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Abstract Kymographs are graphical representations of spatial position over time, which are

often used in biology to visualise the motion of fluorescent particles, molecules, vesicles, or

organelles moving along a predictable path. Although in kymographs tracks of individual particles

are qualitatively easily distinguished, their automated quantitative analysis is much more

challenging. Kymographs often exhibit low signal-to-noise-ratios (SNRs), and available tools that

automate their analysis usually require manual supervision. Here we developed KymoButler, a Deep

Learning-based software to automatically track dynamic processes in kymographs. We

demonstrate that KymoButler performs as well as expert manual data analysis on kymographs with

complex particle trajectories from a variety of different biological systems. The software was

packaged in a web-based ‘one-click’ application for use by the wider scientific community (http://

kymobutler.deepmirror.ai). Our approach significantly speeds up data analysis, avoids unconscious

bias, and represents another step towards the widespread adaptation of Machine Learning

techniques in biological data analysis.

DOI: https://doi.org/10.7554/eLife.42288.001

Introduction
Many processes in living cells are highly dynamic, and molecules, vesicles, and organelles diffuse or

are transported along complex trajectories. Particle tracking algorithms represent powerful

approaches to track the dynamics of such particles (Jaqaman et al., 2008; Sbalzarini and Koumout-

sakos, 2005; Lee and Park, 2018). However, in many scenarios particles follow a distinct pathway

within cells and move much faster than the confounding cell. For example, molecules transported

along neuronal axons, dendrites, or along cilia typically move along the structure’s long axis and do

not show significant motion perpendicular to that path. Similarly, retrograde actin flow typically

occurs along a single axis within the cell. Hence, when the cell is not moving significantly for the

duration of imaging, one can define, for example manually draw, a so-called ‘stationary path’

(Figure 1A) along which particles move either forwards or backwards. In these cases, kymographs

provide an elegant solution to the visualisation and analysis of particle dynamics.

To generate a kymograph, the intensity profile along the manually drawn stationary path (black

dashed line in Figure 1A) is extracted for each frame of a time-lapse movie, and then these profiles

are stacked into individual rows of an image (Figure 1A). In the resulting space-time image, each

(usually fluorescently) labelled particle is shown as a line, whose slope, for example, represents the

velocity of that particle (Figure 1A).

In many biological processes, multiple particles move along the same stationary path with little to

no deviations, making kymographs a very useful representation of their dynamics. Hence, kymo-

graphs have been widely employed to visualise biological processes across different length scales,

ranging from diffusion and transport of single molecules to whole cell movements

(Twelvetrees et al., 2016; Barry et al., 2015). The analysis of these kymographs only requires trac-

ing lines in 2D images, a rather simple task compared to the more general approach of particle
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tracking, where one has to identify the centre of the particles in each frame, and then correctly

assign these coordinates to corresponding particles across frames.

Publicly available kymograph analysis software simplifies the tedious and time-consuming task of

tracing kymographs, but most of these solutions require manual supervision and/or high signal to

noise ratios (Neumann et al., 2017; Mangeol et al., 2016; Chenouard, 2010; Zala et al., 2013).

These tools perform reasonably well when applied to particles with unidirectional motion and uni-

form velocities as, for example, growing microtubule +ends (Figure 1C, example 2) and F-actin

dynamics in retrograde actin flow (Lazarus et al., 2013; del Castillo et al., 2015;

Alexandrova et al., 2008; Babich et al., 2012).

In many other biological contexts, however, particles can stop moving, change velocity, change

direction, merge, cross each other’s path, or disappear for a few frames. The kymographs obtained

from these processes exhibit ‘bidirectional’ motion (Figure 1C, example 1); this category includes

cellular transport processes, for example molecular or vesicle transport in neuronal axons and den-

drites (Faits et al., 2016; Tanenbaum et al., 2013; Koseki et al., 2017). Thus, the problem of auto-

matically and reliably tracking dynamic processes in kymographs still leaves substantial room for

improvement, and given the limitations of currently available kymograph analysis software, most

kymographs are still analysed by hand, which is slow and prone to unconscious bias.

In recent years, Machine Learning (ML), and particularly Deep Neural Networks, have been very

successfully introduced to data processing in biology and medicine (Mathis, 2018; Weigert, 2017;

Florian, 2017; Guerrero-Pena, 2018; Falk et al., 2019; Bates, 2017). ML-based image analysis has

several advantages over other approaches: it is less susceptible to bias than manual annotation, it

takes a much shorter time to analyse large datasets, and, most importantly, it comes closer to human

performance than conventional algorithms (Mathis, 2018).

Most ML approaches to image analysis utilise Fully Convolutional Deep Neural Networks (FCNs)

that were shown to excel at object detection in images (Dai, 2016; Szegedy, 2014; LeCun et al.,

1989; Falk et al., 2019). Through several rounds of optimisation, FCNs select the best possible

operations by exploiting a multitude of hidden layers. These layers apply image convolutions using

kernels of different shapes and sizes, aiming to best match the output of the neural network to the

provided training data labels, which were previously derived from manual annotation. This means

that the network learns to interpret the images based on the available data, and not on a priori con-

siderations. This approach has become possible due to the dramatic improvements in computation

eLife digest Many molecules and structures within cells have to move about to do their job.

Studying these movements is important to understand many biological processes, including the

development of the brain or the spread of viruses.

Kymographs are images that represent the movement of particles in time and space.

Unfortunately, tracing the lines that represent movement in kymographs of biological particles is

hard to do automatically, so currently this analysis is done by hand. Manually annotating

kymographs is tedious, time-consuming and prone to the researcher’s unconscious bias.

In an effort to simplify the analysis of kymographs, Jakobs et al. have developed KymoButler, a

software tool that can do it automatically. KymoButler uses artificial intelligence to trace the lines in

a kymograph and extract the information about particle movement. It speeds up analysis of

kymographs by between 50 and 250 times, and comparisons show that it is as reliable as manual

analysis. KymoButler is also significantly more effective than any previously existing automatic

kymograph analysis programme. To make KymoButler accessible, Jakobs et al. have also created a

website with a drag-and-drop facility that allows researchers to easily use the tool.

KymoButler has been tested in many areas of biological research, from quantifying the movement

of molecules in neurons to analysing the dynamics of the scaffolds that help cells keep their shape.

This variety of applications showcases KymoButler’s versatility, and its potential applications. Jakobs

et al. are further contributing to the field of machine learning in biology with ‘deepmirror.ai’, an

online hub with the goal of accelerating the adoption of artificial intelligence in biology.

DOI: https://doi.org/10.7554/eLife.42288.002
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times of modern CPUs and the adoption of GPUs that can execute an enormous number of opera-

tions in parallel. Currently, the most successful architecture for biological and medical image analysis

is the U-Net, which takes an input image to generate a binary map that highlights objects of interest

based on the training data (Ronneberger et al., 2015).

Here we present KymoButler, a new stand-alone FCN software based on the U-Net architecture,

to automatically and reliably extract particle tracks from kymographs. The software is packaged into

an easy-to-use web interface (http://kymobutler.deepmirror.ai) and a downloadable software pack-

age, and it was benchmarked against traditional software and manual annotation on synthetic (i.e.,

ground truth) and real (biological) data. We show that KymoButler performs as well as manual anno-

tation on challenging bidirectional kymographs, where particles disappear, reappear, merge, cross

each other’s path, move in any direction, change speed, immobilise, and reverse direction. KymoBu-

tler thus represents a substantial improvement in the automation of kymograph tracing, speeding up

the experimental workflow, while preserving the accuracy of manual annotations.

Results

The KymoButler software package
For our FCN-based kymograph analysis software, we implemented a customised architecture based

on U-Net (Ronneberger et al., 2015). This architecture comprises two segmentation networks

(‘modules’), one specialised on kymographs with exclusively unidirectional particle movements, the

other one on bi-directional kymographs. These segmentation networks were trained to binarize the

image into regions with particle tracks (foreground) and noise (background). They take an input

Figure 1. Kymograph generation and KymoButler. (A) Schematic of kymograph generation from live imaging

data. A cell and four particles are shown at three different timepoints (top row). A temporal projection of this cell

highlights how each particle moves along an individual path. If the cell does not move while the particle moves

along this path, the path is called ‘stationary’. In this case one can draw a line (dashed black) along the path and

extract the intensity of the particle in subsequent frames along this line. If one then stacks the intensity along this

line into subsequent rows of a 2D image, where the horizontal and vertical axes represent space and time, the

particle generates a line whose slope is indicative of the particle’s velocity. When multiple particles move along

the same path, several lines will be visible in the kymograph image. (B) Functionality of KymoButler. A kymograph,

here the motion of mitochondria along neuronal dendrites adapted from Faits et al. (2016), is uploaded via drag

and drop to the cloud interface at http://kymobutler.deepmirror.ai, where the noise-dependent sensitivity can be

manually adjusted. The outputs are: an overlay highlighting all the tracks found in different (random) colours, a. csv

file with the time and space coordinates for each track, and a. csv file containing the summary of the direction and

velocity of each track. (C) KymoButler image outputs from two example kymographs. Left: dynamics of

fluorescently labelled Rab11a in rat cortical axons (adapted from Koseki et al., 2017; bidirectional movement as

Rab11a can move both ways in the axon or become stationary). Right: dynamics of fluorescently labelled

microtubule plus-ends in mouse dorsal root ganglion axons (adapted from Lazarus et al., 2013; unidirectional

movement since microtubule growth is continuous). The top row depicts the raw kymographs as taken from the

published manuscripts. The middle row shows the identified tracks as dilated coloured lines. The bottom row

depicts an overlay of the raw kymograph with the KymoButler prediction. Further examples from published work

are shown in Figure 1—figure supplement 1A.

DOI: https://doi.org/10.7554/eLife.42288.003

The following figure supplements are available for figure 1:

Figure supplement 1. Example kymographs and software workflow.

DOI: https://doi.org/10.7554/eLife.42288.004

Figure supplement 2. The software modules in detail.

DOI: https://doi.org/10.7554/eLife.42288.005

Figure supplement 3. Synthetic training data examples.

DOI: https://doi.org/10.7554/eLife.42288.006

Figure supplement 4. Geometric mean of track recall and precision for different trackness thresholds.

DOI: https://doi.org/10.7554/eLife.42288.007

Figure supplement 5. Geometric mean of track recall and precision for different signal to noise ratios and particle

densities.

DOI: https://doi.org/10.7554/eLife.42288.008
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kymograph to generate 2D maps that assign a ‘trackness’ value between 0 and 1 to each pixel of

the input image, with higher values representing a higher likelihood of pixels being part of a track

(see Materials and methods).

Our training (95%) and validation (5%) data consisted of manually annotated tracks in 487 unidi-

rectional and 79 bidirectional kymographs (unpublished data from our group and other laboratories,

see Materials and methods and Acknowledgements for details). Since no ground truth was available

in the manually annotated kymographs, we also generated 221 synthetic unidirectional and 21 syn-

thetic bidirectional kymographs that were used for training.

The unidirectional segmentation module generates separate trackness maps for tracks with nega-

tive and positive slopes (which could, for example, correspond to tracks of anterograde and retro-

grade transport processes, respectively), to remove line crossings from the output (see Materials

and methods). Since particles have uniform speeds, individual tracks can be extracted via binariza-

tion of the trackness map.

In bidirectional kymographs, tracks show more complex morphologies, since they can change

direction/speed and cross each other multiple times. The bidirectional segmentation module there-

fore generates a single trackness map, which needs to be further processed in order to obtain indi-

vidual particle tracks. In particular, one has to resolve crossings between tracks. We did this by

implementing a decision module which iterates through all crossings to find the most likely final seg-

mentation (see Materials and methods for details).

We found the binarization thresholds for both modules to depend on the biological application

and on the signal to noise ratio of the input image. However, we observed the best performance for

both segmentation modules generally for values between 0.1–0.3 (Figure 1—figure supplement 4).

Finally, our software has to decide whether to analyse a given kymograph with the unidirectional

module or the bidirectional module. Therefore, we implemented a ‘classification module’ that classi-

fies input kymographs into unidirectional or bidirectional ones. We linked the class module to the

unidirectional and bidirectional segmentation modules as well as to the decision module and pack-

aged them into KymoButler, an easy-to-use, drag and drop browser-based app for quick and fully

automated analysis of individual kymographs (http://kymobutler.deepmirror.ai).

The only free parameter in KymoButler is the threshold for trackness map segmentation. The

default threshold is set to 0.2, but users can freely adjust it for their specific application. After the

computation, which takes 1–20 s per kymograph (depending on complexity), KymoButler generates

several files including a dilated overlay image highlighting all the tracks found in different colours, a

CSV file containing all track coordinates, a summary file with post processing data, such as average

velocities and directionality, and preliminary plots of these quantities (Figure 1B). KymoButler

worked well on previously published kymographs from a variety of different biological data

(Figure 1C and Figure 1—figure supplement 1A) and on unpublished data from collaborators (Fig-

ure 2—figure supplement 1B and Figure 3—figure supplement 2).

Performance on unidirectional kymographs
We quantitatively evaluated the performance of KymoButler on unidirectional kymographs, that is

particles that move with mostly uniform velocities and with no change in direction (Figure 1C, Fig-

ure 2, Figure 1—figure supplement 1A). The unidirectional module of KymoButler was compared

to an existing kymograph analysis software, which is based on Fourier filters, and which provided the

best performance among publicly available software in our hands (KymographDirect package;

Mangeol et al., 2016). Additionally, we traced kymographs by hand to obtain a control for the soft-

ware packages.

First, we generated 10 synthetic movies depicting unidirectional particle dynamics with low sig-

nal-to-noise ratio (~1.2, see Materials and methods) and extracted kymographs from those movies

using the KymographClear (Mangeol et al., 2016) Fiji plugin. Each of the kymographs was then ana-

lysed by Fourier-filtering (KymographDirect), KymoButler, and by hand, and the identified trajecto-

ries overlaid with the ground truth (i.e., the known dynamics of the simulated data) (Figure 2A).

KymoButler typically took less than a minute to analyse the 10 kymographs while fourier filtering

took about 10 min since thresholds had to be set individually for each image. Manual annotation by

an expert took about 1.5 hr.

To quantify the quality of the predicted traces, we first determined the best predicted track for

each ground truth track (in case several segments were predicted to cover the same track) and then
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Figure 2. Benchmark of KymoButler against unidirectional synthetic data. (A) An example synthetic kymograph and its corresponding ground truth,

manual control, the prediction by KymoButler, and the prediction by Fourier filtering. The top row depicts individual tracks in different colours and the

bottom row shows the prediction overlay (magenta) with the ground truth (green) for all approaches. Discrepancies are thus highlighted in magenta

(false positive) and green (false negative), while matching ground truth and prediction appears white. (B) Schematic explaining the concept of recall and

precision. The top row depicts the possible deviations of the prediction from the ground truth. The middle and bottom rows show example overlays,

again in green and magenta, from the synthetic data. In the left column, the prediction is larger than the ground truth (magenta is visible) leading to

false positive pixels and low track precision, but a small number of false negatives and thus high track recall. An example prediction overlay of the

Fourier filter approach is shown, which tends to elongate track ends. The right column shows a shorter prediction than the ground truth, leading to

green segments in the overlay. While this prediction has high track precision (low number of false positive pixels), track recall is low due to the large

number of false negatives. Again, a cut-out from the Fourier filter prediction is shown, where multiple gaps are introduced in tracks, thus severely

diminishing track recall (see Material and methods for a detailed explanation of recall and precision). The middle column shows the same two cut outs

analysed by KymoButler. No magenta or green segments are visible, thus leading to high recall and precision. (C) Synthetic kymograph region with four

gaps highlighted (arrow heads): in one or more kymograph image rows the signal was artificially eliminated but kept in the ground truth to simulate

real fluorescence data. While KymoButler efficiently connects tracks over gaps, the Fourier filter is unable to do so and breaks up those tracks into

segments or incorrectly shortens these tracks (red arrow heads). Yellow arrow heads depict correct gap bridging events. (D) A synthetic kymograph with

several line crossings. While KymoButler efficiently resolved all crossings, that is lines that cross other lines are not broken up into two segments, the

Fourier filter correctly identifies the line crossing at the yellow arrow head but erroneously terminates the red and yellow tracks at the red arrow head.

(E) The geometric means of recall and precision (‘track F1 score’) for KymoButler, the Fourier filter approach, and manual control. Each dot represents

the average track F1 score of one synthetic kymograph (p ¼ 4 � 10�5, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler p ¼ 0:6, manual vs

Fourier Filtering p ¼ 3 � 10�3). (F) Quantification of gap bridging performance for KymoButler (89%), manual control (88%), and Fourier filter (72%); lines:

medians of all 10 synthetic kymographs, p ¼ 10
�4, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler p ¼ 0:9, manual vs Fourier

Figure 2 continued on next page
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calculated the fraction of the length of the ground truth track that was correctly identified by that

predicted track (‘track recall’) (Figure 2B). Additionally, we determined the best overlapping ground

truth track for each predicted track and then calculated the fraction of the length of the predicted

track that was overlapping with the ground truth track (‘track precision’). Examples of low/high preci-

sion and low/high recall are shown in Figure 2B. We then calculated the geometric mean of the

average track recall and the average track precision (the ‘track F1 score’, see Materials

and methods) for each kymograph (Figure 2E). The median F1 score of the manual control was 0.90,

KymoButler achieved 0.93, while Fourier filtering achieved a significantly lower F1 score of 0.63

(p ¼ 4 � 10�5, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler p ¼ 0:6, manual vs Fourier

Filtering p ¼ 3 � 10�3).

Our synthetic data intentionally included gaps of exponentially distributed lengths (see Materials

and methods), allowing us to quantify the ability of KymoButler to bridge gaps in kymograph tracks

(Figure 2C, F), which are frequently encountered in kymographs extracted from fluorescence data

(Applegate et al., 2011). Both KymoButler and manual annotation consistently bridged gaps that

belonged to the same trajectory, while Fourier filtering was less accurate (89% of all gaps correctly

bridged by KymoButler, 88% by manual, and 72% by Fourier filter analysis; median of all 10 synthetic

kymographs, p ¼ 10
�4, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler p ¼ 0:9, manual vs

Fourier Filtering p ¼ 2 � 10�3, Figure 2F).

We also quantified the ability of KymoButler to resolve track crossings (Figure 2D). Again, both

KymoButler and manual annotation performed significantly better than Fourier filtering (88% Kymo-

Butler, 86% manual, 60% Fourier filter; median percentage of correctly resolved crossings of all 10

synthetic kymographs, p ¼ 10
�4, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler p ¼ 0:9,

manual vs Fourier Filtering p ¼ 1 � 10�3, Figure 2G).

Remarkably, KymoButler was able to correctly pick up ~80% of all tracks at an SNR as low as 1.1,

where tracks are barely visible by eye (Figure 1—figure supplement 5B,D), and at high particle den-

sities (~70% of the kymograph image covered with signal) (Figure 1—figure supplement 5F,H).

Manual annotation at such extremes performed similarly to KymoButler (Figure 1—figure supple-

ment 5C,D,G,H).

Finally, we compared KymoButler’s overall performance on kymographs containing unidirectional

traces with that of alternative analysis approaches. KymoButler performed similar to or better than

manual annotation of synthetic data when analysing particle velocities, directionality, travel time,

travel distance, and particle numbers, while the Fourier filter frequently deviated by more than 50%

from ground truth averaged values (Figure 2—figure supplement 1A). When testing KymoButler’s

overall performance on real kymographs of our validation data set, we compared deviations from

manual annotation as no ground truth was available. KymoButler deviated by less than 10% from

most manual estimates (but found ~30% more particles), while the Fourier filter approach deviated

by up to 50% from the manually calculated values (Figure 2—figure supplement 1B).

In summary, KymoButler was able to reliably track particle traces in kymographs at low SNR and

high particle densities in both synthetic and real data, and it clearly outperformed currently existing

automated software, while being as consistent as manual expert analysis while being ~100 x faster.

Figure 2 continued

Filtering p ¼ 2 � 10�3. (G) The fraction of correctly identified crossings for KymoButler, manual annotation, and the Fourier filter (88% KymoButler, 86%

manual, 60% Fourier filter; lines: medians of all 10 synthetic kymographs, p ¼ 10
�4, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler p ¼ 0:9,

manual vs Fourier Filtering p ¼ 1 � 10�3). Tracks smaller than 3 pixels and shorter than 3 frames were discarded from the quantification.

DOI: https://doi.org/10.7554/eLife.42288.009

The following source data and figure supplement are available for figure 2:

Source data 1. Table of presented data.

DOI: https://doi.org/10.7554/eLife.42288.011

Source data 2. Synthetic kymographs and movies.

DOI: https://doi.org/10.7554/eLife.42288.012

Figure supplement 1. Data quantities derived from unidirectional kymographs using manual annotation, KymoButler, and Fourier filtering for simulated

and real data.

DOI: https://doi.org/10.7554/eLife.42288.010
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KymoButler’s performance on bidirectional Kymographs
As in many kymographs obtained from biological samples trajectories are not unidirectional, we also

tested the performance of KymoButler on complex bidirectional kymographs, that is of particles

with wildly different sizes, velocities, and fluorescence intensities that frequently change direction,

may become stationary and then resume motion again (see Figure 1B,C, Figure 3A, Figure 1—fig-

ure supplement 1A for examples). Available fully automated software that relied on edge detection

performed very poorly on our synthetic kymographs (Figure 3—figure supplement 1). Therefore,

we implemented a custom-written wavelet coefficient filtering algorithm to compare our FCN-based

approach to a more traditional non-ML approach (Figure 3A, Figure 3—figure supplement 1,

Materials and methods). In short, the wavelet filtering algorithm generates a trackness map, similar

to KymoButler, by applying a stationary wavelet transform to the kymograph to generate so-called

‘coefficient images’ that highlight horizontal or vertical lines. These coefficient images are then over-

laid and binarized with a fixed value (0.3), skeletonised, and fed into the KymoButler algorithm with-

out the decision module, that is crossings are resolved by linear regression prediction.

We generated 10 kymographs from our synthetic movies with the KymographClear package

(average signal-to-noise ratio was 1.4, since any lower signal generally obscured very faint and fast

tracks). Each of the kymographs was then analysed by wavelet coefficient filtering, KymoButler, and

manual annotation, and the predicted traces overlaid with the ground truth (Figure 3A). While the

wavelet approach and KymoButler were able to analyse the 10 kymographs in less than 1 min, man-

ual annotation by an expert took about 1.5 hr. Moreover, whereas the manual annotation and Kymo-

Butler segmentation overlaid well with the ground truth, the wavelet approach yielded numerous

small but important deviations.

Similarly to the unidirectional case, we quantified track precision and recall (Figure 3B, E) and cal-

culated the resolved gap fraction (Figure 3C, F) and crossing fraction (Figure 3D, G). The median of

the track F1 scores per kymograph for manual annotation (0.82) was similar to KymoButler (0.78),

while the wavelet filter approach only gave 0.61 (p ¼ 7 � 10�5, Kruskal-Wallis Test, Tukey post-hoc:

manual vs KymoButler p ¼ 0:3, manual vs wavelet filtering p ¼ 10
�4, Figure 3E). While gaps were

resolved by KymoButler and manual annotation in 86% and 95% of cases, respectively, only 63%

were resolved by the wavelet algorithm (median of all 10 synthetic kymographs, p ¼ 4 � 10�5, Kruskal-

Wallis Test, Tukey post-hoc: manual vs KymoButler p ¼ 0:2, manual vs wavelet filtering p ¼ 10
�5,

Figure 3F). Crossings were rarely resolved correctly by the wavelet algorithm (13%) but much more

reliably by KymoButler (59%) and manual annotation (76%) (median of all 10 synthetic kymographs,

p ¼ 3 � 10�5, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler p ¼ 0:4, manual vs wavelet

filtering p ¼ 4 � 10�3, Figure 3G).

As bidirectional tracks varied in intensity, lower SNRs obscured faint tacks so that performance

dropped slightly faster with decreasing SNR than for unidirectional tracks (Figure 1—figure supple-

ment 5A,D), and it decreased linearly for increasing particle densities (Figure 1—figure supplement

5E,H). Manual annotation at high signal densities and low SNRs again yielded similar results as

KymoButler (Figure 1—figure supplement 5C,D,G,H). The analysis of quantity averages of 10 syn-

thetic kymographs revealed that KymoButler was as accurate as manual annotation, while the wave-

let filter deviated significantly more from the ground truth (Figure 3—figure supplement 2A). We

also tested KymoButler on our validation dataset. Results were similar to the performance on syn-

thetic data (~10% deviation from manual annotation), and the wavelet filter performed significantly

worse than KymoButler (Figure 3—figure supplement 2B).

Overall, these results showed that KymoButler performs well on both unidirectional and bidirec-

tional kymographs, clearly outperforms currently available automated analysis of kymographs, and it

performs as well as manual tracing, while being much faster and not prone to unconscious bias.

Discussion
In this work, we developed software based on Deep Learning techniques to automate the tracking

of dynamic particles along a stationary path in a noisy cellular environment. Convolutional neural net-

works (CNNs) are nowadays widely applied for image recognition. Since tracking is a priori a visual

problem, we built a modular software utilising CNNs for identifying tracks in kymographs. We

deployed our networks as KymoButler, a software package that takes kymographs as inputs and
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Figure 3. Benchmark of KymoButler against complex bidirectional synthetic data. (A) Example synthetic kymograph and its corresponding ground

truth, manual control, the prediction by KymoButler, and the prediction via wavelet coefficient filtering. The top row depicts individual tracks in different

colours and the bottom row shows the prediction overlay (magenta) with the ground truth (green) for all approaches. Discrepancies are highlighted in

magenta (false positive) and green (false negative), while the match of ground truth and prediction appears white. (B) Example recall and precision of

KymoButler and wavelet filtering. While KymoButler shows high recall and high precision, the wavelet filter approach yields significant deviations from

the ground truth (green and magenta pixels). (C) Synthetic kymograph region with three artificial gaps highlighted (arrow heads). While KymoButler

efficiently connects tracks over gaps, the wavelet filter is unable to do so and breaks up those tracks into segments (red arrow heads). The yellow arrow

heads depict correct gap bridging events. (D) A synthetic kymograph with several line crossings. While KymoButler efficiently resolved all crossings,

that is lines that cross other lines are not broken up into segments, the wavelet filter only resolves one crossing correctly (yellow arrow head). (E) The

geometric means of track recall and track precision (track F1 score) for KymoButler, manual control, and the wavelet filter. Each dot represents the

average F1 score of one synthetic kymograph (p ¼ 8 � 10�5, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler p ¼ 0:7, manual vs wavelet

filtering p ¼ 10
�4). (F) Quantification of gap performance for KymoButler, manual annotation, and wavelet filter (p ¼ 3 � 10�4, Kruskal-Wallis Test, Tukey

post-hoc: manual vs KymoButler p ¼ 0:4, manual vs wavelet filtering p ¼ 2 � 10�4). (G) The fraction of resolved crossings for KymoButler, manual control,

and the wavelet filter (p ¼ 3 � 10�5, Kruskal-Wallis Test, Tukey post-hoc: manual vs KymoButler p ¼ 0:4, manual vs wavelet filtering p ¼ 2 � 10�5).

KymoButler identifies tracks in complex kymographs as precisely as manual annotation by an expert.

DOI: https://doi.org/10.7554/eLife.42288.013

The following source data and figure supplements are available for figure 3:

Source data 1. Table of presented data.

DOI: https://doi.org/10.7554/eLife.42288.016

Source data 2. Synthetic kymographs and movies.

Figure 3 continued on next page
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outputs all tracks found in the image in a matter of seconds. The network outperforms standard

image filtering techniques on synthetic data as well as on kymographs from a wide range of biologi-

cal processes, while being as precise as expert manual annotation.

The KymoButler software has only one adjustable detection parameter that is left to the user: a

sensitivity threshold that, if low, allows more ambiguous tracks to be recognised, and if high discards

them. For our synthetic data, the best value for the threshold lay between 0.1 and 0.3 (Figure 1—

figure supplement 4), and we observed a similar range for a variety of kymographs from published

data. However, the threshold depends on the SNR of the input images, so that the correct threshold

has to be chosen based on each biological application and imaging conditions. Furthermore, the

performance of both KymoButler and manual annotation decreased with decreasing SNR and

increasing particle density (number of crossings in the image, Figure 1—figure supplement 4).

Note that the particle density here also depends on the particle’s frequency of change in direction in

dense kymographs as more bidirectional particles tend to cover larger proportions of the kymo-

graph image. Hence, we strongly recommend to visually inspect the output of KymoButler for each

new application, and to compare the output to manual annotation.

Most of the publicly available kymograph analysis software requires manual labelling to extract

quantitative data (Chenouard, 2010; Neumann et al., 2017; Zala et al., 2013). Some automated

approaches have been published in the context of specific biological questions, but since these pro-

grams are currently not publicly available it is not clear how well they would perform on kymographs

from other applications (Mukherjee et al., 2011; Reis et al., 2012). Other approaches do not

extract individual tracks but only macroscopic quantities, as for example velocities (Chan and Odde,

2008). As KymoButler is fully automated and able to reliably analyze kymographs from a wide range

of biological applications, it fills an important gap. Here we showed that KymoButler is able to quan-

tify mitochondria movement in neuronal dendrites, microtubule growth dynamics in axons, and in

vitro dynamics of single cytoplasmic dynein proteins (Figure 1 and Figure 1—figure supplement 1).

The training and validation data for KymoButler comprised kymographs depicting the dynamics of

microtubule +ends, mitochondria movement, molecular motor movements, and vesicle transport in

neuronal processes (example kymographs: Lazarus et al., 2013; Cioni et al., 2019; Hangen et al.,

2018; Gerson-Gurwitz et al., 2011). Hence, KymoButler will perform best on similar data. However,

we predict that it can furthermore be applied to most other kymographs obtained from time-lapse

fluorescence microscopy without the need of any modifications.

KymoButler outperformed Fourier filtering, edge detection, and customised wavelet coefficient

selection on synthetic kymographs. While Fourier filtering ‘only’ performed ~30% worse than Kymo-

Butler on synthetic unidirectional kymographs, edge detection on synthetic bidirectional kymo-

graphs suffered greatly from background fluctuations and low SNR to such an extent that the

extracted data was unusable (see Figure 3—figure supplement 1 for one example). Therefore, we

designed a filtering algorithm based on wavelet coefficient image selection to analyse complex bidi-

rectional kymographs specifically for our synthetic data. KymoButler still performed 20% better than

this approach (Figure 3). The main problem with either filtering approach compared to KymoButler

was their inability to bridge track gaps and resolve line crossings, both of which occur frequently in

biological data (Figures 2C,D and 3C,D). These challenges were met by KymoButler, which per-

formed as well as expert annotation, but within a much shorter time (Figures 2 and 3). Consequently,

KymoButler generated similar measures of averaged quantities (average velocities, displacements,

etc.) as manual annotation (Figure 2—figure supplement 1A and Figure 3—figure supplement

2A).

Synthetic kymographs, however, will reproduce the complexity of real kymographs only to some

degree, as they exhibit homogenous background, no artefacts, no varying particle intensity in time,

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.42288.017

Figure supplement 1. Performance of different skeletisation techniques on a synthetic bidirectional kymograph.

DOI: https://doi.org/10.7554/eLife.42288.014

Figure supplement 2. Synthetic data quantities derived from bidirectional kymographs using manual annotation, KymoButler, and wavelet filtering for

simulated and real data.

DOI: https://doi.org/10.7554/eLife.42288.015
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and individual tracks can appear rather similar. Hence, we also benchmarked KymoButler for both

the unidirectional and bidirectional (real) validation datasets. KymoButler calculated similar average

quantities as obtained from manual annotation, such as average particle velocities and pausing

times, with some minor deviations (Figure 2—figure supplement 1B and Figure 3—figure supple-

ment 2B). However, since values obtained from manual annotation deviated by up to 20% from

ground truth values on synthetic data, deviations from manual annotation should not automatically

be interpreted as an erroneous deviation (Figure 2—figure supplement 1 and Figure 3—figure

supplement 2).

Our results show that KymoButler is able to correctly identify individual full-length tracks in kymo-

graphs with an average track F1 score (geometric mean of track precision and recall) of 92% on uni-

directional tracks and 78% on complex bidirectional tracks (similar to manual annotation), without

suffering from inconsistency, bias, and laborious tracing, that plague manual tracking. While Kymo-

Butler is already performing very well, we aim to significantly improve it over future iterations. Every

time someone uses our webform, s/he has the option to anonymously upload the kymograph to our

cloud. Once a large number of diverse kymographs is uploaded, these kymographs will be anno-

tated by us and added to our training data, improving KymoButler even further.

The ultimate challenge will be to expand our approach to 2D or even 3D tracking problems.

Here, we defined a 1D region of interest in 2D time-lapse movies, extracted 2D (space and time)

images (kymographs), and finally tracked 2D lines in those images. A similar, albeit computationally

heavier, approach could stack the frames of a 2D/3D movie on top of each other to generate a 3D/

4D kymogram (2D space and time, or 3D space and time). Previously generated kymograms have

led to intriguing results on whole-cell particle tracking problems with high SNR (Racine et al., 2007).

The use of higher dimensional FCNs in the future has great potential to yield human-like perfor-

mance on any biological and medical tracking problems.

Materials and methods

Key resources table

Resource Designation. Source. Identifiers. Additional information

Software, algorithm MATLAB MATLAB RRID:SCR_001622 Used for statistical analysis

Software, algorithm Fiji Fiji is Just ImageJ
(https://fiji.sc)

RRID:SCR_002285 Used to generate and
analyse kymographs
with KymographClear/
Direct https://sites.google.
com/site/kymographanalysis/

Software, algorithm Wolfram Mathematica Wolfram Mathematica RRID:SCR_014448 Code available
under https://gitlab.com/
deepmirror/kymobutler (copy archived at
https://github.com/elifesciences-
publications/KymoButler)

All code was written in the wolfram language in Mathematica https://wolfram.com/mathematica

and, if not stated otherwise, can be found online under our GitLab: https://gitlab.com/deepmirror/

kymobutler (copy archived at https://github.com/elifesciences-publications/KymoButler).

The KymoButler software package
The KymoButler software was implemented in Mathematica to take advantage of easy web form

deployment and distribution. The workflow is shown in Figure 1—figure supplement 1B. Our

approach was to first segment kymograph pixels that are part of particle tracks from pixels that

were part of the background with our segmentation modules. From previous work we knew that

kymographs that depict unidirectional movement only, can be filtered into tracks that have positive

slope and those that have negative slope (Chenouard, 2010), while no such assumptions can be

made about bidirectional kymographs. Hence, we decided to take advantage of this simplification of

unidirectional kymograph analysis by training two modules: one that is specialised to segment unidi-

rectional kymographs and another one that segments bidirectional ones. Note that the bidirectional

module is able to analyze any kymograph, including unidirectional ones, but since it is not

Jakobs et al. eLife 2019;8:e42288. DOI: https://doi.org/10.7554/eLife.42288 11 of 19

Tools and resources Cell Biology Physics of Living Systems

https://scicrunch.org/resolver/SCR_001622
https://fiji.sc
https://scicrunch.org/resolver/SCR_002285
https://sites.google.com/site/kymographanalysis/
https://sites.google.com/site/kymographanalysis/
https://scicrunch.org/resolver/SCR_014448
https://gitlab.com/deepmirror/kymobutler
https://gitlab.com/deepmirror/kymobutler
https://github.com/elifesciences-publications/KymoButler
https://github.com/elifesciences-publications/KymoButler
https://wolfram.com/mathematica
https://gitlab.com/deepmirror/kymobutler
https://gitlab.com/deepmirror/kymobutler
https://github.com/elifesciences-publications/KymoButler
https://doi.org/10.7554/eLife.42288


specialised it performs slightly worse than the unidirectional module on unidirectional kymographs.

To further simplify software usability, we prepended a class module that classifies input kymographs

as bidirectional or unidirectional, and then applies the corresponding segmentation module and, if

bidirectional, decision module. Our downloadable software package on GitLab allows the user to

call either segmentation module (unidirectional/bidirectional) directly, if they wish to do so.

When the kymograph is classified as unidirectional by the class module, the unidirectional seg-

mentation module generates two trackness score maps for particles with negative or positive slope

(Figure 1—figure supplement 1B). Since the particles move with roughly the same velocity, the

resulting maps mostly do not exhibit any crossings. Thus, we binarize the maps with a threshold

between 0.1–0.3 (see benchmarking section for more information about the threshold). The resulting

binary maps are then thinned iteratively so that each trace is only one pixel wide at any point and

pruned so that branches that are shorter than three pixels are deleted. Subsequently, each trace is

segmented and selected only if they are at least three frames long and three pixels large (these val-

ues can be varied by the user if needed but were kept constant throughout this manuscript for unidi-

rectional kymographs). In the final step, pixels that lie in the same row of the kymograph are

averaged over so that the final track has only one entry per frame.

For bidirectional kymographs the software generates a trackness map, applies a binarization

threshold (0.1-0.3, see benchmarking for more details), iterative thinning, and pruning (minimum

length 3 pixels). Similar to the unidirectional case, our software allows the selection of tracks with a

minimum number of pixels and/or frames. However, since the resulting skeletonised map had a sub-

stantial number of crossings and could not be easily segmented to yield individual tracks, we imple-

mented a further module in the software. First, all lines in the skeletonised map are shortened so

that each white pixel at a track end only has neighbouring pixels in different rows (time dimension).

This was done so that we could detect track starting points (‘seeds’) with a Hit-Miss transformation

with kernel:
�1 �1 �1

�1 1 �1

0 0 0

0

@

1

A. Application of this kernel yielded a binary map with 0 everywhere

except at track seeds (Figure 1—figure supplement 1B, red dots). These seeds were then used to

start tracing individual tracks in the kymograph by always advancing to the next white pixel. Once

more than one potential future pixel is encountered, the decision module is called. The module gen-

erates three 48x48 crops of (1) the input kymograph, (2) the skeletonised trackness map, and (3) the

skeleton of the current track and predicts a trackness map that has high values on the skeleton seg-

ment of the most likely future track (Figure 1—figure supplement 1B). This map is binarized with

threshold 0.5 and thinned. The precise threshold had little effect on the final output, so we fixed it

at 0.5 for all applications. Users can vary this threshold as well in the source code on GitLab. Next,

the largest connected component in the map is selected as the most likely future path and

appended to the track if longer than 2 pixels. The average trackness value of this component (from

the decision module prediction) is saved as a measure of decision ‘confidence’. This process is

repeated until no further possible pixels are found or no future path is predicted which is when the

track is terminated. Once all seeds are terminated, the software subtracts all the found paths from

the skeletonised trackness map and again looks for new seeds which are then again tracked in the

full skeletonised image. The process is repeated until no further seeds are found, and then all tracks

are averaged over their timepoints (rows in the kymograph image). Subsequently the software dele-

tes tracks that are shorter than 5 pixels or part of another track and assigns overlaps that are longer

than 10 pixels to the track with the highest average decision confidence.

Both the unidirectional and the bidirectional module output a coloured overlay in which each

track is drawn in a different randomly assigned colour and dilated with factor one for better visibility

(see Figure 1B–C and Figure 1—figure supplement 1A). Additionally, the software generates one

CSV file that contains all the track coordinates, a summary CSV file that gives derived quantities,

such as track direction and average speed, and plots depicting these quantities.

The software was deployed from Mathematica as a cloud based interface (http://kymobutler.

deepmirror.ai) and a Mathematica package (https://gitlab.com/deepmirror/kymobutler; copy

archived at https://github.com/elifesciences-publications/KymoButler).
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Network architectures
Our networks were built from convBlocks (a convolutional layer with 3 � 3 kernel size, padding, and

arbitrary number of output channels followed by a batch normalisation layer and a ‘leaky’ ramp (lea-

kyReLU) activation function (leakyReLU xð Þ: ¼ max x; 0ð Þ � 0:1 max �x; 0ð Þ). Batch normalisation is useful

to stabilise the training procedure as it rescales the inputs of the activation function (leakyReLu), so

that they have zero mean and unit variance. The leakyReLu prevents the so-called ‘dead ReLu’s’ by

applying a small gradient to values below 0. These building blocks were previously used for image

recognition tasks in Google’s inception architecture and in the U-Net architecture (Szegedy, 2014;

Falk et al., 2019).

The module architectures we settled on are shown in Figure 1—figure supplements 1–2. All

modules used the same core building blocks while having different input and output ports. The clas-

sification module takes a resized kymograph of size 64 � 64 pixels and generates two output values

that correspond to the class probabilities for unidirectional/bidirectional kymographs (Figure 1—fig-

ure supplement 2A). The unidirectional segmentation module takes one input kymograph and gen-

erates two output images that correspond to the trackness scores of particles with positive or

negative slopes (Figure 1—figure supplement 2B). The bidirectional segmentation module takes

one input kymograph and generates one trackness score map highlighting any found particle tracks

(Figure 1—figure supplement 2C). Finally, the decision module takes three inputs of size 48 � 48

pixels to generate one trackness map (Figure 1—figure supplement 2D). All modules share the

same core network that is essentially a U-Net with padded convolutions and with 64 (in the top level)

to 1024 (in the lowest level) feature maps. We experimented with more complex architectures (paral-

lel convolution modules instead of blocks, different number of feature maps) but could only observe

minor increase in accuracy at a large expense in computation time. Due to the U-Net architecture,

each dimension of the inputs to the segmentation modules needs to be a multiple of 16. Thus,

inputs were resized when they did not match the dimension requirements, and then the binarized

output images from the segmentation modules were resized to the original input image size before

proceeding further.

Network training
To train the networks we quantified the difference between their output o and the desired target

output t through a cross entropy loss layer (CEloss t; oð Þ ¼ � t � ln oð Þ þ 1� tð Þ � ln 1� oð Þð ). The loss was

averaged over all output entries (pixels and classes) of each network. While we tried other loss func-

tions, specifically weighted cross entropy loss and neighbour dependent loss as described in

Bates (2017), we persistently obtained higher track precision and track recall with the basic cross

entropy loss above.

Our training data comprised a mixture of synthetic data and manually annotated unpublished

kymographs, kindly provided by the research groups mentioned in the acknowledgements. Most of

the manual annotation was done by M. A. H. J. and A. D. In total, we used 487 (+200 synthetic) uni-

directional, and 79 (+21 synthetic) bidirectional kymographs, with 95% of the data used for network

training, and ~5% of retained for network validation. All network training was performed on a work-

station, using a nVidia 1080 Ti or a nVidia 1070 GPU.

The class module depicted in Figure 1—figure supplement 2A was trained with batches of size

50 (with 25 unidirectional and 25 bidirectional kymographs to counter class imbalance) with random

image transformations that included image reflections, rotations, resizing, colour negation, gaussian

noise, random noise, and random background gradients. The final input image was randomly

cropped to 64 � 64 pixels (see examples Figure 1—figure supplement 3A) and the class module

was trained using stochastic gradient descent (ADAM optimiser, Kingma, 2017, initial learning rate

0.001), until the validation set error rate was consistently 0%.

The unidirectional segmentation module (Figure 1—figure supplement 2B) was trained with

batches comprising 20 randomly selected kymographs from our training set (example in Figure 1—

figure supplement 3B). We applied the following image transformations: Random reflections along

either axis, random 180-degree rotations, random cropping to 128 � 80 pixels (approximately the

size of our smallest kymograph), random gaussian and uniform noise, and random background gra-

dients. Note that we did not apply any resizing to the raw kymograph since that generally decreased

net performance. Additionally, we added Dropout Layers (10–20%) along the contracting path of
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our custom U-Net to improve regularisation. Each kymograph in this training set was generated by

hand with KymographTracker (Chenouard, 2010), but to increase dataset variability we took the line

profiles from KymographTracker and generated kymographs with a custom Mathematica script that

applied wavelet filtering to the plotted profiles. The resulting kymographs have a slightly different

appearance than the ones created with KymographTracker and are thus useful to regularise our

training process. Several modules were trained until convergence and the best performing one

(according to the validation score) was selected (ADAM optimiser, initial learning rate of 0.001,

learning rate schedule = If batch<4000; 1 ; :5½ �).

The bidirectional segmentation module (Figure 1—figure supplement 2C, example data Fig-

ure 1—figure supplement 3C) was trained in the same way as the unidirectional segmentation mod-

ule, with the exception of a slightly different learning rate schedule (If batch<3000; 1; :5½ �).

Additionally, since we did not have access to many of the original movies from which the kymo-

graphs were generated, we could not generate kymographs with different algorithms as done for

the unidirectional module.

Training data for the decision module (Figure 1—figure supplement 2D) was obtained from the

bidirectional (synthetic +real) kymographs by first finding all the branch points in a given ground

truth or manually annotated image. Then, each track was separated into multiple segments, that go

from its start point to a branching point or its end point. For each branchpoint encountered while

following a track, all segments that ended within 3 pixels of the branchpoint were selected. Then, (1)

a 48 � 48 pixel crop of the raw kymograph around the branchpoint, (2) a binary map representing

the track segment upstream of the branching point (centred with its end in pixel coordinates 25,25,

with image padding applied if the end was close to an image corner), and (3) the corresponding 48

� 48 pixel region in the binary image representing all possible paths were used as inputs to the deci-

sion module. The binary image representing the ground truth or annotated future segment down-

stream of the branchpoint was used as the target image (see Figure 1—figure supplement 3D for

an example training set). Thus, the training set comprised three input images and one output image

which we used to train the decision module. To increase the module’s focus on the non-binary raw

kymograph crop, we applied 50% dropout to the full skeletonised input and 5% dropout to the input

segment. As explained above, we used random image augmentation steps like reflections, rotations,

gaussian +uniform noise. Additionally, we employed random morphological thinning to the binary

input/output images to simulate artefacts. Several networks were trained until convergence (pixel

wise cross entropy loss, ADAM optimiser, initial learning rate 0.001, batch size 50, learning rate

schedule If ½batch<8000; 1; :5�), and the best performing one was selected.

Synthetic data
Synthetic data was generated by simulating individual particles on a stationary path of length 300

pixels for 300 frames to generate 300 � 300 pixel kymographs. To obtain unidirectional particles we

seeded 30 + 30 particles with negative or positive slope at random timepoints/positions. Next, a

random velocity between 1–3 pixels/frame was chosen for all particles in the movie, with a random

noise factor to allow slight changes in velocity, and a particle PSF between 3–6 pixels. Each particle

was assigned a survival time drawn from an exponential distribution with scale 0.01, after which it

would disappear. Gaps of random length (exponentially distributed) were subsequently assigned to

each track individually. From these tracks we then generated a kymograph with gaussian noise, used

for neural network training, and a 20 � 300 pixel movie with 300 frames for benchmarking. The

resulting kymographs and movies had an average signal-to-noise ratio of 1.2 (calculated as the aver-

age intensity of the signal, divided by the average intensity of the background). Finally, we removed

tracks that overlapped for the whole duration of their lifetime.

To obtain synthetic data of complex bidirectional particle movements, we generated datasets

with either 15 tracks (for benchmarking) or 30 tracks (for training) per movie. The maximum velocity

was set to three pixels/frame, as above this velocity it became hard to manually segment tracks from

kymographs. Each movie was assigned a random velocity noise factor between 0 and 1.5 pixels/

frame, a random switching probability between 0 and 0.1 (to switch between stationary and directed

movement) and a random velocity flipping factor between 0 and 0.1 (to flip the direction of the

velocity). Individual particles were simulated by first calculating their lifetime from an exponential dis-

tribution with scale 0.001. Then, a random initial state, moving or stationary, was selected as well as

a random initial velocity and a particle size between 1–6 pixel. In the simulation, particles could
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randomly switch between different modes of movement (stationary/directed), flip velocities and

were constantly subjected random velocity noise (movie specific). Finally, tracks that were occulted

by other tracks were removed, and a movie (used for benchmarking) and a kymograph (used for

training) were generated. The resulting kymographs and movies had an average signal-to-noise ratio

of 1.4.

Benchmarking
In order to benchmark the performance of software and manual predictions, we implemented a cus-

tom track F1 score which was calculated as the geometric mean of track recall and track precision.

To calculate track recall, each ground truth track was first compared to its corresponding predicted

track, and the fractional overlap between them was calculated. Since predicted tracks do not neces-

sarily follow the exact same route through a kymograph, but frequently show small deviations from

the ground truth (see Figure 3 and Figure 3—figure supplement 1) we allowed for a 3.2-pixel devi-

ation from the ground truth (two diagonal pixels). The maximum fractional overlap was then selected

and stored as the track recall. The recall was thus one when the full length of a ground truth track

was predicted, and 0 if the track was not found in the prediction. We would like to highlight that this

criterion is very strict: if a ground truth track is predicted to be two tracks (for example, by failing to

bridge a gap along the track), the recall fraction would decrease by up to 50%, even if most of the

pixels are segmented correctly and belong to predicted tracks.

Track precision was calculated by finding the largest ground truth track that corresponded, that is

had the largest overlap, to each prediction, and then calculating the fraction of the predicted track

that overlapped to the ground truth track. Therefore, a track precision of 1 corresponded to a pre-

dicted track that was fully part of a ground truth track while a precision of 0 meant that the pre-

dicted track was not found in the ground truth. In general, increasing precision leads to a lower

recall and vice versa, so that taking the track F1 score as the geometric mean between the two is a

good measure of overall prediction performance.

To quantify gap performance, we searched for track segments within 3 pixels of the gap for each

frame, to allow for predictions that deviated slightly from the ground truth. Once each frame of the

gap was assigned to a corresponding predicted segment, the gap was deemed resolved. If one or

more frames of the gap had no overlapping segment to the prediction, the gap was labelled unre-

solved. Our synthetic tracks had 954 gaps in the 10 kymographs of unidirectional data, and 840

gaps in the 10 kymographs of bidirectional data, and the largest gap size was six pixels. For each

kymograph, we then calculated the fraction of gaps resolved.

To quantify KymoButler performance on crossings, we first generated binary images for each

ground truth track and calculated overlaps with other ground truth tracks by multiplying those

images with each other. The resulting images had white dots wherever two tracks crossed. Those

dots were then dilated by a factor of 16 to generate circles and overlaid with the original single-track

binary image to generate binary maps that contain segments of ground truth tracks that cross/

merge with other tracks. Next, we generated dilated (factor 1) binary maps for each predicted track

and multiplied them with each of those cross segments to obtain the largest overlapping track for

each segment. We then visually inspected a few examples and determined that an overlap of 70%

corresponds to a correctly resolved crossing and allowed for slight variations in predicted tracks

when compared to ground truth. Finally, we calculated the fraction of crossings resolved per

kymograph.

Derived quantities were calculated as follows. For average velocities, we first calculated the abso-

lute frame to frame displacement and from there the average frame to frame velocity per track and

the average frame to frame velocity per kymograph. The absolute displacement was calculated as a

sum of all absolute frame to frame displacements and then averaged to yield a measure per kymo-

graph. The travel time was calculated as the absolute time a particle was visible in a given kymo-

graph and averaged for each kymograph. Directionality per particle was calculated as the sign of the

end to end displacement for unidirectional kymographs. For bidirectional kymographs, we first cal-

culated the directionality of up to five frame long segments, which was +1 when all displacements in

that segment were positive, �1 when all displacements were negative, and 0 otherwise. The sign of

the sum of all segment directionalities was taken as a measure for the bidirectional track directional-

ity. The pause time for each bidirectional particle was calculated as the number of segments with 0

displacement and averaged per kymograph. Finally, the percentage of reversing tracks was
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calculated by dividing the number of tracks that exhibit segments in both directions by all tracks. In

Figure 2—figure supplement 1 and Figure 3—figure supplement 2, we only show relative devia-

tions from the manual annotation because we cannot disclose any data from the real, unpublished

kymographs obtained from collaborators.

All statistical analysis was carried out in MATLAB using either a Wilcoxon rank-sum test or a Krus-

kal Wallis test (http://mathworks.com).

Module performance evaluation
To benchmark the unidirectional segmentation module of KymoButler, we generated 10 synthetic

movies of the dynamics of particles that move with uniform speed and do not change direction as

described in the section about synthetic data generation. We then imported these movies into

ImageJ (http://imagej.nih.gov) via the Kymograph Clear package (Mangeol et al., 2016), drew a

profile by hand and generated kymographs from them. These kymographs were then imported into

the KymographDirect software package (also Mangeol et al., 2016), Fourier filtered and thresh-

olded to extract individual particle tracks. This approach required manual selection of the threshold

for each individual kymograph. We additionally traced the same kymographs by hand in ImageJ to

compare software performance to expert analysis. To find a suitable range of binarization thresholds

for our unidirectional segmentation module we calculated the track wise F1 score on the 10 kymo-

graphs for thresholds between 0.05 and 0.5 (Figure 1—figure supplement 4). We observed the

highest scores between 0.1 and 0.3 for both our synthetic data and other unpublished kymographs

and also deemed these thresholds best by visual inspection of predicted kymograph tracks. Hence,

we chose 0.2 as the segmentation map threshold to benchmark our predictions at.

In order to benchmark the bidirectional segmentation module and the decision module we gener-

ated 10 synthetic movies of the dynamics of complex bidirectional particles. These movies were

imported into ImageJ with the KymographClear package and kymographs extracted. We subse-

quently tried to use the edge detection option in KymographDirect to extract individual tracks but

were unable to obtain meaningful tracks (Figure 3—figure supplement 1). We also tried other

options in the package but could not get good results on our synthetic data without substantial

manual labour for each kymograph, defeating the goal of a fully automated analysis. Therefore, we

wrote a custom script to carry out automated bidirectional kymograph analysis. We experimented

with a few different approaches (for example fourier-filtering and customised edge detection) and

settled on wavelet coefficient filtering as it gave the highest F1 score on our test dataset. This algo-

rithm applied a stationary wavelet transformation with Haar Wavelets (Mathematica wavelet pack-

age) to each kymograph to decompose the image into different coefficient images that highlight

different details (for example vertical or horizontal lines). We then selected only those coefficient

images that recapitulated particle traces in our synthetic kymographs. These images are overlaid

and thresholded with an optimised threshold to generate binary maps that can be iteratively thinned

to obtain a skeletonized ‘trackness’ map similar to the outputs of our segmentation modules. This

map was then traced with the same algorithm as in our decision module. However, while the Kymo-

Butler decision module used a neural network to predict path crossings, the wavelet filtering algo-

rithm performed simple linear prediction by taking the dilated (factor 1) binary segment of a track

and rotating it by 180 degrees. Then the ‘prediction’ was multiplied with the skeletonized trackness

map and the largest connected component selected as the future path. In contrast to the original

decision module, this approach does not yield any information about decision ‘confidence’. Thus, to

resolve track overlaps at the end of the algorithm, we randomly assigned each overlap to one track

and deleted them from the others. Note that the wavelet approach was heavily optimised on our

synthetic kymographs and performed poorly on generic real kymographs. We also traced the same

10 kymographs by hand in ImageJ. To find a suitable range of binarization thresholds for our bidirec-

tional segmentation module we calculated the track wise F1 score for thresholds between 0.05 and

0.5 (Figure 1—figure supplement 4) and observed the same optimal range as the unidirectional

segmentation module (0.1–0.3) for both our synthetic data and other unpublished kymographs.

Hence, we chose 0.2 as the threshold score to benchmark our predictions.
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