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Medicine at UCLA, Los Angeles, CA, United States
Dermatophytosis is one of the most prevalent fungal infections and a major

public health problem worldwide. Recent years have seen a change in the

epidemiological patterns of infecting fungi, corresponding to an alarming rise

in the prevalence of drug-recalcitrant dermatophyte infections. In patients with

diabetes mellitus, dermatophytosis is more severe and recurrent. The potency

of promising new antifungal drugs in the pipeline must be expanded to include

dermatophytosis. To facilitate this effort, we established a clinically pertinent

mouse model of dermatophyte infections, in which diabetic mice were

infected with Trichophyton mentagrophytes on abraded skin. The diabetic

mouse model was optimized as a simple and robust system for simulating

dermatophytoses in diabetic patients. The outcome of infection was measured

using clinical and mycological parameters. Infected mice with fungal lesions

were treated with oral and topical formulations of terbinafine or topical

administration of the FDA-approved and repurposed pan-antifungal drug

alexidine dihydrochloride (AXD). In this model, AXD was found to be highly

effective, with outcomes comparable to those of the standard of care

drug terbinafine.
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Introduction

Dermatophytes are a group of fungi that cause superficial infections limited to the

stratum corneum of the epidermis or to the hair and nails. Trichophyton, Microsporum,

and Epidermophyton are the most common causes of dermatophytosis (de Hoog et al.,

2017). While infections caused by these fungi are rarely life-threatening, they cause
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considerable morbidity, cosmetic embarrassment, and impose a

significant financial burden. Dermatophytes are the foremost

cause of cutaneous mycoses worldwide, prevalent in 20%–25%

(or ~2 billion) of the global population (Hay et al., 2014; White

et al., 2014). The United States alone records over 5 million

outpatient visits due to dermatophytosis, with an annual burden

of almost one billion dollars in associated direct medical costs

(Brown et al., 2012).

While dermatomycoses can affect immunocompetent

individuals, patients with diabetes mellitus are particularly

susceptible to this infection (Garcıá-Humbrıá et al., 2005;

Muller et al., 2005). Poor glycemic control and obesity are the

top reasons for the high rates of infection in diabetic patients

(Venturini et al., 2011; Celestrino et al., 2021). Of particular

concern is the changing clinicoepidemiological scenario of

dermatophyte infections, especially in tropical parts of Asia

and Africa (Rippon, 1985; Coulibaly et al., 2017; Adebiyi and

Gugnani, 2020). For example, this disease has been deemed an

“epidemic” in tropical countries such as India, which has the

second-largest population of diabetics (Rajagopalan et al., 2018).

Dermatophytosis in India is attributed to rampant and irrational

use of over-the-counter antibiotics and corticosteroid drug

combinations (Verma et al; Verma and Madhu, 2017; Poojary

et al., 2019; Das et al., 2020). In particular, recent years have seen

a worsening in the disease severity with multiple, larger

circumscribed inflammatory skin lesions harboring an

overabundance of fungal loads similar to a biofilm-like

etiology (Poojary et al., 2019). Furthermore, there has been a

perceptible epidemiological shift in species from the previously

predominant anthropophilic T. rubrum to T. mentagrophytes

complex, a zoophilic fungus (Poojary et al., 2019; Adebiyi and

Gugnani, 2020). Such a changing trend in etiology has paralleled

the rate of increase in households harboring domestic pets, an

important source of transmission (Segal and Elad, 2021).

Making matters worse is the emergence of drug recalcitrance

in these fungi, resulting in inevitable recurrences despite

prolonged antifungal treatment (Martinez-Rossi et al., 2018;

Khurana et al., 2019).

Topical and oral use of anti-dermatophytic drugs such as

terbinafine and itraconazole have traditionally been the drugs of

choice for ring worm infections (tinea corporis) caused by

Trichophyton spp (Hainer, 2003; Singh et al., 2020). However,

acquired resistance to these antifungal compounds is a rapidly

emerging problem in developing countries (Monod et al., 2021).

Indeed, there is a valid need for the discovery of novel drugs with

enhanced effective and safe profiles.

Animal models of dermatophytosis have proven invaluable

in evaluating the efficacy of antifungal molecules and for

mechanistic understanding of fungal pathogenesis. Although

guinea pigs have been the most commonly used animals in

studies of dermatophytosis due to their likeness to human skin

(Saunte et al., 2008; Shimamura et al., 2012), their use suffers

from several shortcomings, including the lack of knockout
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animals. To circumvent this limitation, studies have exploited

the mouse model for experimental dermatophytosis to

understand disease pathology and host response (Hay et al.,

1988; Nakamura et al., 2012; Baltazar Lde et al., 2014). We and

others have extensively reported on the advantages of using mice

in fungal infections, including their affordability, relative ease of

use, and amenability to induce various disease conditions such as

immunosuppression or diabetes (Capilla et al., 2007; Sano et al.,

2014; Uppuluri et al., 2018; Gebremariam et al., 2019;

Gebremariam et al., 2021). Thus, in establishing a new animal

model for dermatophytosis, we considered three main factors:

diabetic predisposition for clinical relevance; most prevalent

zoonotic dermatophyte; and a model simple and affordable

enough to use in research laboratories equipped for small

rodents. Here, we optimized a diabetic mouse model of

dermatophytosis, yielding a clinical picture akin to that

observed in humans (Gebremariam et al., 2021). We further

harnessed this simple, robust, and reproducible model to test the

efficacy of a standard of care antifungal agent, terbinafine, and a

new broad-spectrum antifungal molecule, alexidine

dihydrochloride (AXD), recently discovered by our group

(Mamouei et al., 2018). Our results show that the efficacy of

AXD was analogous to that of terbinafine, resulting in complete

clinical and mycological cure compared to infected

untreated controls.
Results and discussion

Assessment of progression of infection

The pathophysiology of diabetic mice infected with T.

mentagrophytes (ATCC26323) was monitored over time. The

overall success rate of infection in our studies was 100%, based

on clinical and mycological outcomes (Table 1; 17 of 20 mice

were successfully infected). Mice that resisted infection turned

out to be those that did not develop diabetes (<250 mg/dl urine

glucose). The earliest signs of infection appeared between days 3

and 4, post infection when the skin of mice was visibly red and

erythematous (Figure 1). The lesions gradually became worse by

7 to 13 days, post-infection, and exhibited plaque-like erythema,

edema, and hyperkeratosis. Fungal infection was confirmed by

skin scraping followed by culturing, which revealed T.

mentagrophytes in all animals on days 4, 7, and 13 (Table 1).

Interestingly, while the hyperkeratotic lesions persisted up to day

17, the culture positivity rates were reduced to 60%, indicating

that the infection was starting to resolve. Accordingly, by day 21,

shedding of skin crusts led to a significant visible reduction in

hyperkeratosis (p <0.01 versus other time points; Figure 1) and a

further reduction in fungal growth to 40% (Table 1). The

histopathology of skin sections from day 13 revealed a normal

stratum corneum, while that of the infected skin displayed signs

of inflammation characterized by acanthosis (thickness/
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hyperplasia of the epidermis), spongiosis (edema in the

epidermis), and moderate cellular infiltration (Figures 2A, B).

Supplementary Figure S1 shows the fungal filaments penetrating

the hair follicles (arrow) and immune infiltration around the

area of infection (star; also enlarged). Additionally, only the

infected areas show acanthosis (two-sided arrows), while the

uninfected loci of skin taper back to normal. The presence of

marked dermal edema, acanthosis, and cellular infiltrates

predominantly composed of mononuclear cells has been

frequently elucidated in dermatophytosis (Hay et al., 1983;

Nantel et al., 2002; Saunte et al., 2008).

Disease progression in the diabetic mouse model paralleled

that of previous studies established in the immunocompetent

guinea pig model. However, the presence of diabetes as a
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physiologically relevant-predisposing factor induced far more

severe lesions, peaking at days 7–10 versus days 10–15 in other

published models (Saunte et al., 2008; Fontenelle et al., 2014). In

fact, such erythematous and hyperkeratotic manifestations are

frequently witnessed in diabetic patients or those receiving

immunosuppressive corticosteroid treatment (Fraga-Silva et al.,

2015; Poojary et al., 2019). In a parallel control arm, when

immunocompetent mice were infected with the dermatophyte,

they displayed significantly mild erythema and dryness

(Supplementary Figure S2A), with only 10% of the mice culture

positive and clearance of fungi by day 17 (data not shown).

Hyperglycemic mice have previously been used to

investigate the host response to dermatophytosis (Venturini

et al., 2011; Fraga-Silva et al., 2015; Almeida et al., 2017).
FIGURE 1

Clinical picture of dermatophytosis by T. mentagrophytes on the skin of mice and efficacy of antifungal drugs: Skin of the back of diabetic mice
were infected with 1 × 107 conidia and the clinical picture of infection was monitored over time. Arrows indicate redness and edema. Infected
skin at day 7 was also treated topically with AXD (20 µg) or terbinafine (1% topical, or oral gavage 75 mg/kg). Observe the complete clearance of
hyperkeratosis and redness post treatment with both drugs.
TABLE 1 Clinical and mycological assessments of infection during model establishment and after antifungal drug treatment.

Infection progression in diabetic mice

Days # mice Erythema Hyp.ker %Culture +

4 20 2.7 0.3 88

7 20 1.85 2.4 100

13 20 0.45 2.8 100

17 20 0.15 2.6 60

21 20 0 1.8 40

Efficacy of AXD and TER

Drug % reduced erythema p value % mycological efficacy p value

Vehicle (gel) 0% x 0% 1

AXD (T) 83.33% 0.0003 100% <0.0001

TER (T) 91.66% 0.0002 100% <0.0001

TER (O) 87.5% 0.0002 100% <0.0001
There was statistical significance (p <0.01) between all the time points in terms of erythema scores. Again, p <0.01 between day 4 and the rest of the time points (days 7 to 21) for
hyperkeratosis. AXD, Alexidine dihydrochloride; TER, terbinafine; T, topical; O, oral gavage; %mycological efficacy, culture negativity.
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FIGURE 2

Histopathological analysis of skin: Skin biopsies obtained from uninfected, infected or drug treated mice skin were fixed, sectioned and stained
with H&E plus PAS stain. (A) shows structure of intact skin from uninfected control, (B) exhibits infection, and presence of extensive hyphae on
the epidermal layer. Infection causes acanthosis (two headed arrow) and spongeosis (arrow), (C, D) show complete clearance of hyphae from
the skin, and regeneration of the stratum corneum (although acanthosis is still observed). Scale bars as indicated in µm.
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However, these studies did not elaborate on the clinical picture

of infection or the amenability of the model to evaluate drug

efficacy. Besides, all these studies induced type I diabetes using

the drug alloxan, which is toxic to the pancreas and can lead to

severe debilitation and mortality in mice. Our studies used

streptozotocin, which has a high inductive capacity, less

toxicity, and more specificity for pancreatic beta cells than

alloxan (Lenzen, 2008).
Testing efficacy of antifungal compounds
in the diabetic mouse model
of dermatophytosis

We also used the developed diabetic mouse model for pre-

clinical evaluation of alexidine dihydrochloride (AXD), an FDA-

approved repurposed molecule, recently identified by us to have a

broad-spectrum activity against pathogenic fungi (Mamouei et al.,

2018). In this study, the MIC80 of AXD in vitro was determined to

be 0.32 µg/ml against T. mentagrophytes and 0.64 µg/ml versus T.

rubrum, two of the most commonly isolated dermatophyte species

from tinea infections (Supplementary Figure S2B). This dose of
Frontiers in Cellular and Infection Microbiology 04
AXD has previously been shown by our laboratory to be effective

against other human fungal pathogens, including Candida

albicans and Cryptococcus neoformans (Mamouei et al., 2018).

The MIC of terbinafine against T. mentagrophytes was 0.008 µg/

ml, a concentration previously shown by us and others to be

effective against the fungus.

Since the peak of infection in this model was between days 7

and 12, mice were treated with antifungal drugs for 6 days

starting on day 7 of the infection. To facilitate the delivery of

AXD onto the skin of mice, we followed a strategy previously

reported by us, where AXD was incorporated into an in situ

gelling formulation composed of 20% w/v P407 and 1% w/v

Poloxamer 188. We and others have demonstrated that

thermosensitive P407 hydrogels can be effectively used for the

intra-oral and intra-vaginal application of nanoparticles without

affecting their inherent properties and release (Date et al., 2012;

Date et al., 2015; Chen et al., 2021; Liu et al., 2021). Furthermore,

studies have shown that Poloxamer 407 thermosensitive

hydrogel can also potentiate delivery and sustained release of

antimicrobials for improved efficacy against microbial biofilms

(Bernegossi et al., 2020; Lp et al., 2020; Liu et al., 2021). Hence,

P407 thermosensitive gel containing AXD was deemed suitable
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for topical use. Terbinafine (TER) was used as a positive control

since this drug is the standard of care drug for the treatment of

dermatophytosis (although resistance to terbinafine is emerging)

(Babu et al., 2017; Nenoff et al., 2020).

Oral and topical applications of terbinafine as well as topical

applications of AXD yielded similar mycological and clinical

clearance of infection. On day 7 post-treatment (i.e., day 13 post-

infection), lesions were completely healed with a striking

reduction in infection post topical treatment with the two

drugs (Figure 1). Besides the visual inspection, the efficacy of

the two drugs was also confirmed by monitoring clinical and

mycological efficacy. Whereas the infected and untreated mice

demonstrated skin regions and culture positivity, mice treated

with AXD and TER displayed significantly reduced erythema

(>83%–91% efficacy; p <0.0001; Table 1) and a complete absence

of fungal growth on culture, indicating 100% mycological

efficacy post-treatment (Table 1). Histopathological analysis on

day 13 of infected skin treated with topical terbinafine or AXD

confirmed complete clearance of fungi from all mice (Figures 2C,

D; Supplementary Figure S3). Even after scrutinizing multiple

sections tested from skin specimens of several different mice, the

worst-case scenario found was a single focus of very few residual

hyphal cells (Supplementary Figure S2C). Considering that these

mice were culture negative, it is likely possible that these

filaments are inviable. Alternatively, it could also be that these

isolated hyphal strands escaped treatment and therefore could be

considered as “persister cells” that could reinitiate growth and

cause a relapse of infection or drug recalcitrance. Despite

treatment with the two drugs, hyperplasia and edema of the

epidermis were not reversed (Figure 2D, double-sided arrow).

Such inflammation parameters have also been observed

previously in the guinea pig model of dermatophytosis. Future

studies could be undertaken to investigate if, or when the

epidermis reverts to its normal architecture, a reappearance of

infection once treatment is stopped. Such is often the case in

human infections, where recurrence occurs weeks or even

months after the course of treatment is completed.

Our results for terbinafine efficacy are in agreement with the

findings of Ghannoum et al., who demonstrated that both

topical and oral preparations of terbinafine are 90%–100%

potent against T. mentagrophytes in a guinea pig model

(Ghannoum et al., 2004; Saunte et al., 2008). Terbinafine has

the propensity to efficiently bind keratinocytes, rapidly penetrate

the stratum corneum, and persist in the skin at concentrations

multifold higher than its MIC in vitro (Shear et al., 1991;

Faergemann et al., 1993). This is the first study to evaluate the

efficacy of AXD in an animal model of dermatophytosis. AXD, a

member of the bisbiguanide class of antiseptics, has been noted

as an anticancer drug lead because of its apoptotic activity in

vitro and in vivo (Yip et al., 2006). Furthermore, this compound

has been tested as an antiplaque agent and mouthwash with the
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potential to be used in endodontic treatment to eliminate

biofilms (Lobene and Soparkar, 1973; Spolsky and Forsythe,

1977; Kim et al., 2013; Ruiz-Linares et al., 2017). Interestingly, in

all these applications, AXD is potent at concentrations manifold

higher than the MIC80 demonstrated in this study. This

accentuates the potential of AXD as a stellar anti-

dermatophytic drug. Indeed, our previous report highlighted

the potential of AXD as a broad-spectrum antifungal drug with

activities against biofilms and azole-resistant fungi, while

exhibiting low mammalian-cell toxicity (Mamouei et al., 2018).

As a next step in this series of investigations, it will be important

to examine the pharmacokinetics and biodistribution of AXD on

the skin.

In conclusion, we have presented a simple, physiologically

relevant animal model that mimics infections in humans with T.

mentagrophytes and harnessed this model to unravel the stellar

activity of a novel molecule, AXD, against dermatophytosis. This

diabetic mouse model can be applied for efficacy testing of new

antifungals against dermatophytes, evaluation of diagnostic

candidates, or to study the less understood host response to

dermatophytoses in the background of hyperglycemia.
Methods

Fungal strain and growth conditions

The dermatophyte strain Trichophyton mentagrophytes

ATCC 26323 was used throughout this study. This is a

virulent clinical isolate from an aggressive ringworm infection

isolated from a patient in Vietnam (Hashimoto et al., 1972;

Hashimoto and Blumenthal, 1977; Suh et al., 2018).

Dermatophytes were subcultured from the primary Sabouraud

agar plate (containing 0.4 g/L cycloheximide and 0.5 g/L

chloramphenicol; SD+ agar) to oat meal agar medium to

induce conidiation. Plates were incubated at 35°C for 7 days

or longer until colonies developed abundant spores. The conidial

spores were then carefully collected by gently flushing 5 ml of

phosphate buffer saline (pH = 7.4) on top of the colonies and

aspirating the suspension into a sterile collection tube. Fungal

spores were enumerated using a hemocytometer.
Antifungal agents

Terbinafine for oral gavage treatment was obtained from

Novartis (Summit, NJ) and Terbinafine 1% cream (Lamisil™)

was obtained commercially. Alexidine dihydrochloride powder

was obtained from Sigma (St. Louis, MO). Both drug powders

were dissolved at a concentration of 1 mg/ml in 10% DMSO. For

the preparation of alexidine thermosensitive gel, 10 mg of AXD
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was dissolved in 10 ml of water using a vortex mixer and

ultrasonic bath. Poloxamer 407 (2 g) and Poloxamer 188 (100

mg) were then dispersed into AXD solution with the help of a

vortex mixer and the dispersion was stored overnight in the

refrigerator to dissolve Poloxamer 407 and Poloxamer 188,

leading to an in situ gelling formulation containing AXD. The

P407 in situ gelling formulation containing AXD was stored in

the refrigerator until further use.
Animal model

All animal-related study procedures were compliant with

the Animal Welfare Act, the Guide for the Care and Use of

Laboratory Animals, and the Office of Laboratory Animal

Welfare and were conducted under an IACUC approved

protocol 31789-01 by The Lundquist Institute at Harbor-

UCLA Medical Center. Male ICR mice (20 to 23 g) were

rendered diabetic with a single intraperitoneal injection of

210 mg of streptozotocin/kg of body weight in 0.2 ml of

citrate buffer 10 days prior to the fungal challenge, as we

have previously described (Ibrahim et al., 2003). This dose of

streptozotocin causes diabetes in 80 to 90% of the injected

mice. Glycosuria and ketonuria were determined with keto-

Diastix reagent strips (Bayer, Elkhart, Ind.) 7 days after

streptozotocin treatment. Consistent with the establishment

of DKA, diabetic mice had a decrease in blood pH from 7.8

(normal for mice) to 7.3–7.2, associated with increased levels of

urinary glucose (moderate increase of 250 mg/dl to a high level

of >1,000 mg/dl) and urinary ketone bodies (moderate levels of

2 to 4 mg/dl to a high concentration of ≥5 mg/dl) as

determined by Keto-Diastix strip testing. Mice were

anesthetized by i.p. injection of 0.2 ml of a mixture of

ketamine at 82.5 mg/kg (Phoenix, St. Joseph, MO) and

xylazine at 6 mg/kg (Lloyd Laboratories, Shenandoah, IA).

The sedated mice were kept on heat pads (Fisher Scientific)

which were prewarmed to 37°C. The backs of the mice were

shaved using an electric shaver. As reported previously

(Ghannoum et al., 2004; Saunte et al., 2008), a 3 × 3 cm area

on the shaved skin was scraped gently with sandpaper to

disturb the epidermidis and infected with 5 × 107 cells/ml of

T. mentagrophytes conidia. For infection, 50 µl of PBS

containing the spores was applied and rubbed on the skin of

mice using a pipette tip until the application dried on the skin.

Uninfected control mice skin was applied with PBS. For drug

treatment, 7-day infected mice were treated with oral

terbinafine (75 mg/kg), and the entire surface of the skin was

applied with 1% topical terbinafine or AXD topical

thermosensitive gel (20 µg). Treatment was continued once

daily for 6 days.
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Evaluation of the outcomes of infection

For clinical assessments, the skin of 20 mice was

visually monitored daily for erythema (E), crusting or

hyperkeratosis (H), at various time points post-infection (0

to 17 days). Due to hyperglycemia, the infection was severe and

reproducible. The clinical parameters for erythema were scored

blindly as the following: none 0, mild or spotty 1, well defined

2, or inflamed 3. Additionally, dryness and crusting were

scored similarly, with mild dryness at 1 and hyperkeratosis at

3. Thus, the clinical score had a range from 0 (no infection) to 3

(worst outcome). These scores were used to compare the

efficacy of the antifungal drugs. Percent efficacy was

calculated as 100 − (T/C × 100) where T = the total score of

the treatment group and C = the total score of the untreated

control (infected) group. Total score = average clinical score

from animals in the same group. One-way ANOVA or

Student’s t-test was used to analyze data using Graphpad

prism software (p <0.05 was considered significant).

Mycological assessments were performed in a repeat set of

experiments with 20 infected mice. The skin was scraped from

parts of the infectious lesion using a sterile scalpel, and the skin

dust, as well as 10 uprooted hairs, was collected in an empty Petri

dish. Specimens were used for culture on SD+ plates, incubated

at 35°C for 3 days, and fungal growth was monitored. The

presence of even one colony of fungus was considered

culture-positive.
Histopathology

Skin samples were obtained from three animals per group on

day 13 of the study. Skin (~1 cm2) was excised using sterile

scissors from sacrificed animals. Skin samples were fixed in zinc-

buffered formalin, embedded in paraffin, sectioned, and stained

with H&E and PAS for visualization of the epidermis and fungal

morphology, respectively.
In vitro MIC testing

An antifungal susceptibility assay was performed by

following the Clinical and Laboratory Standards Institute

(CLSI) guidelines, document M38-A2 for filamentous fungi

(Wayne, 2008). Conidial spores were isolated as described

above and used at a final density of 1 to 3 × 103 cells/ml for

testing. The concentration range of terbinafine evaluated was

0.001–0.5 mg/ml; and that of AXD was 0.02–20 mg/ml. The

minimal inhibitory concentrations (MICs) were defined as the

lowest concentrations that led to complete inhibition of
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observable growth of T. rubrum and T. mentagrophytes after

4 days.
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SUPPLEMENTARY FIGURE S1

Hyphal invasion of the epidermis: Extensive hyphal invasion of the stratum
corneum (thick arrow) on day 13 of T. mentagrophytes, which causes

acanthosis (two headed arrow) and infiltration of inflammatory cells (star)

at the site of infection (see inset for a zoomed in view).

SUPPLEMENTARY FIGURE S2

MIC of AXD in vitro : (A) development of mild infection in

immunocompetent mice. (B) Picture of MIC of AXD against T.
mentagrophytes (TM) and T. rubrum (TR). (C) A single locus of residual

hyphae post drug treatment shows an almost complete clearance

of infection.

SUPPLEMENTARY FIGURE S3

Skin histology images post drug treatment: Zoomed out (Magnification

2x) images of surface area of skin to visualize clearance of infection in TER
and AXD treated mice. Scale bars = 500 µm.
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