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Abstract The airways and the urinary bladder are both hollow
organs serving very different functions, i.e. air flow and urine
storage, respectively. While the autonomic nervous system
seems to play only a minor if any role in the physiological
regulation of airway tone during normal breathing, it is
important in the physiological regulation of bladder smooth
muscle contraction and relaxation. While both tissues share a
greater expression of M2 than of M3 muscarinic receptors,
smooth muscle contraction in both is largely mediated by the
smaller M3 population apparently involving phospholipase C
activation to only a minor if any extent. While smooth muscle
in both tissues can be relaxed by β-adrenoceptor stimulation,
this primarily involves β2-adrenoceptors in human airways
and β3-adrenoceptors in human bladder. Despite activation of
adenylyl cyclase by either subtype, cyclic adenosine mono-
phosphate plays only a minor role in bladder relaxation by
β-agonists; an important but not exclusive function is known
in airway relaxation. While airway β2-adrenoceptors are
sensitive to agonist-induced desensitization, β3-adrenoceptors
are generally considered to exhibit much less if any sensitivity
to desensitization. Gene polymorphisms exist in the genes of

both β2- and β3-adrenoceptors. Despite being not fully
conclusive, the available data suggest some role of β2-
adrenoceptor polymorphisms in airway function and its
treatment by receptor agonists, whereas the available data on
β3-adrenoceptor polymorphisms and bladder function are too
limited to allow robust interpretation. We conclude that the
distinct functions of airways and urinary bladder are reflected
in a differential regulation by the autonomic nervous system.
Studying these differences may be informative for a better
understanding of each tissue.
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The airways and the urinary bladder are hollow organs.
Their walls contain smooth muscle which allows for
contraction and relaxation. The inner surface of both is
covered by an epithelial layer, which is termed urothelium
in the bladder and respiratory epithelium in the airways.
The function of both organs is primarily regulated by the
autonomic nervous system, but bladder contraction to a
certain degree is under voluntary control. However, the
airways and the bladder serve very different purposes
within the mammalian body. While the airways are filled
with air and primarily serve the purpose of air flow to
ultimately yield gas exchange, the bladder is filled with
urine and allows for only limited absorption and secretion
(Krege et al. 2004). While the airways undergo several
filling/emptying cycles every minute, only one such cycle
occurs in a healthy human bladder every couple of hours.
This article will explore how the autonomic control of
smooth muscle function differs between the airways and the
bladder. A general summary of key features is presented in
Table 1.
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Physiological considerations

Filling of both the airways and the bladder is primarily
driven by forces outside the tissue. In the case of the
airways, filling during inhalation occurs largely passively as
a result of the contraction of striated muscles such as the
diaphragm which increases intrathoracic volume. The
relaxation of airway smooth muscle serves only a modu-
lating role in accommodating the air, as it is used to lower
airway resistance under conditions of physical or emotional
stress when the organisms needs extra oxygen. Thus, even a
maximum relaxation of airway smooth muscle increases
airway volume by much less than 100%. This airway
smooth muscle relaxation is mediated by β-adrenoceptors,
largely belonging to the β2 subtype in several mammalian
species including humans (Mak et al. 1996). The bladder
filling is also largely driven passively as it occurs secondary
to the urine output by the kidneys. However, the relaxation
of bladder smooth muscle plays a crucial role in this
process as it allows accommodating increasing volumes of
urine without major increases in intravesical pressure
(Andersson 1993). Considering that the physiological
amount of urine in the bladder at the start of each
micturition cycle is less than 50 ml and that a healthy
bladder can easily hold 500 ml of urine, the bladder must
accommodate greater than tenfold changes in volume and
hence have an enormous compliance. This compliance is
mainly mediated by β-adrenoceptor-driven bladder smooth
muscle relaxation, which in most mammalian species
including humans predominantly occurs via the β3 subtype
(Michel and Vrydag 2006).

Emptying of the lung is largely driven by its elastic
properties. The autonomic nervous system does not play a
major role in narrowing airway diameter during physiolog-
ical breathing; however, it can cause major airway
contraction as a defense against inhaled toxic substances
or during pathophysiological conditions. Paradoxically,
instead of improving emptying, parasympathetically evoked
bronchial smooth muscle contraction impairs it by increas-
ing airway resistance. Such contraction is mediated by
muscarinic acetylcholine receptors of the M3 subtype
(Fisher et al. 2004). In contrast, the physiological emptying
of the urinary bladder is largely mediated by bladder
smooth muscle contraction. Nevertheless, this process is
also driven by muscarinic receptors of the M3 subtype
(Hegde 2006). While bladder emptying is driven by smooth
muscle contraction in the detrusor, it is accompanied by
muscle relaxation of the urethra to allow an undisturbed
flow of urine. However, the autonomic control of the
urethra will not be discussed here. Interestingly, the major
difference in the length of a filling/emptying cycle between
airways and bladder (seconds vs. hours) is largely due to
differences in the length of the filling phase, whereas the
emptying phase occurs almost equally quickly in both
tissues. It is tempting to speculate that the differential role
of β2- vs. β3-adrenoceptors in relaxation as compared to the
similar role of M3 receptors in contraction may relate to
these differences in the duration of filling. The following
will discuss in more detail similarities and differences in the
regulation of airway and bladder smooth muscle contraction
and relaxation by muscarinic receptors and β-adrenocep-
tors, respectively.

Parasympathetic control of smooth muscle contraction

While the parasympathetic innervation of the airways is
provided by the vagus nerve, that of the bladder comes
from the pelvic nerves originating in the sacral spinal cord.
However, in both tissues the acetylcholine may also come
from non-neuronal sources (see below). Smooth muscle
from both tissues expresses mainly the M2 and the M3

subtype of muscarinic receptors, and in many species the
M2 subtype is expressed more prominently than the M3

subtype at both the mRNA and the protein level (Coulson
and Fryer 2003; Goepel et al. 1998; Roffel et al. 1988).
Nevertheless, smooth muscle contraction of the airways
(Coulson and Fryer 2003; Roffel et al. 1990, 1988) and the
bladder (Abrams et al. 2006; Hegde 2006) occurs largely if
not exclusively by M3 receptors. Accordingly, isolated
airway tissue from M2 receptor knock-out mice shows only
modest impairment of muscarinic agonist-induced contrac-
tion (Stengel et al. 2000; Struckmann et al. 2003) or bladder
contractility (Igawa et al. 2004), whereas M3 receptor

Table 1 Summary of similarities and differences in autonomic control
of airway and bladder smooth muscle

Feature Airways Bladder

Filling Passive Passive
Changes in volume <2 times >10 times
Emptying Passive Active
Filling/emptying
cycles (per hour)

Frequent Sporadic

Autonomic receptor
mediating relaxation

β2-adrenoceptor β3-adrenoceptor

Relaxing signalling cAMP, BKCa BKCa

Autonomic receptor
mediating contraction

M3-muscarinic M3-muscarinic

Contracting signalling Phospholipase
C-β, cyclic
ADP-ribose,
rho kinase

Voltage-operated Ca
channels, rho kinase

Cholinergic
prejunctional
feedback

Important
M2-muscarinic
inhibition

M2- and M4-muscarinic
inhibition and M1

facilitation
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knock-out mice exhibit major impairments in both tissues
(Fisher et al. 2004; Igawa et al. 2004; Matsui et al. 2000;
Stengel et al. 2002; Struckmann et al. 2003). Accordingly,
antagonists which preferentially inhibit M3 receptors such
as tiotropium (Disse et al. 1999; Koumis and Samuel 2005)
in the airways and darifenacin (Croom and Keating 2004;
Maruyama et al. 2006) and solifenacin (Armstrong et al.
2008; Chapple 2006; Oki et al. 2005) in the bladder appear
to have similar therapeutic efficacy as non-selective
muscarinic antagonists, further supporting the major role
of M3 receptors in regulating contraction in both tissues.
However, in both airways and bladder M2 receptors may
have a physiological role in opposing smooth muscle
relaxation mediated by β-adrenoceptors during the filling
phase (Ehlert et al. 2007; Matsui et al. 2003; Sarria et al.
2002). Moreover, at least in airways, prejunctional inhibi-
tory M2 receptors play a major role in regulating smooth
muscle tone (Coulson and Fryer 2003). While prejunctional
muscarinic receptors also exist in the bladder, they appear
to play a smaller functional role in the regulation of smooth
muscle tone than those in the airways. Nevertheless,
prejunctional inhibitory M2-receptors also exist in the
bladder (Trendelenburg et al. 2003) but additional inhibi-
tory M4-receptors (D'Agostino et al. 1997, 2000) and
facilitatory M1-receptors also exist (Somogyi et al. 1996).

A stimulation of phospholipase C (PLC) with the subse-
quent formation of inositoltrisphosphate and diacylglycerol is
the prototypical signalling pathway of M3 receptors. This can
also be shown in airways (An and Hai 1999) and bladder
(Kories et al. 2003) using subtype-selective antagonists, and
studies with knock-out mice confirm such observations (Tran
et al. 2006). Nevertheless, PLC does not appear to contribute
to bladder contraction by muscarinic agonists in a major
way. This was first proposed based upon the PLC inhibitor U
73,122 in rat (Schneider et al. 2004b), mouse (Wegener et al.
2004) and human bladder (Schneider et al. 2004a); in those
studies U 73,122 did not affect bladder contraction in
concentrations where it fully suppressed inositol phosphate
formation (Schneider et al. 2004b). However, using different
experimental designs and different PLC inhibitors other
investigators have proposed a role for PLC in bladder
contraction (Braverman et al. 2006a, b). In a subsequent
collaborative study between the groups reporting evidence in
favor and against a role for PLC in bladder contraction, it
was found that previously shown differences relate to the
choice of PLC inhibitor rather than experimental conditions;
more importantly, the overall evidence did not support a
major role of PLC in bladder contraction (Frazier et al.
2007). Thus, despite a prominent role for PLC in M3

receptor function, other signalling pathways apparently carry
M3 muscarinic receptor-mediated contraction bladder con-
traction (Frazier et al. 2008). Interestingly, some muscarinic
receptor antagonists such as propiverine and its metabolites

also have direct effects on Ca2 influx, which may contribute
to their clinical effects (Wuest et al. 2006, 2007). While we
are not aware of similar systematic studies in the airways, it
has been shown that Ca2 oscillations in the airways do not
necessarily require PLC activation (Sney et al. 2003). Similar
to the bladder, other signalling pathways including cyclic
ADP-ribose and Rho-kinase may be relevant for muscarinic
receptor-mediated airway contraction (Deshpande et al.
2005; Lutz et al. 2005).

While the classical view dictated that formation of
neurotransmitters is an exclusive property of neurons, it has
meanwhile become clear that non-neuronal acetylcholine
formation exists in several tissues. Major parts of the
evidence in this regard come from the airways, the intestine,
the skin, and the urinary bladder. Thus, the urothelium
expresses the enzymes required for acetylcholine synthesis
and forms acetylcholine (Lips et al. 2007). Urothelium-
derived acetylcholine may act on muscarinic receptors within
the urothelium including those on afferent sensory nerves as
well as those on bladder smooth muscle (Bschleipfer et al.
2007; Zarghooni et al. 2007). Airways smooth muscle,
goblet, basal, mast, and ciliated cells also express choline
acetyl transferase and/or produce acetylcholine, and this has
been proposed to be a potential target of drug treatment
(Wessler and Kirkpatrick 2001).

Sympathetic control of smooth muscle relaxation

While all three classes of adrenoceptors are expressed in
both airways and bladder, postjunctional α1- and α2-
adrenoceptors do not contribute to the regulation of smooth
muscle tone in either tissue in a major way (Goldie et al.
1990; Michel and Vrydag 2006). While β-adrenoceptors are
abundantly expressed in both tissues, they mostly belong to
the β2-subtype in the airways of many mammalian species
including humans (Goldie et al. 1990). The expression
pattern of β-adrenoceptor subtypes in the bladder is less
clear. In humans, the β3-subtype appears to be by far the
most prominently expressed subtype at the mRNA level
(Nomiya and Yamaguchi 2003; Otsuka et al. 2008).
Quantitative data on mRNA expression of β-adrenoceptor
subtypes in other species are not available. Data on protein
expression of β-adrenoceptor subtype expression in the
bladder are not conclusive as no validated antibodies or
suitable radioligands exist (Niclauß et al. 2006; Vrydag and
Michel 2007).

Functional studies demonstrate very clearly that the β-
adrenoceptor-mediating airway smooth muscle relaxation
belongs predominantly if not exclusively to the β2-subtype
(Goldie et al. 1990) although in some species, e.g. guinea
pigs, β1-adrenoceptors may contribute (Tanaka et al. 2007).
In most species β3-adrenoceptors make a substantial
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contribution to bladder relaxation and may be the only
subtype of functional relevance in the human bladder
(Michel and Vrydag 2006). Thus, airways and bladder
differ considerably with regard to the β-adrenoceptor
subtypes being expressed and mediating smooth muscle
relaxation.

The prototypical signalling pathway of β-adrenoceptors
is a Gs-mediated coupling to an activation of adenylyl
cyclase leading to the formation of cyclic adenosine
monophosphate (cAMP). However, data from various cell
types indicate that other signalling pathways may also be
functionally relevant (Scherer et al. 2007) and, e.g. in
vascular smooth muscle the activation of certain types of K
channels is a major pathway involved in β-adrenoceptor-
mediated relaxation (Bieger et al. 2006; Ferro 2006). Other
signalling pathways such as cyclooxygenase (Kang et al.
2007) or NO synthase (Bieger et al. 2006) may also be
involved. Against this background, several studies have
evaluated the contribution of the cAMP/protein kinase
A pathway relative to other signalling pathways in the
β-adrenoceptor-mediated relaxation of airway and bladder
smooth muscle. In the urinary bladder, two independent
studies in rats demonstrate that cAMP formation plays only
a minor if any role in smooth muscle relaxation whereas K
channels, particularly of the BKCa type may make major
contributions (Frazier et al. 2005; Uchida et al. 2005).
Similar studies in the airways of various species including
humans (Miura et al. 1992) have also indicated major
cAMP-independent components of relaxation responses to
β-adrenoceptor stimulation, including the stimulation of
BKCa channels (Giembycz and Newton 2006; Johnson
2006).

β2-Adrenoceptors are known to undergo a rapid and
profound agonist-induced desensitization which under
chronic conditions involves down-regulation of the receptor
(Tran et al. 2007). Accordingly, β2-adrenoceptors in the
lung have also been shown to undergo agonist-induced
desensitization (Finney et al. 2001; Hauck et al. 1997;
January et al. 1998). This may become therapeutically
important during chronic treatment with β-adrenergic
agonists, but its clinical importance remains controversial
(Johnson 2006). In contrast, β3-adrenoceptors lack the
phosphorylation sites believed to be important in desensi-
tization and are believed to be relatively resistant to
agonist-induced desensitization (Carpene et al. 1993;
Chaudhry and Granneman 1994). Preliminary data indicate
that rat bladder β-adrenoceptors may undergo some
agonist-induced desensitization but it remains to be deter-
mined if that affects the β3-component of the response
(Vrydag and Michel 2008). A possible rationale for this
difference between airways and bladder may be rooted in
the fact that the bladder β-adrenoceptors have to function
during a filling phase of several hours, which would be

hampered if they undergo rapid desensitization. However,
detailed studies on the sensitivity of bladder β-adrenocep-
tors in response to prolonged agonist exposure have not
been reported.

The regulation of lung and bladder β-adrenoceptors has
also been studied during ageing and in pathophysiological
settings. Airway β2-adrenoceptor function may be reduced
in aged animals (Fraeyman et al. 1993; Preuss et al. 1999),
and a minor desensitization of bladder β-adrenoceptors has
also been reported in aged rats (Michel and Barendrecht
2008). In contrast to e.g. cardiac β1-adrenoceptors, the β2-
adrenoceptors in the lung do not exhibit down-regulation in
spontaneously hypertensive rats but rather may even be up-
regulated (Michel et al. 1987) and functionally have
enhanced sensitivity to agonist stimulation (Kamibayashi
and Ramanathan 1989). In contrast, β-adrenoceptors in the
bladder of spontaneously hypertensive rats were reported to
exhibit a minor desensitization (Frazier et al. 2006).

Within the bladder, β-adrenoceptors are not only
expressed on smooth muscle cells but also on the urothelium
(Harmon et al. 2005). Their stimulation may affect the ability
of β-adrenoceptor agonists to induce bladder relaxation
(Otsuka et al. 2008). Similarly, airway β-adrenoceptors are
also not only found on smooth muscle but also on ciliated
epithelial and mucus cells, where they can increase the
beating frequency of the cilia and discharge of glycoprotein,
respectively; moreover, β2-adrenoceptors on lung mast cells
may indirectly affect lung function by inhibiting the release
of the bronchoconstrictor histamine (Johnson 2006; Johnson
and Rennard 2001).

The genes of all three β-adrenoceptor subtypes are
polymorphic (Leineweber et al. 2004). Studies with regard
to pulmonary function have focused on polymorphisms in
the amino acid positions 16 and 49 of the β2-adrenoceptor
and indicate that such polymorphisms may affect the speed
of agonist-induced desensitization of airway smooth muscle
cells (Moore et al. 2000) and also on lung mast cells
(Chong et al. 2000; Kay et al. 2003). Whether this
translates into clinically relevant effects on the prevalence
of airways disease or its treatment by β-adrenoceptor
agonists, remains controversial (Brodde and Leineweber
2005; Szalai et al. 2008; Thakkinstian et al. 2005). β2-
Adrenoceptor polymorphisms may also play a role as
modifying-genes in diseases such as cystic fibrosis (Büscher
and Grasemann 2006). With regard to β3-adrenoceptor
polymorphisms and bladder function, only a single study
has been reported until now demonstrating that the Trp64Arg
polymorphism is more frequently present in patients with
overactive bladder syndrome than in those without (Honda
et al. 2006).

β2-Adrenoceptor agonists have long been used as
bronchodilating drugs, whereas only very recently a single
proof-of-concept study has demonstrated that a β3-adreno-
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ceptor agonist may alleviate bladder dysfunction in patients
with overactive bladder (Chapple et al. 2008). However, the
chronic use of β2-adrenoceptor agonists in the treatment of
airway disease has been questioned on safety grounds
(Salpeter et al. 2006). In contrast, it has been reported that
chronic (but not acute) administration of β-adrenoceptor
antagonists may have beneficial effects in mouse models of
asthma (Callaerts-Vegh et al. 2004; Nguyen et al. 2008).
Therefore, in analogy to the situation in heart failure
(Brodde 2007), it has been advocated that β-adrenoceptor
antagonists may have some value in the chronic treatment
of asthma (Bond et al. 2007). A clinical pilot study in
asthma patients has been reported which supports such
claims (Hanania et al. 2008). The relative benefits of
agonist and antagonist treatment in airway and bladder
disease certainly requires considerable additional study.

Conclusions

Based upon their differential functions, the morphology and
autonomic control differs considerably between the airways
and the urinary bladder. Nevertheless, a number of
interesting similarities exist in the way the autonomic
system controls the two tissues. Moreover, the differences
in autonomic control may also be quite informative,
particularly with regard to the relative role of β-adrenoceptor
subtypes. Therefore, we propose that researchers interested
in the autonomic control of either tissue may benefit from
keeping an eye on the other tissue. While beyond the scope
of this article, expanding the scope even further to other
hollow organs including the gut and the heart (Brodde and
Michel 1999) may provide additional comparative insight.
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