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Abstract: Sphingolipids (SLs) are structural components of the lipid bilayer regulating cell func-
tions. In biological fluids, their distribution is sex-specific and is at variance in aging and many
disorders. The aim of this study is to identify SL species associated with the decelerated aging of
centenarians. SLs, extracted from serum of adults (Ad, 35–37 years old), aged (Ag, 75–77 years old)
and centenarian (C, 105–107 years old) women were analyzed by LC-MS/MS in combination with
mRNA levels in peripheral blood mononuclear cells (PBMCs) of SL biosynthetic enzymes. Results
indicated in Ag and C vs. Ad a comparable ceramides (Cers) increase, whereas dihydroceramide
(dhCer) decreased in C vs. Ad. Hexosylceramides (HexCer) species, specifically HexCer 16:0,
22:0 and 24:1 acyl chains, increased in C vs. Ag representing a specific trait of C. Sphingosine
(Sph), dihydrosphingosine (dhSph), sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-
phosphate (dhS1P), increased both in Ag and C vs. Ad, with higher levels in Ag, indicating a
SL fine-tuning associated with a reduced physiological decline in C. mRNA levels of enzymes
involved in ceramide de novo biosynthesis increased in Ag whereas enzymes involved in sphin-
gomyelin (SM) degradation increased in C. Collectively, results suggest that Ag produce Cers by
de novo synthesis whereas C activate a protective mechanism degrading SMs to Cers converting it
into glycosphingolipids.

Keywords: sphingolipids; mass spectrometry; nitric oxide; ROS; longevity; aging; centenarians

1. Introduction

The serum sphingolipidome is characterized by hundreds of lipid species with dif-
ferent origins and molecular properties. As they are structural components of the lipid
bilayer, sphingolipids are bioactive molecules involved in signal transduction regulating
apoptosis, autophagy, differentiation, senescence, and inflammatory responses [1–3]. Ce-
ramide is the central hub, acting as a second messenger in cellular signaling pathways with
beneficial or detrimental effects for cell survival [4–6]. In biological fluids, abundance of
SLs is sex-specific and characterizes dementia, cardiovascular diseases (CVD), diabetes
(T2DM), obesity, susceptibility to viral infections and osteoporosis [7–12]. In physiology, the
comparative assessment of SL levels made it possible to reveal changes in aging, identifying
molecules potentially able to predict a better trajectory of aging or evolution toward CVD,
T2DM [13,14] or disabilities as osteoarthritis [15].
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In the last two decades centenarians increased significantly, particularly women
that are up to 83.5% of the total centenarians’ population in Europe [16]. Their mor-
bidity is restricted in a short time frame compared to aged subjects [17], representing
an exceptional model for the study of longevity. However, the reason centenarians
remain functionally independent and in good health for nearly 96% of their life [18] is
not entirely understood. It is known that inflammaging in long-lived people is lower
compared to aged subjects enabling them to counteract the physiological decline facilitat-
ing their recovery from stressor events [19–21]. Lipidomic profiles have been addressed
in many studies to identify species responsible for the decelerated aging of centenari-
ans. However, results were at variance [22–24], due to enrollment of different cohorts
and to preanalytical and analytical approaches that influence the quali/quantitative
assessment of SLs in biological fluids. From literature, a consensus regarding the sphin-
golipidome signature of successful aging is missing, and authors tend to agree that sex
differences profoundly impact circulating SLs, making gender a confounding factor that
can influence results [10,25,26].

Molecular investigations at the genetic, epigenetic, metabolomic and immunologic
levels addressed the role of reactive oxygen species (ROS) to unravel putative molecular
characteristics of centenarians’ advantage [27–29]. In this context, centenarians appeared to
be less susceptible to ROS accumulation compared to aged subjects [30,31].

Recently, we demonstrated that levels of thioredoxin reductase 1 (TRXR1), control-
ling oxide and peroxide production, were comparable in centenarians and 70-year-old
women [32]. At variance, levels of mitochondrial protein nitrosylation and alcohol
dehydrogenase 5 (ADH5/GSNOR), controlling nitrosative stress and senescence, were
comparable in centenarians and young subjects [32], suggesting that ADH5/GSNOR
could be directly involved in successful aging [33–35]. However, the relationship be-
tween stress response and lipid profile associated with a long life is still not addressed.
Ceramide-activated phosphatases have been shown to act on vascular endothelial growth
factor signaling, hindering the activation of endothelial nitric oxide synthase [36]. This
suggests a possible role of some SL bioactive species in the protection from nitrosative
stress.

This study aims to characterize the serum sphingolipid profile in aged compared to
long-lived subjects and discuss the possible relationship between SLs and nitrosative
stress. Knowing the sex specificity of SL distribution in blood [37], we analyzed SLs
in serum from the same groups of women investigated at the protein level in a previ-
ous study (adults, aged and centenarians) [32] by untargeted and targeted LC-MS/MS.
mRNA levels of a set of enzymes involved in the SL biosynthetic pathway were assessed
in circulating peripheral blood mononuclear cells (PBMCs) to identify preferential path-
ways involved in successful aging, achieving better insight into the molecular longevity
signature.

2. Results
2.1. Participants

The investigated subjects were all normal weight women grouped as adult (Ad,
35–37 years old), aged (Ag, 75–77 years old) and centenarians (C, 105–107 years old)
enrolled in our previous study [32]. Concerning medications, 12 Ag subjects (80%) and
11 C subjects (73.3%) had hypertension and were under antihypertensive treatment.
Among those, 7 Ag (46.6%) and 7 C subjects (46.6%) were also under cardio-protector
treatment. Anthropometric characteristics and medications of the three groups are
shown in Table 1, while specific characteristics of single participants are reported in
Supplementary Table S1.
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Table 1. Anthropometric characteristics and pharmacological treatments of study participants. Data
are described by median and interquartile range (if continuous) or counts (if categorical).

Adult Aged Centenarians

N. 15 15 15
Age 37 (35.5–37.5) 78 (77.5–80) 105 (105–106.5)

Gender F F F
Body mass index (BMI) 21.4 (19.3–22.1) 21.7 (20.2–22.9) 21.17 (20.2–23.8)

Hypertension 0/15 12/15 11/15
Anti-hypertensives 0/15 12/15 11/15
Cardioprotectors 0/15 7/15 7/15

2.2. Glyco/Sphingolipid LC-MS/MS Analysis

The LC-MS/MS analysis was conducted on sphingolipid extracted from 15 Ad, 15
Ag and 15 C serum samples in triplicate, following mild alkaline hydrolysis method to
eliminate phospholipids and reduce the dynamic range [38]. The analysis identified a total
of 39 sphingolipid species. Results from ceramide levels are shown in Figure 1A. Cer 16:0
increased in both Ag and C compared to Ad (p-value < 0.01 and <0.001 respectively). The
same trend was observed for Cer 24:1 (p-values < 0.01 in C vs. Ad and <0.05 in Ag vs. Ad)
and for Cer 24:2 (p-values < 0.01, for both C vs. Ad and Ag vs. Ad). Moreover, Cer 20:0
showed the same trend but was statistically significant in Ad vs. Ag (p-value < 0.01), only.
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Conversely, dhCer (d18:0/24:0) was the only species that reached a statistically signifi-
cant variation, with a decreasing trend in C vs. Ad (p-value < 0.05) (Figure 1B).

Regarding SMs (Figure 2A), four species showed statistically significant variation
among groups. SM d18:1/16:1, SM d18:1/18:0 and its unsaturated counterpart, SM
d18:1/18:1, increased in Ag compared to Ad (p-value < 0.05, 0.01 and 0.01 respectively). In
C vs. Ag, SM d18:1/18:1 decreased (p-value < 0.05), whereas SM 16:1 increased in C vs. Ad
(p-value < 0.05). Regarding SMs long chains, SM d18:1/24:0 showed a decreasing trend in
aging, becoming significant in C vs. Ad (p-value < 0.01), only.
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Figure 2B shows that both dhSMs acyl chains d18:0/20:0 and d18:0/22:0 decreased
with a similar trend in C vs. Ad (p-value < 0.05 and p-value < 0.01, respectively).

Regarding glycosphingolipids, HexCers, dihexosylceramides (dihexCers) and monosialo-
ganglioside GM3 (GM3) variations were observed among groups. Specifically, total levels
of HexCers (Figure 3) and several acyl chains had a peculiar trend. Total HexCers and
HexCer’s acyl chains d18:1/16:0, d18:1/22:0 and d18:1/24:1 increased in C compared to
Ag (p-value < 0.01, p-value < 0.05, p-value < 0.05 and p-value < 0.001, respectively). HexCer
24:1 also increased in C compared to Ad (p-value < 0.01), while HexCer 22:0 and HexCer
acyl chain 24:0 decreased in Ag compared to Ad (p-value < 0.05 and 0.01 respectively).
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DiHexCer results are shown in Figure 4. A lower variation compared to other
glyco/sphingolipid classes was observed, with decreased levels of diHexCer 18:1/24:0,
in Ag vs. Ad (p-value < 0.05). A different trend characterized GM3 acyl chain d18:1/24:1,
which increased in C vs. Ad (p-value < 0.05) only (Figure 4).
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Sph, DhSph, S1P and dhS1P levels increased in Ag and C compared to Ad (p < 0.001)
even though lower levels were observed for S1P in C compared to Ag (p-value < 0.001)
(Figure 5).
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2.3. Glyco/Sphingolipid Biosynthetic Pathway in PBMCs

To assess in Ag and C changes of enzymes controlling the glyco/sphingolipid biosyn-
thetic pathway, mRNA expression was quantitatively assessed in peripheral blood mononu-
clear cells.
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Significant changes in Ag vs. C were observed for: SPTLC1, SPTLC2, DEGS1, SMPD3
and UGCG, and box-plot results are shown in Figure 6.
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Regarding the initial step of de novo sphingolipid synthesis, SPTLC1 mRNA levels
decreased in C (p-value < 0.001) compared to Ag, whereas SPTLC 2 increased in C vs. Ag
(p-value < 0.001) (Figure 6A).

mRNA levels of DEGS1, the limiting enzyme controlling the conversion of dhCer to
Cer, decreased in C compared to Ag (p-value < 0.001) (Figure 6B). Conversely, neutral sph-
ingomyelinase II (SMPD3) mRNA levels increased in C vs. Ag (p-value < 0.01) (Figure 6C),
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whereas other enzymes involved in SMs degradation, neutral SMase III (SMPD4) and the
acidic SMase (SMPD1), were unchanged between C and Ag (Supplementary Figure S1).

Concerning glucosyl transferase (UGCG), mRNA levels decreased in C compared to
Ag (p-value < 0.05) (Figure 6D).

2.4. Immunoblotting of UGCG

To shed light on the apparent discrepancy between UGCG mRNA levels in PBMCs and
HexCer levels in serum, UGCG was assessed at protein level in both PBMCs and serum by
immunoblotting. Results indicated increased levels of UGGC in both C and Ag compared
to Ad (Figure 7 and Supplementary Figure S2). In serum UGGC was undetectable as shown
in Supplementary Figure S3.
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3. Discussion

Aging is a condition involving the entire organism in which cells undergo a physiolog-
ical decline irrespectively to their origin. Circulating sphingolipids belong to membranes of
extracellular vesicles, including exosomes and large plasma membrane-derived microvesi-
cles [39] also released from PBMCs in the bloodstream. We hypothesized that the serum
sphingolipidome, mirroring the whole organism status, will provide a signature of the
physiological decline and of better aging.

Hypertension and pharmacological treatments (anti-hypertensives and cardio-protective
drugs) characterize Ag and C compared to Ad. It is well known that sphingolipids, as well
as many other lipid classes, are influenced by treatments [40,41] and atherosclerosis [42,43].
However, hypertension is a common condition in people >60 years old. According to
the National Health and Nutrition Examination Survey in 2020, more than 74% of the
older population had hypertension [44] and required blood pressure reduction and cardio-
protector treatment to decrease the risk of CVD and death [45–49]. Regarding hypertension
prevalence and CVD risk management in our cohort 80% of Ag subjects and 73.3% of C
subjects were under treatment, according to the prevalence of these disorders in the general
older population, thus they represented a realistic sample group.

Results indicated that increase of Cers was comparable in Ag and C vs. Ad subjects.
Cers levels, specifically Cer C16, C24:1 and C24:2, increased both in Ag and C compared to
Ad, whereas dhCer decreased in C compared to Ad. It should be of note that the increment
of Cers in C is not proportional in Ag compared to Ad. It is noteworthy that C are 30 years
older than Ag and a further Cers increase will be expected. In this context, dhCer decrease
could be associated with the capacity of C to maintain Cer’s homeostasis [50]. Furthermore,
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glucosylceramide species, specifically HexCer 16:0, HexCer 22:0 and HexCer 24:1 chains,
increased in C compared to Ag and specifically characterized C vs. both Ag and Ad. A
recent paper highlighted the relevance of HexCer as a protective molecule to maintain
cellular integrity in colon epithelial cells in response to stressors [51], and HexCers increase
was described in cerebrospinal fluid (CSF) from idiopathic normal pressure hydrocephalus
patients, compared to Alzheimer’s diseases subjects [9]. It is tempting to speculate that this
increase could be a beneficial aspect at large, protecting C from stressor events.

Aged women were also characterized by higher level of SM acyl chain 18:1/18:1
compared to C. Sph, dhSph, S1P and dhS1P, increased both in Ag and C vs. Ad, with higher
levels in Ag. These results suggest a fine-tuning of sphingolipid levels in C that could
be associated with their ability to maintain a proper balance between stressor events and
protective mechanisms. An extensive study of the lipidomic profile in men and women in
aging [37] indicated a strong association with the increase of ceramide and deoxy-ceramide
species, particularly in women. The authors suggested an atypical de novo synthesis of
ceramide, which involves alanine instead of L-serine as a precursor amino acid in the first
step of palmitoyl-CoA conjugation. In agreement with our results, the study described
a modest positive association between aging and levels of HexCers, GM3s and SMs in
women.

Preliminary results from MRM of Cers and HexCers in PBMCs’ extracts, (Supplemen-
tary Figure S4) showed similar results of Cers and HexCers species in PBMCs and serum
of Ad, Ag and C supporting the study of the enzymatic pathway regulating sphingolipid
synthesis and degradation by means of mRNA transcripts.

The origin of peculiar differences and similarities in sphingolipids abundance in Ag
and C in serum, was addressed by analyzing in PBMC mRNA levels of enzymes involved
in the sphingolipid metabolic/catabolic pathway. Aged subjects were characterized by
increased levels of SPTLC1 and DEGS1, both enzymes promote de novo Cer synthesis and
ceramide accumulation, confirming serum results. Ceramide is responsible for insulin
resistance and steatosis [52], therefore it is tempting to speculate that accumulation of
ceramide in elderly unbalances their sphingolipid profile towards a less favorable picture.
Centenarians, on the other hand, were characterized by increased levels of SPTLC2, also
involved in ceramide de novo biosynthesis. It has been demonstrated that the adenoviral
expression of Sptlc2 increases ceramide levels in vitro, activating the stress-activated c-Jun
N-terminal kinase (JNK) inhibiting insulin signal. However, the same paper indicated
that SPTLC2 increased insulin sensitivity in vivo [53], suggesting that a subtle protective
mechanism could be activated in C to maintain glucose homeostasis through the activation
of SPTLC2. Further investigations are ongoing to clarify this issue.

Furthermore, enzymes responsible for SMs degradation characterize C. Neutral sphin-
gomyelinase II (SMPD3) increased in C compared to Ag, suggesting that Cer levels are not
mainly produced by de novo synthesis but result from the conversion of SM to Cer. This
hypothesis is supported by a decreased trend of SMs levels in C compared to Ag and by
lower levels of SM d18:1/18:1. Conversely, mRNA levels of neutral sphingomyelinase 3
(SMPD4) and aSMase (SMPD1) were unchanged in Ag vs. C (Supplementary Figure S1).
However, increased levels of aSMase in aged subjects compared to Ad were observed in
a previous study from our group [54], supporting the hypothesis that aSMase increased
in aging and was not further increased in C. From these results, it can be postulated that
increased levels of SMPD3 are specific of C.

UCGC mRNA levels decrease in C compared to Ag, in contrast with increased levels of
HexCer in C. To clarify our findings, immunoblotting of UGCG in PBMC extracts from Ad,
Ag and C were performed. Results indicated an increase of UGCG in Ag and C compared
to Ad. Comparable protein levels were observed in Ag and C, although a slight decrease in
Ag was seen. High protein levels of UGCG in C suggest that HexCer levels could exert a
feedback inhibition on UCGC transcription. Additionally in this case, further studies at the
cellular level are in progress to clarify this issue.
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By analyzing results from this study, we can postulate that Ag actively produce Cers
by de novo pathway according to SPTLC1 and DEGS1 increase. In contrast, C degrade SM
to Cers, which in turn can be transported from the endoplasmic reticulum (ER) to the Golgi,
converted into glycosphingolipids (HexCer) by UGCG and subsequently metabolized to
highly complex glycosphingolipids such as gangliosides [55].

Another aspect that we would like to discuss is the relation of SL composition and
nitrosative/oxidative dysregulation detected in sera of the same subjects (aged and cen-
tenarian women) in our previous study [32]. Reports of a relation between sphingolipids
and nitric oxide (NO) were addressed in the 1990s, in which ceramides were associated
with decreased NO production in alveolar macrophages [56] and GM3 induction was
associated with NO release in peritoneal macrophages [57]. The interplay between nitric
oxide and ceramide accumulation was assessed in a previous study from our group on
glioblastoma multiforme cell lines. The study demonstrated that NO exposure results in a
different ceramide distribution and protein expression, providing a rationale for a possible
crosstalk between SLs and NO [58]. The gatekeeper of RNS is the ADH5/GSNOR system
that maintains the mitochondrial protein nitrosylation and mitochondrial fragmentation
under control counteracting mitophagy and senescence [33]. Serum protein nitrosylation
has been recently assessed in the same group of Ad, Ag and C women [32] and a lower
level of mitochondrial protein nitrosylation was observed in C compared to Ag. In addition,
C were characterized by levels of ADH5/GSNOR comparable to Ad subjects, indicating
that C can counteract nitrosative stress and promote longevity [32,33]. Furthermore, it has
been demonstrated that NO is a potent inhibitor of nSMase [59], suggesting that high NO
levels can prevent SM degradation through nSMase. C are characterized by higher levels
of ADH5/GSNOR and lower levels of protein nitrosylation compared to Ag, suggesting
lower levels of endogenous NO supporting the hypothesis that nSMase activity is further
enhanced in C promoting the conversion of Cers to HexCers [32,60,61]. An extensive study
on cellular models is ongoing.

On the other hand, aging is not only characterized by RNS increase but also by reactive
oxygen species (ROS), and, in this context, it is of note that the thioredoxin TRXR1 oxi-
doreductase system, controlling the thiol redox homeostasis, acts as an antioxidant system
through removal of H2O2 by peroxiredoxins (Prx) [62]. In our previous study, TRXR1
decreased equally in C and Ag, suggesting that a redox unbalance is present at the same
level in aged and centenarians [32], supporting the idea that physiologically, high levels
of ROS characterize aging at large [63,64]. It has been also demonstrated that ROS stimu-
lates nSMase activity [65], further supporting the increase of neutral sphingomyelinase in
centenarians.

Complex gangliosides increased in C and Ag subjects. The GM3 progressive increment
in aged and centenarians must account for ceramide metabolism, which includes, besides
ceramide synthase, also ganglioside GD3 resulting in the formation of gangliosides. This
species promotes ROS generation and apoptosis, also supported by aSMase activation [66].
Ganglioside synthesis is not controlled by the ADH5/GSNOR system. However, it is
influenced by unbalance of the TRXR1 redox system promoting ROS generation, a process
that is still active in centenarians as in aged subjects. More detailed studies are required to
precisely address this issue, particularly comparing data from other cohorts in which the
unbalance of the redox system is present.

To summarize, the peculiarity of centenarians is that they can cope very efficiently
with nitrosative stress, as demonstrated by our previous study, keeping under control levels
of NO, mitochondrial protein nitrosylation and activating HexCer synthesis, avoiding the
production of Cer by de novo synthesis (Figure 8).
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seem to be prone to increase ceramide levels through de novo biosynthesis (purple arrow), while 
centenarians convert sphingomyelin-derived ceramide into complex glyco/sphingolipids (yellow 
arrow). 
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a longitudinal study would have been meaningful. Unfortunately, the sampling from 
enrolled subjects did not include their follow-up. Nevertheless, it is known that the loss 
of study participants (attrition) is a common, well-known challenge in longitudinal 
studies [67], resulting in a 77% (36% to death, 21% to drop-out, 20% to sickness) cohort 
loss during a ten years follow-up as showed by Jacobsen et al. [68]. The major drawback 
is represented by the absence of mRNA data on PBMCs of adult subjects; however, the 
focus of this study was the definition of a different sphingolipid profile between Ag and 
C. We are also aware of the limitation regarding the restricted number of subjects; 
unfortunately, long-healthy aging is an extraordinary condition and recruitment of 
subjects is a difficult task. Despite novelties proposed by our study, further detailed 
studies in the field of successful aging and longevity are in progress to define more 
precisely the role of complex glyco/sphingolipids and their relationship with nitrosative 
stress. 
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Serum samples collected from 45 female subjects were grouped according to subjects’ 
age at the time of sampling into adults (35–37; n = 15, median age: 37 years old, AD), aged 
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Figure 8. Nitro/oxidative state in aged and centenarians (box (A)) and proposed preferential path-
ways determining sphingolipids fate in aged subjects (B) and centenarians (C). Light blue boxes
indicate lipids; white boxes indicate enzymes involved in the pathway, while unboxed acronyms
indicate gene names. Gene names are highlighted in red when their mRNA expression in PBMC is
higher in the AG vs. C comparison (box (B)) or in the C vs. AG comparison (box (C)). Aged subjects
seem to be prone to increase ceramide levels through de novo biosynthesis (purple arrow), while
centenarians convert sphingomyelin-derived ceramide into complex glyco/sphingolipids (yellow
arrow).

This is the first study that addresses in the same group of long-lived subjects the
sphingolipid profiles and their biosynthetic pathway. The study also discusses the possible
relationship between SLs and NO in centenarians. However, the study did not consider the
possibility for some aged subjects to become centenarians, and in this context, a longitudinal
study would have been meaningful. Unfortunately, the sampling from enrolled subjects
did not include their follow-up. Nevertheless, it is known that the loss of study participants
(attrition) is a common, well-known challenge in longitudinal studies [67], resulting in
a 77% (36% to death, 21% to drop-out, 20% to sickness) cohort loss during a ten years
follow-up as showed by Jacobsen et al. [68]. The major drawback is represented by the
absence of mRNA data on PBMCs of adult subjects; however, the focus of this study was
the definition of a different sphingolipid profile between Ag and C. We are also aware
of the limitation regarding the restricted number of subjects; unfortunately, long-healthy
aging is an extraordinary condition and recruitment of subjects is a difficult task. Despite
novelties proposed by our study, further detailed studies in the field of successful aging and
longevity are in progress to define more precisely the role of complex glyco/sphingolipids
and their relationship with nitrosative stress.

4. Materials and Methods
4.1. Subjects Recruitment and Ethical Statement

Serum samples collected from 45 female subjects were grouped according to subjects’
age at the time of sampling into adults (35–37; n = 15, median age: 37 years old, AD),
aged (75–77; n = 15, median age: 78 years old, AG) and centenarians (105–107; n = 15,
median age: 105.8 years old, C). All enrolled subjects gave their informed consent for
inclusion in the study. The study was approved by the Ethics Committee of the Fondazione
Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore
Policlinico, Milan (Protocol identification code No. 2035, amendment 30/11/2011) and of
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the IRCCS Fondazione Don Carlo Gnocchi, Milan (Project identification code No. 2017-
0622, amendment 03/04/2018), and all procedures were conducted in accordance with the
Declaration of Helsinki.

4.2. Reagents and Chemicals

UPLC-MS Methanol and UPLC-MS grade water were from Thermo fisher scientific
(Waltham, MA, USA), while chloroform, 3,5-Di-tert-4-butylhydroxytoluene (BHT) and am-
monium formate were purchased from Sigma-Aldrich (Saint Louis, MO, USA). Potassium
hydroxide was from Merk Millipore (Burlington, MA, USA). Acetic and formic acid were
from Fluka Analytical (Honeywell, Morris Plains, NJ, USA).

4.3. Sphingolipid Extraction

One hundred µL of serum for each sample were mixed with 0.1 mL of ultrapure
water and 1.5 mL of a 0.01% (w/v) Butylated hydroxytoluene (BHT), methanol/chloroform
2:1 solution, fortified with internal standards (200 ppm of sphingomyelin (d18:1/12:0),
ceramide (d18:1/12:0), sphingosine (d17:1), sphingosine-1-phosphate (d17:1) and gluco-
syl (β)ceramide (d18:1/12:0) from AVANTI polar lipids (Avanti Polar Lipids, Alabaster,
AL, USA) and extracted overnight at 48 ◦C under shaking. After extraction, 0.15 mL of
potassium hydroxide 1M were added and samples were incubated at 37 ◦C for two hours.
Solutions were then neutralized with 0.15 mL of acetic acid 1M and dried under a nitrogen
stream. Sphingolipids were resuspended in methanol, transferred to a clean tube and dried
using a speedvac. A total of 0.15 mL of methanol were added and after brief centrifugation
at 10,000 g for 3 min, supernatants were stored in glass vials at −80 ◦C.

4.4. Untargeted LC-MS for Sphingolipids Analysis

Ten µL of Sphingolipid extracts were injected, separated and analyzed using a Waters
Aquity UPLC system coupled to a Waters Synapth G2-Si (Waters, Millford, MA, USA)
operating in positive electrospray ionization mode. Full scans were obtained in a 50 to
1500 Da windows. Accuracy and reproducibility were maintained employing an indepen-
dent reference spray via LockSpray. A C8 Acquity UPLC BEH (Waters) 100 mm × 2.1 mm
id, 1.7 µm column was used to separate sphingolipid extracts following a gradient: 0.0
min: 80% B, 3 min: 90% B, 6 min: 90% B, 15 min: 99% B, 18 min: 99% B, 20 min: 80% B, at
0.3 mL/min flow rate. Phases were composed as follows: (A) 2 mM ammonium formate in
water, 0.05 mM formic acid; (B) 1 mM ammonium formate in methanol 0.05%mM formic
acid. Compounds were identified based on mass accuracy with an error < 5 ppm, the
retention time compared to that of a standard (±2%), and MS/MS spectra of common
fragments. Mass spectra were analyzed by MassLynx™ 4.2 Software (Waters), and lipids
were annotated as lipid subclasses as follows (sphingosine backbone/number of carbon
atoms of the fatty acid: amount of unsaturation of the fatty acid. MS/MS spectra were
acquired and assigned as species based on precursor ions and product ions m/z 264.268
and m/z 266.286, corresponding to sphingosine backbone (d18:1) and dihydrosphingosine
backbone (d18:0), respectively.

4.5. Multiple Reaction Monitoring LC-MS (MRM-MS)

Sphingosine, dihydrosphingosine, S1P and dihydroS1P were quantified using a Xevo
TQ-S micro mass spectrometer (Waters). Extracts were injected and separated on a C8 Acquity
UPLC BEH 100 mm × 2.1 mm id, 1.7 µm (Waters) hold at 30 ◦C, using a gradient: 0.0
min—80% B; 3 min—90% B; 6 min—90% B; 15 min—99% B; 18 min—99% B; 20 min—80%
B, at 0.3 mL/min flow. Phase A and phase B were the same as for untargeted LC-MS
analysis. An electrospray interface operating in positive ion mode was employed to obtain
MS/MS spectra by acquiring MRM transitions spectra of: sphingosine d17:1, 286.40 > 250.40,
sphingosine d18:1, 300.40 > 264.40, sphingosine d18:0 302.4 > 266.4, cone voltage 40 V, collision
energy 16 eV; sphingosine-1-phosphate d17:1, 366.40 > 250.40, sphingosine-1-phosphate d18:1,
380.40 > 264.40, sphingosine-1-phosphate d18:0 382.4 > 266.4, cone voltage 20 V, collision
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energy 16 eV. Capillary voltage was set at 3.5 kV, while source temperature was 150 ◦C. The
desolvation gas flow was set to 1000, and the desolvation temperature was set to 350 ◦C. Data
acquisition and data analysis were performed with MassLynx™ 4.2 (Waters).

4.6. Sphingolipids Gene Expression

PBMCs were isolated by density gradient (Lympholyte-H, Cedarlane, Burlington, On-
tario, Canada). mRNA levels were assessed in two different batches; the first, representing
15 AG and 15 C subjects, was employed to assess difference in levels of enzymes involved
in sphingolipids biosynthesis. The second batch, consisting of a larger cohort (91 AG
and 30 C subjects), was employed to confirm and further expand previous results. Total
RNA was extracted from PBMCs using Chomczynski and Sacchi’s modified method. Two
micrograms of total RNA was reverse-transcribed using the SuperScript VILOTM cDNA
Synthesis Kit (Invitrogen by Thermo Fisher Scientific). For Serine Palmitoyltransferase Long
Chain Base Subunit 1 (SPTLC1), Serine Palmitoyltransferase Long Chain Base Subunit 2
(SPTLC2), Serine Palmitoyltransferase Long Chain Base Subunit 3 (SPTLC3), Sphingomyelin
Phosphodiesterase 1/acid sphingomyelinase (SMPD1), Sphingomyelin Phosphodiesterase
3/neutral sphingomyelinase (SMPD3), Sphingomyelin Phosphodiesterase 4 (SMPD4), Sph-
ingomyelin Synthase 1 (SGMS1), Ceramide Synthase 2 (CERS2), Sphingosine Kinase 1
(SPHK1), UDP-Glucose Ceramide Glucosyltransferase (UGCG), Delta 4-Desaturase, Sph-
ingolipid 1 (DEGS1) and ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 5 (ST3GAL5)
gene expression analysis, quantitative PCRs were performed in the OpenArray® system
QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems by Thermo Fisher Sci-
entific). The list of commercial probes employed to quantify SLs’ mRNA expression levels
is presented in Supplementary Table S2. Three genes have been selected as endogenous
according to their stable expression in human cells (GAPDH, ACTB and 18S) and included
into the OpenArray® chip. A total of 120 ng of every cDNA sample (1.2 µL of each) was
mixed with 1.3 µL of PCR-grade water and 2.5 µL of TaqMan™ OpenArray® Real-Time
PCR Master Mix (Applied Biosystems by Thermo Fisher Scientific). Samples were loaded
in duplicate into OpenArray® plates. For gene expression analysis, Ct values were obtained
using the Thermo Fisher ConnectTM (Thermo Fisher Scientific) online application and the
Relative Quantification (RQ) software.

4.7. Immunoblotting

Sera from Ad, Ag and C were albumin-depleted according to the manufacturer’s
instructions using the Pierce Albumin Depletion Kit (Thermo Fisher Scientific).

Cells-pellet corresponding to 2.5 × 105 cells for each subject were lysed according to
the manufacturer’s instructions using the Pierce™ Mass Spec Sample Prep Kit for Cultured
Cells (Thermo Fisher Scientific). Serum and PBMCs’ protein extract concentration were
quantified by BCA protein assay (Thermo Fisher Scientific), and, for each group, samples
were randomly selected and pooled into 1 pool (6 subjects each). Pooled samples were
mixed 1:1 with 2xX loading buffer (125 mM Tris, 4% SDS, 10% glycerol and 200 mM DTT)
and boiled for 5 min at 95 ◦C.

Protein extracts (50 µg) were loaded in quadruplicate and resolved on 12% polyacry-
lamide gels. Blots were incubated with rabbit primary antibody anti-Glucosylceramide
synthase (BIOSS Antibodies, Woburn, MA, USA 1:1000). After washing, membranes were
incubated with anti-rabbit (1:10,000. GE Healthcare, Chicago, IL, USA secondary antibodies
conjugated with horseradish peroxidase. Signals were visualized by chemiluminescence
using the ECL Prime Detection Kit and the Image Quant LAS 4000 (GE Healthcare) analysis
system. Band quantification was performed using the Image Quant TL v. 8.1(GE Health-
care) software followed by statistical analysis (ANOVA + Tukey, p-value < 0.05). Band
intensities were normalized against the total amount of proteins stained by Sypro ruby
total-protein stain.
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Abbreviations

SLs Sphingolipids
AD Adults
AG Aged
C Centenarians
Cer Ceramide
dhCer Dihydroceramide
HexCer Hexosylceramide
Sph Sphingosine
DhSph Dihydrosphingosine
S1P Sphingosine-1-phosphate
dhS1P Dihydrosphingosine-1-phosphate
SM Sphingomyelin
CVD Cardiovascular diseases
T2DM Type 2 diabetes
ROS Reactive oxygen species
TRXR1 Thioredoxin reductase 1
ADH5/GSNOR Alcohol Dehydrogenase 5
GlcCer Glucosylceramide
PBMC Peripheral blood mononuclear cell
BMI Body Mass Index
dhSM Dihydrosphingomyelin
DihexCer Dihexosylceramide
GM3 Monosialoganglioside GM3
SPTLC1 Serine Palmitoyltransferase Long Chain Base Subunit 1
SPTLC2 Serine Palmitoyltransferase Long Chain Base Subunit 2
SPTLC3 Serine Palmitoyltransferase Long Chain Base Subunit 3
SMPD1 Sphingomyelin Phosphodiesterase 1/acid sphingomyelinase
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SMPD3 Sphingomyelin Phosphodiesterase 3/neutral sphingomyelinase 2
SMPD4 Sphingomyelin Phosphodiesterase 4/neutral sphingomyelinase 3
SGMS1 Sphingomyelin Synthase 1
CERS2 Ceramide Synthase 2
SPHK1 Sphingosine Kinase 1
UGCG UDP-Glucose Ceramide Glucosyltransferase
DEGS1 Delta 4-Desaturase Sphingolipid 1
ST3GAL5 ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase
CSF Cerebrospinal fluid
JNK Stress-activated c-Jun N-terminal kinase
ER Endoplasmic reticulum
NO Nitric oxide
RNS Reactive nitrogen species
O– Superoxide anion radical
H2O2 Hydrogen peroxide
PTEN Phosphatase and tensin homologue
PRX Peroxiredoxins
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