss
and apoptosis by restoring the activity of mitochondrial complex I and ATP synthesis [170].
In SK-N-MC cells, catechin boosted the expression of anti-apoptotic protein Bcl-2 and
inhibited the expression of apoptotic protein Bax [171,172].

Epigallocatechin gallate (EGCG) is a catechin esterified with gallic acid [173]. It is the
major polyphenol in green tea with antioxidant activity in reducing mitochondrial oxida-
tive stress [174,175]. It was found that EGCG restored mitochondrial electron transport
chain function to normal in mouse kidney with cisplatin-induced damage [176]. Further,
EGCG protected against renal injury caused by cisplatin through favoring mitochondrial
antioxidant enzymes, such as MnSOD and GPx, and enhancing the anti-inflammatory
effect [177]. Further, EGCG treatment significantly reduced DNA damage caused by p65
and P53 and modulated NF-κB nuclear accumulation in cisplatin nephrotoxicity [176]. In
the rat model of obstructive nephropathy, treatment with EGCG inhibited NF-κB activation,
while improving the phosphorylated IkappaB (IκB) protein and inducing Nrf2 nuclear
translocation [177]. EGCG induced GST, GPx, and HO-1 expression, where they were
able to eliminate or inactivate ROS and oxidative stress; thus, it could suppress oxidative
stress and acute renal injury [178,179]. In a mouse model of nephrotoxicity, EGCG modu-
lated the receptor Bax and Bcl-2 that attenuated cisplatin-induced apoptosis [180]. Thus,
EGCG-induced modulation of NF-κB and Nrf2 is a critical element for oxidative stress
and inflammation alleviation in acute kidney damage [177,181]. Furthermore, green tea
polyphenols (polyphenol + catechin + EGCG) protected the rat kidneys from the oxidative
damage caused by a high-fat diet via an SIRT3/MnSOD pathway mediated by PPARα [182].
It was suggested that green tea polyphenols increased PGC1-α and TFAM axis, mitochon-
dria DNA, OXPHOS proteins, and SIRT1 activity related to a reduction in kidney injury and
improvement in renal function after cyclosporine treatment of rats [103]. Eventually, EGCG
and catechin had the ability to enhance mitochondria function by impacting biogenesis,
dynamics, and OXPHOS to prevent or treat kidney diseases.
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5.6. Kaempferol

Kaempferol, a natural flavonoid, is found in tea, vegetables, and fruits, such as broccoli,
grapes, kale, tomatoes, and citrus fruits [183,184]. Kaempferol has antioxidant, anti-cancer
and anti-inflammatory effects [97]. It was reported that kaempferol caused a significant
decline in MDA levels, an indicator of oxidative stress, cytotoxicity, and renal damage
in calcineurin inhibitor-induced renal injury and CKD [185]. In addition, kaempferol
could lower lipid peroxidation and improve antioxidant defense activity [186]. Tumor
necrosis-factor-receptor-associated factor 6 (TRAF6), a transcription factor upstream of
NF-κB, is downregulated by kaempferol, reducing renal inflammation and fibrosis in renal
tubular epithelial cells [187]. It was shown that pre-treatment of kaempferol reduced
pro-inflammatory cytokine release, such as IL-12 and TNF-α, and regulated NF-κB levels
by hindering the IkappaB kinase (IKK) phosphorylation and IκBα degradation; thus,
it ameliorated the cisplatin-mediated inflammation in mouse kidney proximal tubule
epithelial (TKPTS) cells [97]. Furthermore, kaempferol inhibited the p38, ERK, and c-Jun
N-terminal kinase (JNK) activation, while augmenting Coenzyme Q (CoQ) biosynthesis
and content [97]. Treatment with kaempferol increased GSH and SOD2, while reducing
TNF-α and IL-6 in the kidneys of doxorubicin-treated rats [106]. Moreover, treatment and
pre-treatment with kaempferol in rats increased nuclear accumulation of Nrf2, which was
necessary for mitochondrial biogenesis, in contrast to the cisplatin- and doxorubicin-treated
animals [106,180]. In addition, the protective effects of kaemepferol against streptozotocin-
induced diabetic nephropathy could be attributed to its potent antioxidant effect, mediated
by upregulation and activation of Nrf2 [188]. Overall, kaempferol can be a potential
therapeutic used in treatment, preventing kidney mitochondria injury because it has anti-
inflammatory and antioxidative properties.

5.7. Grape Seed Proanthocyanidin

Other plant polyphenols, such as grape seed proanthocyanidin extracts (GSPE), have
strong therapeutic characteristics against oxidative stress and inflammatory damage [189,190].
The effects of GSPE on obese rats included the stimulation of energy expenditure, an in-
crease in thermogenic capacity, and inhibiting mitochondrial dysfunction in brown adipose
tissue [191]. Rats treated with GSPE had fewer mitochondrial degenerations, stabilized
mitochondrial enzymes, and corrected mitochondrial dysfunction in myocardium and
brown adipose tissue [191–193]. GSPE served to reduce proteinuria and podocyte injury as
well as nephropathy progression in diabetic rats [194]. Further, the antioxidant capacity
of GSPE enhanced the activity of SOD2 and CAT and decreased the levels of MDA and
inflammatory cytokines, such as TNF-α and Monocyte chemoattractant protein (MCP1), in
renal tissues of diabetic rats [195,196]. Additionally, GSPE was able to restore mitochon-
drial DNA and increase Nrf1 and TFAM RNA expression, which could suppress renal
mitochondrial dysfunction [123]. In addition, GSPE protected diabetic podocytes from
injury by restoring phospho-AMPK, SIRT1, and PGC-1α levels [123]. It was shown that
protein SIRT1 was the therapeutic target of GSPE against H2O2 injury. GSPE upregulated
the SIRT1 and re-established homeostasis of mitochondrial complexes I, II, III, and IV,
enhanced antioxidant enzymes, such as SOD2, whereas it inhibited apoptosis factors, such
as BAX and P53, in HEK-293 cells [197]. Further, GSPE increased GSH and TBARS and the
protein levels of Nrf2, HO-1, and GST in diabetic kidney and nephrotoxicity [198,199]. By
reducing ROS levels, GSPE protected kidneys from oxidative-stress-induced injury [195].
Further, GSPE inhibited NF-κB in I/R injuries in Rats; therefore, it reduced the markers of
renal injury and oxidative damage and even inactivated the inflammatory pathway [200].
Thus, GSPE reduced renal damage in rats by activating the Nrf2 signaling pathway, which
consequently improved the antioxidant capacity of the tissue [198]. These studies revealed
that GSPE might be a safe therapeutic candidate to regulate mitochondrial dysfunction in
kidney diseases.
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5.8. Hesperetin

As a natural flavonoid found in citrus plants [201], hesperetin has antioxidant, cardio-
vascular regulation, and anti-cancer activities [93]. Oxidative stress and ROS generation
are the significant factors in cisplatin-induced AKI [202]. Hesperetin reduces the renal
MDA and NO levels and restores the antioxidant enzyme levels, such as GSH, CAT, GPx,
and SOD, to the normal levels in rats with nephrotoxicity [93]. It was reported that the
levels of MDA and NO in the kidneys reduced by hesperetin and the levels of antioxidant
enzymes, such as GSH, CAT, GPx, and SOD, were restored to normal levels. Hesperetin
significantly normalized the elevated level of inflammatory cytokines, such as TNF-α,
IL-1β, and IL-6, and, thus, protected the kidney from inflammatory insult in rats with
nephrotoxicity [93,203]. Moreover, hesperetin inhibited phosphorylation of Akt in diabetic
nephropathy, indicating that the PI3K/Akt pathway could be involved in the protective
effects of hesperetin [204]. Hesperetin also inhibited JNK, ERK, and p38 phosphoryla-
tion, suggesting that it could inhibit cisplatin-induced inflammation [205]. Activating the
Nrf2 signaling pathway by hesperetin significantly diminished the oxidative damage of
ARPE-19 cells and promoted the SIRT6 expression to protect from I/R injury [206,207]. It
was shown that hesperetin could inhibit the apoptosis induced by cisplatin, decrease Bax
and caspase-3 expression, and increase Bcl-2 expression [208]. Overall, hesperetin protects
against nephrotoxicity and diabetic kidney injury by inhibiting inflammation, oxidative
stress, and apoptosis.

5.9. Ellagic Acid

Ellagic acid is a phenolic acid present in fruits and vegetables, such as raspberries,
strawberries, walnuts, grapes, and blackcurrants [209]. The antioxidant effect of ellagic acid
leads to scavenging O2·−, OH−, and lipid peroxide, therefore, inhibiting lipid peroxidation
and improving the antioxidant status [210]. A study proved that ellagic acid reduced serum
MDA levels and increased SOD levels, indicating that it alleviated diabetic nephropathy
symptoms by reducing oxidative stress [211,212]. Ellagic acid was also reported to lower
TNF-α and IL-1β levels in diabetic nephropathy and nephrotoxicity kidney injury mice,
which might be mediated through NF-κB; therefore, ellagic acid could be a potent inhibitor
of NF-κB activation [211,213]. Further, ellagic acid reduced the cellular membrane damage
by scavenging the free radicals in rats with nephrotoxicity and nephropathy [90]. This
protection was shown by covering depleted levels of SOD, GSH, CAT, and Bcl2 in the
kidney, inhibiting caspase-3 activation and increasing the Bcl-2/Bax expression ratio. They
found that ellagic acid significantly reduced the mitochondrial ROS content, reversed the
swelling of mitochondrial kidney, and prevented loss of mitochondria membrane potential.
Further, it was suggested that the anti-apoptotic effects of ellagic acid could be attributed
to the upregulation of Nrf2 [90,120,214]. Additionally, Nrf2 could suppress inflammation
by inhibiting TNF-α and NF-κB in diabetic nephropathy in cell lines, an animal model,
or both [215]. It also activated different antioxidant enzymes, such as HO-1, NQO1, GST,
and GSH [216,217]. The dysfunction of mesangial cells in diabetic nephropathy might
be related to the PI3K/Akt signaling pathway activation inhibited by ellagic acid [218].
Ellagic acid treatment also triggered SIRT1 overexpression in renal tissues, which imparted
renal tolerance to oxidative stress [214]. Moreover, ellagic acid-induced SIRT1 expression
suppressed p53 and promoted cell survival via expression of antioxidant enzymes, such as
CAT [214]. Overall, these results suggest that ellagic acid decreases renal inflammation and
oxidative stress, leading to improved kidney function (Figure 2 and Table 1).
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Figure 2. Polyphenols and their roles in renal mitochondrial dysfunction. Polyphenols regulate
mitochondria biogenesis and dynamics via increasing Nrf2 and PGC-1α expression and balancing
fission and fusion events, while kidney diseases result from imbalanced mitochondria dynamics
and reduce biogenesis. In this pathway, deacetylation of SIRT and phosphorylation of AMPK can
positively regulate biogenesis. Polyphenols can decrease the protein levels of pro-inflammatory
factors, including TNF-α, IL-1β, IL-6, and NF-κB to exert anti-inflammatory effects. They also
improve mitochondria function and injury through inhibition of ROS generation. Polyphenols show
protective effects through inhibiting MPT pore opening, which can trigger the release of cytochrome
C into the cytosol, swelling of mitochondria, and activating of caspase cascade; finally, they reveal
anti-apoptotic impacts. Further, polyphenols restore antioxidant enzyme levels such as SOD2 and
CAT to normal levels, improve antioxidant status, and scavenge free radicals.

Table 1. Preclinical evidence of polyphenols as a therapeutic approach for kidney disease.

Substance Model (Animal or Cell) Outcomes References

CAPE (22 mg/kg
and 34 mg/kg) Wistar rat

Protected oxidative phosphorylation of kidney
mitochondrial and decreased ROS production at

Complex II in ischemia/reperfusion model.
[68]

CAPE (pretreated with
two doses (22 mg/kg

and 34 mg/kg))
Wistar rats

Ameliorated ischemia-induced renal mitochondrial
injury, improved oxidative phosphorylation with
complex I-dependent substrate glutamate/malate,

increased mitochondria Ca2+ uptake, blocked
ischemia-induced caspase-3 activation, and protected

kidney cells from necrosis.

[69]

Curcumin
(200 mg/kg) Sprague Dawley rats

Attenuated renal fibrosis, inflammatory response, and
mitochondrial dysfunction. Inhibited the

PI3K/AKT/mTOR pathway. Revealed anti-fibrotic
effects mediated through the regulation of autophagy

and protection of mitochondrial function.

[131]

Curcumin (60 mg/kg) db/+ mice

Protected kidneys of diabetic mice from
hyperglycemia modify oxygen consumption rate and

NO synthesis and increasing in TBARS levels
in mitochondria.

[219]

Curcumin
(Pre-treatment with

200 mg/kg)
Wistar rats

Replenished the mitochondrial lipid peroxidase levels
with pre-treatment of curcumin. Restored the

cisplatin-induced modulatory effects on altered
enzymatic and non-enzymatic antioxidants in

kidney mitochondria.

[92]



Nutrients 2022, 14, 3115 13 of 24

Table 1. Cont.

Substance Model (Animal or Cell) Outcomes References

Curcumin
(400 mg/kg) Wistar rats

Decreased mitochondrial hydrogen peroxide
production, increased the respiration related to
oxidative phosphorylation and mitochondrial

membrane potential, reduced fission and enhanced
fusion, and increased the expression of the

PGC1α and TFAM.

[138]

Curcumin
(200 mg/kg) Wistar rats

Prevented the increase of mitochondrial Fis1 protein,
decreased OPA1 and SIRT3, and increased in the

mitophagy associated proteins Parkin and PINK1.
[142]

Curcumin
(400 mg/kg) Wistar rats

Attenuated the decrease in activities of respiratory
complexes I and IV and induction of

calcium-dependent permeability transition in
gentamycin-induced mitochondrial alterations.

Mediated mitochondrial functions and biogenesis
through nuclear factor Nrf2.

[134]

Curcumin (diet
containing 0.04%
(w/w) curcumin)

C57BL/6 mice

Exerted beneficial effects include increasing
mitochondrial biogenesis, alleviating mitochondrial
dysfunction by increasing ATP levels, activities of

mitochondrial electron transport chain complexes and
mitochondrial respiration, and suppressing

mitochondrial membrane potential.

[220]

Quercetin (20 mg/kg
for animal, 20 µM

for cell)

Sprague Dawley rats
Renal tubular
epithelial cells

Enhanced mitophagy. The antifibrotic effect
was through activation of

SIRT1/PINK1/Parkin-mediated mitophagy.
[153]

Quercetin (10 mg/kg) Wistar rats

Ameliorated the cytotoxic effects of doxorubicin and
cyclophosphamide on the kidney through the

elevation of antioxidant expression and the
suppression of lipid peroxidation. Suppressed the
accumulation of MDA and increased GPx levels.

[107]

Resveratrol
(40 mg/kg) C57BL/6 mice

Improved renal function and inflammation in aging
mice. Increased the expression of Nrf2-HO-1-NQO1

signaling and SIRT1-AMPK-PGC1α signaling.
[157]

Resveratrol
(10 mg/kg) Mice

Decreased mitochondria ROS generation by
enhancing SIRT3 within the upregulation of PGC1 α

and SOD2 mitochondria gene expression. Suppressed
cadmium-induced apoptosis in mice kidney.

[221]

Resveratrol
(30 mg/kg) Long-Evans rats

Restored mitochondrial respiratory capacity and
decreased mitochondrial ROS and lipid peroxidation

following hemorrhagic shock. Increased SIRT1,
PGC1α, SOD2, and CAT expression.

[72]

Resveratrol
(30 mg/kg) Long-Evans rats

Restored mitochondrial function and reduced insulin
resistance. The anti-glycemic effects of resveratrol

mediated by reduced mitochondrial ROS.
[222]

Resveratrol (20 mg/kg
for animal, 10 µM

for cell)

Sprague-Dawley rats
Mouse mesangial cell

Upregulated SIRT1 and PGC1α deacetylation
contributed to the mitochondrial protective effects

of resveratrol.
[34]

Resveratrol
(50 mg/kg) Sprague-Dawley rats

Restored SIRT1/3 activity, decreased acetylated SOD2
levels, ameliorated oxidative stress and mitochondrial

function of renal cell.
[223]

Resveratrol (diet
contained resveratrol) White chickens

Mitigated cadmium-induced oxidative stress and
restored the antioxidant enzyme activity. Enhanced
the phase I and II detoxification systems to relieve
oxidative damage. Ameliorated cadmium-induced

mitochondria dysfunction by SIRT3 upregulation and
SIRT1, PGC1α, Nrf1, and TFAM transcription

restrictions. Attenuated mitochondrial fission and
promoted mitochondrial fusion reversed

PINK1/Parkin-mediated mitophagy initiation.

[82]



Nutrients 2022, 14, 3115 14 of 24

Table 1. Cont.

Substance Model (Animal or Cell) Outcomes References

Catechin (25, 50,
and 100 mg/kg) Wistar rats

Decreased MDA, NO, and TNF-α while increased
SOD and CAT. Protected the kidney against the toxic

effect of cadmium through its antioxidant,
anti-inflammation, and mitochondrial protection.

[224]

EGCG (100 mg/kg for
animal, 10 µM for cell)

C57BL/6 mice
HK-2 cells

Attenuated cisplatin-induced mitochondrial oxidative
stress and mitochondrial damage to electron transport
chain activities while improved antioxidant defense

enzyme activities in mitochondria.

[181]

Kaempferol
(200 mg/kg) Rat

Decreased the renal expression of Bax and cleaved
caspase-3 and the production of ROS, MDA, TNF-α,
and IL-6. Improved GSH and SOD levels and Bcl2
mRNA. Increased renal mRNA and SIRT1 protein

levels that was related to increased acetylation of Nrf2
and NF-κB.

[106]

Kaempferol
(200 mg/kg) Balb/C mice

Modulated oxidative stress, inflammation, and
apoptosis via ERK and NF-κB pathway. Corrected the
levels of renal antioxidants and elevated the nuclear
levels of HO-1 and Nrf2 in renal tissues. Attenuated

the cisplatin mediated apoptosis via down-regulating
the levels of Bax/Bcl2 imbalance and

activating caspase-3.

[97]

GSPE (125, 250, and
500 mg/kg) Sprague-Dawley rats

Ameliorated podocyte injury in diabetic nephropathy
by activation of AMPK-SIRT1-PGC1α signaling,

inhibited oxidative stress and mitochondrial
dysfunction in the kidney.

[123]

GSPE (100 µM) HEK-293 cells

Prevented H2O2 induced oxidative damage to
proteins and lipids and depletion in SOD activity.
Prevented mitochondrial electron transport chain

dysfunction, ATP depletion, and apoptosis induced by
H2O2. Regulated SIRT 1 and 3 expressions.

[197]

GSPE (125 and
250 mg/kg) Sprague Dawley rats

Decreased renal damage by activating the Nrf2
signaling pathway; consequently, enhanced the

antioxidant capacity of the tissue in diabetic rats.
[198]

Hesperetin (2.5, 5 and
10 µM) HK2 cells

Attenuated oxidative-stress-induced apoptosis by
reducing ROS levels in cisplatin-treated HK-2 cells.

Activated the Nrf2 signaling pathway and regulating
its downstream genes, including NQO1 and HO-1.
Attenuated the MAPK signaling pathway against

inflammation and inhibited the expression of
apoptotic proteins to protect kidneys from AKI caused

by cisplatin.

[205]

Ellagic acid (40 µM) MCs
Protected mesangial cells from high glucose-induced

injury. Inhibited some inflammatory factors and
activation of PI3K/Akt signaling pathway.

[218]

Ellagic acid
(100 mg/kg) Sprague Dawley rats

Protected gentamicin-induced mitochondrial damage
by preventing MMP loss and decreased mitochondrial
ROS content, mitochondrial swelling, and cytochrome

C release.

[90]

Ellagic acid (150, 100,
and 50 mg/kg for

animals, 100 µg/mL
for cells)

Mice
NRK52E cells

Ameliorated Streptozotocin induced oxidative renal
injury by inhibiting NF-κB pathway. [211]

Ellagic acid
(10 mg/kg) Wistar rats

With antioxidant and anti-apoptotic effects through
overexpression of SIRT1 in renal tissues led to the

decrease in renal MDA content and P53 protein level
and an increase in renal GSH level and CAT activity.

[214]
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6. Discussion and Perspectives

As discussed above, dysfunctional mitochondrial biogenesis, dynamics, or OXPHOS
is a vital underlying factor in renal mitochondrial damage [11]. Although the commonly
used drugs, such as cisplatin, gentamycin, cyclosporine A, and doxorubicin, in clinical
practice have anticancer, antibiotic, and anti-inflammatory effects, they have irreversible
side effects on the kidney [225]. The current literature suggests that mitochondrial dys-
function adversely alters kidney function and worsens complications that may promote
complex renal diseases [6]. Renal mitochondrial alterations are associated with cellular
damage, oxidative stress, inflammation, and apoptosis [226]. Eventually, the disturbed
renal mitochondrial homeostasis leads to CKD, AKI derived from nephrotoxicity and I/R,
and nephropathy [11]. Overall, the available studies display the need to target mitochon-
drial dysfunctional to restore kidney function and stimulate renal repair or prevent further
damage in renal tissues. Despite the fact that defective mitochondria are linked to kidney
diseases, the pathogenic relationship and our knowledge of the impact of mitochondrial
dysfunction in patients with kidney disease remain uncertain. In animal models of kidney
damage, mitochondria-targeting therapeutics have been shown to preserve mitochondrial
structures and functions [227]. Indeed, dietary antioxidants, such as vitamin C and E,
polyunsaturated fatty acids (PUFA), probiotics, N-Acetylcysteine (NAC), and exercise,
may be suitable therapeutics for mitochondrial oxidative damage [12,148]. Polyphenols
have shown promising potential in specific kidney injuries and diseases in animal and cell
studies [18,228–230]. These mitochondria-targeting antioxidants have been demonstrated
to effectively decrease ROS accumulation, inhibit release of pro-inflammatory cytokines,
and kidney injury, and favor mitochondrial biogenesis and kidney function in various renal
disease models.

Primarily, the structure of polyphenols allows them to act as an antioxidant, as
they are able to donate an electron and scavenge ROS to make them stable [68,133].
Moreover, recent research has revealed that polyphenols may have more specific cell
signaling mechanisms than general antioxidant actions via complex mitochondria func-
tion regulation [231]. Emerging evidence indicates that polyphenols, such as resveratrol,
quercetin, curcumin, EGCG, kaempferol, ellagic acid, hesperetin, and GSPE, restore mi-
tochondrial biogenesis by stimulating PGC-1α, NRF1/2, and TFAM to improve kidney
function [72,134,139,140,198,199]. On the other hand, the down-regulation of apoptotic
proteins and release of cytochrome C by polyphenols, such as catechin, ellagic acid, hes-
peretin, quercetin, and EGCG, represent an anti-apoptotic mechanism and cyto-protective
impacts to prevent kidney injury [90,150,182,208]. Notably, some polyphenols, including
curcumin and caffeic acid, can ameliorate the MPT pore opening, consequently preserv-
ing mitochondrial integrity [126,134]. Another mitochondrial action restricted to catechin
and resveratrol inhibits MMP loss and improves ATP production through mitochondria
protein complexes [130,134]. Further, polyphenols, including caffeic acid, curcumin, resver-
atrol, catechin, EGCG, and GSPE, may directly prevent mitochondrial dysfunction in
renal injuries by enhancing the activities of mitochondrial electron transport chain com-
plexes [170,176,197]. In addition to acting as antioxidants, polyphenols’ action include
direct up-regulation of antioxidant defense systems, such as SOD, CAT, GSH, and GPx,
whereas they decrease MDA and the pro-inflammatory cytokines, such as IL-12 and TNF-
α-modulated NF-κB [96,106,126,137,178,179]. Taken together, polyphenols can regulate the
electron transport chain activity, improve oxygen consumption, maintain the mitochon-
drial membrane, and support ATP generation, probably by scavenging free radicals and
inhibiting protein and lipid oxidation in nephrotoxicity, I/R, and nephropathy.

Although polyphenols are natural compounds and present themselves as therapeutic
possibilities, more detailed studies on the dose of polyphenols for clinical intervention
are recommended. Because most of the studies are based on animals and cells, thus, the
safety and effectivity of polyphenols to restore kidney mitochondria should be examined in
humans. Further, pre-treatment of some polyphenols, such as caffeic acid and kaempferol,
diminished the treatment duration of kidney disease, particularly nephrotoxicity [68,97].
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Therefore, further investigations are required to elucidate the exact effect of pre-treatment
polyphenols as a prevention agent against kidney disease. It is necessary to analyze
whether polyphenols alter mitochondrial dysfunction in kidney disease compared to stan-
dard medicine; hence, they can be used as an alternative treatment compared to chemical
medicine with more minor side effects. Further, it is necessary to observe interactions
between clinically used medicine and polyphenols to address the safety aspects of pharma-
cology. There is also a lack of data to present the impact of fruits, vegetables, cereals, nuts,
and plant consumption on kidney health and its mitochondria function. Further, the pro-
duction of foods rich in polyphenols, food fortification, and polyphenol supplementation
plays a significant role in the pharmaceutical use of this strategy. Accordingly, extensive
studies on the design of new dietary patterns should be carried out.
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