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SUMMARY

Physical activity is important for type 2 diabetes treatment, yet the underlying
mechanisms for these beneficial effects of exercise are not fully understood.
Here, we investigated the effects of exercise training on biphasic b-cell insulin
secretory function, a key factor regulating blood glucose. Adults with type 2 dia-
betes (7F/3M, age 49 G 5 years, BMI 30 G 3 kg/m2) completed a 10-week mod-
erate-intensity exercise program and multiple components of glucose homeosta-
sis were measured. Training improved glycemic control, insulin sensitivity, and
processing of proinsulin-to-insulin. Training increased late phase b-cell function
by 38% (p = 0.01), which was correlated with changes in VO2peak suggesting
training response-dependent effects. Ras-Responsive Element Binding Protein
1 (RREB1) concentrations, a protein postulated to increase type 2 diabetes risk,
were inversely correlated with increases in training-induced late-phase disposi-
tion index, consistent with an inhibitory role of RREB1 on insulin secretion. Mod-
erate-intensity exercise training improves late-phase b-cell function and glycemic
control in adults with type 2 diabetes.

INTRODUCTION

Type 2 diabetes is a progressive, multifactorial disease which has become a worldwide health burden with

enormous costs to the healthcare system. In addition to peripheral insulin resistance, impaired insulin secre-

tion by the b-cell is one of the hallmarks of type 2 diabetes.1 In healthy individuals, a glucose challenge results

in insulin being secreted and released from the b-cell in a biphasic manner. In contrast, people with type 2

diabetes are typically characterized by b-cell dysfunction where there is a reduced first phase insulin release

frompre-stored granules, defective conversion of proinsulin to insulin, and elevated proinsulin to insulin ratio.2

During the second phase of insulin release, there is insufficient insulin protein synthesis, all leading to hyper-

glycemia and contributing to type 2 diabetes.2 Thus, improving insulin secretion and identifying new thera-

peutic targets for reversing b-cell dysfunction is critical for the prevention and treatment of type 2 diabetes.

Exercise training is important in the treatment of type 2 diabetes because this can improve glycemic con-

trol. It is thought to be primarily related to improvements in peripheral insulin resistance, but exercise

training can also affect b-cell function. Previous studies have demonstrated the beneficial effects of mod-

erate-intensity exercise training on b-cell function in adults with type 2 diabetes.3–6 However, whether mod-

erate-intensity training affects biphasic insulin secretion is not known. Moderate-intensity exercise training

can increase cardiovascular fitness.7–10 However, it is now well documented that there is significant vari-

ability among people in their responses to VO2peak following exercise training. Several studies have shown

inter-individual differences with changes in cardiovascular fitness, measured as VO2peak, in response to ex-

ercise training in people without diabetes.11–15 Less is known about the heterogeneous responses in

VO2peak, in response to moderate-intensity exercise training in people with type 2 diabetes. Exercise

training improves glycemic control in type 2 diabetes, which may be partially explained by improved insulin

secretory function. We hypothesize that in adults with type 2 diabetes, improved cardiorespiratory fitness

after exercise training associates with improved b-cell insulin secretory function.

Exercise induces the secretion of different molecules promoting tissue cross-talk.16 Some of these exer-

cise-induced circulating factors can regulate glucose metabolism.16,17 Changes in b-cell function during
iScience 26, 107226, July 21, 2023 ª 2023 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:laurie.goodyear@joslin.harvard.edu
mailto:laurie.goodyear@joslin.harvard.edu
mailto:roeland.middelbeek@joslin.harvard.edu
mailto:roeland.middelbeek@joslin.harvard.edu
https://doi.org/10.1016/j.isci.2023.107226
https://doi.org/10.1016/j.isci.2023.107226
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.107226&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Characteristics pre- and post-training intervention for type 2 diabetes

Pre-training Post-training p

Gender 7 Female, 3 male

Age (years) 49.00 G 5.00

Body weight (kg) 82.50 G 8.60 81.90 G 8.97 0.59

BMI (kg/m2) 29.88 G 3.39 29.49 G 3.41 0.33

Fat mass (kg) 31.47 G 6.85 30.61 G 7.23 0.47

Lean mass (kg) 51.00 G 7.06 51.59 G 6.77 0.32

VO2peak (mL/kg/min) 19.24 G 5.07 19.29 G 4.98 0.94
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exercise are also linked to numerous factors that are released into the circulation during activity.18 It is

therefore important to identify potential circulating factors induced by exercise training that affect insulin

secretion, and determine the responses to exercise training in people with type 2 diabetes. Ras-Responsive

Element Binding Protein 1 (RREB1) was identified as a risk factor for type 2 diabetes by genome-wide as-

sociation studies.19 RREB1 is a zinc finger transcriptional factor that binds to the calcitonin gene promoter

and increases the expression of calcitonin in medullary thyroid carcinoma.20 Calcitonin inhibits glucose-

induced insulin responses in humans in a dose-dependent manner during systemic infusion.21 Whether

there is an association between circulating RREB1 concentrations and b-cell insulin secretory function in

adults with type 2 diabetes is not known.

The aims of this study were to determine the effects of moderate-intensity endurance exercise training on

the biphasic aspects of b-cell function, and to determine if exercise training in adults with type 2 diabetes

results in heterogeneous responses in VO2peak. We also determined whether RREB1 associates with

biphasic insulin secretion in adults with type 2 diabetes. Although exercise is known to reduce peripheral

insulin resistance through adaptions in skeletal muscle, adipose tissue, and other organs, understanding

the effects of exercise training on b-cell insulin secretory function in people with type 2 diabetes may ulti-

mately lead to the identification of factors that regulate insulin secretion.

RESULTS

Moderate-intensity exercise training improves glucose tolerance and late phase b-cell

function

Ten overweight or obese adults with type 2 diabetes (7 women and 3men) completed a 10-weekmoderate-

intensity endurance exercise training program, exercising for 4 sessions/week for 45–60 min at�70–75% of

VO2peak by week 4 (Table 1). The exercise training intervention did not alter body weight, body mass index

(BMI), fat mass, or leanmass. Exercise training improved glycemic control, as HbA1C decreased from 7.7G

0.9% to 7.2 G 1% (Figure 1A). Fasting glucose showed a trend toward a decrease (p = 0.07, Figure 1B). All

participants underwent an oral glucose tolerance test (OGTT) and glucose levels decreased by 18% and

15% at 90 min and 120 min, respectively (Figure 1C). The area under the curve for the OGTT did not change

significantly following exercise training (Figure 1D), and fasting insulin and C-peptide were similar pre- and

post-training (Figures 1E and 1F). The Stumvoll index,22 a marker of insulin sensitivity that utilizes demo-

graphic data including age, sex, and BMI, along with glucose and insulin during OGTT, improved by

25% (Table 1). Exercise training did not lead to any significant changes in other glucose tolerance indices

such as insulin resistance by HOMA-IR, insulin sensitivity index by QUICKI index, and Matsuda index (Ta-

ble 2). Taken together, these data demonstrate that 10 weeks of moderate-intensity endurance exercise

training improves glycemic control and insulin sensitivity as measured by the Stumvoll index in adults

with type 2 diabetes.

To determine whether exercise training affects the different phases of b-cell function in adults with type 2

diabetes, the disposition index (DI) was subdivided into early phase DI (0-30min) and late phase DI (30-

120min of the OGTT). Early phase DI is linked to the immediate release of pre-stored insulin from granules,

whereas late phase DI is characterized by insulin synthesis and replenishment of the insulin storage pool in

the b-cell.2 We found that 6 out of 10 subjects demonstrated increased early DI, although this was not sta-

tistically significant (p = 0.1, Figure 1G). Remarkably, the late phase DI increased in all subjects, with an

average 38% improvement (p = 0.01, Figure 1H), suggesting moderate-intensity exercise training signifi-

cantly improves late phase b-cell function in adults with type 2 diabetes.
2 iScience 26, 107226, July 21, 2023
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Figure 1. Moderate-intensity exercise training improves glucose tolerance and late phase b-cell function in adults with type 2 diabetes

HbA1C(A), fasting glucose(B), glucose during OGTT (C) and area under the curve (D) pre- (blue) and post- (red) training. Fasting insulin (E) and fasting

C-peptide (F) pre- (blue) and post- (red) training. Early phase DI (G), late phase DI (H), pro-insulin (I), and pro-insulin to C-peptide ratio (J) pre- (blue) and

post- (red) training. *p < 0.05, **p < 0.01, post-versus pre-training. Data was expressed as average GSD (C).
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Pro-insulin is a precursor of insulin. Since late phase b-cell function is associated with the insulin synthesis

pathway, we evaluated the processing of proinsulin to mature insulin. In b-cells, pro-insulin is cleaved by

proteases to form insulin and C-peptide in a 1:1 ratio, and cleavage predominantly takes place in the endo-

plasmic reticulum (ER). Thus, pro-insulin to C-peptide ratio is commonly used as a measure of insulin

processing efficiency, and a biomarker of b-cell ER stress.23–26 Following exercise training, fasting serum

pro-insulin tended to decrease by 18% (p = 0.09, Figure 1I). Exercise training decreased the pro-insulin

to C-peptide ratio by 8% (Figure 1J), suggesting that exercise training decreases the accumulation of

pro-insulin, promotes the processing of pro-insulin to mature insulin, and enhances late phase b-cell func-

tion in adults with type 2 diabetes.
Subgroup analysis based on changes of VO2peak pre-to post-training

To determine if there was a relationship between the response to exercise training as determined by

cardiorespiratory fitness and biphasic insulin secretion, we evaluated and identified a strong association

between increases in VO2peak in response to endurance training with increases in late phase DI. Next,

we examined the response in b-cell function by subgroup analysis based on changes in VO2peak (Figure 2A).

Exercise training led to variable changes in VO2peak and we therefore divided our subjects in two sub-

groups: subjects in group 1 (n = 5) showed absolute increases in VO2peak while in subjects in group 2

(n = 5) showed decreases in VO2peak with exercise training (Figure 2B). Across subgroups, both the baseline
Table 2. Insulin sensitivity pre- and post-training intervention

Pre-training Post-training p

HOMA-IR 2.18 G 2.75 1.64 G 1.69 0.21

QUICKI Index 0.38 G 0.06 0.38 G 0.05 0.35

Matsuda Index 7.77 G 7.04 7.28 G 4.09 0.48

Stumvoll Index 0.04 G 0.02 0.05 G 0.02 0.01

HOMA-b 37.17 G 29.21 45.84 G 29.72 0.34

Oral disposition index 0.04 G 0.04 0.06 G 0.08 0.29

iScience 26, 107226, July 21, 2023 3
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Figure 2. Subgroup analysis based on changes of VO2peak pre- to post- training

(A) changes in VO2peak, each individual is coded with one color.

(B) VO2peak profile pre-to post-training by subgroup. Subgroup analysis of early phase DI (C), late phase DI (D), fasting serum glucose (E), HbA1C (F), fasting

serum insulin (G), fasting serum c-peptide (H), fasting serum pro-insulin (I), proinsulin to C-peptide ratio (J). two-way ANOVA was used for sub-group

analysis. ##p < 0.01 for interaction effect, *p < 0.05 and ***p < 0.001 for differences pre-training and post-training.
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and pre-to post-training subject characteristics, including age, BMI, body and composition, HbA1C, and

C-peptide were not statistically different (Table 3). Subjects in group 1 whose VO2peak increased with ex-

ercise training, showed increased early (trend, p = 0.07) (Figure 2C) and late phase DI (p=<0.001) (Fig-

ure 2D). Serum glucose and HbA1C were not statistically different (Figures 2E and 2F), but fasting insulin

decreased in subjects with increased VO2peak (Figure 2G). There was no change in C-peptide in either

group (Figure 2H). Albeit not statistically significant, pro-insulin levels and pro-insulin/C-peptide ratio
4 iScience 26, 107226, July 21, 2023



Table 3. Sub-group analysis for pre- and post-training intervention by change in VO2peak

Subjects with decreased VO2peak Subjects with increased VO2peak p

Pre-training Post-training Pre-training Post-training (two-way ANOVA)

Gender 3 Female, 2 male 4 Female, 1 male

Age 51.0 G 6.0 47.0 G 4.0

Body weight (kg) 79.1 G 5.7 79.6 G 5.7 85.9 G 10.3 84.2 G 11.6 0.4

BMI 28.5 G 3.5 28.6 G 3.7 31.3 G 3.0 30.4 G 3.2 0.2

Fat mass (kg) 28.6 G 8.3 28.8 G 9.3 34.3 G 4.0 32.5 G 4.8 0.4

Lean mass (kg) 50.3 G 7.4 51.4 G 7.2 51.7 G 7.5 51.8 G 7.2 0.4

VO2 peak (mL/kg/min) 20.7 G 6.8 18.9 G 6.7* 17.8 G 2.6 19.7 G 3.2* <0.01
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decreased in four out of five subjects with increased VO2peak (Figures 2I and 2J). Together, these data

demonstrate that the heterogeneous responses to exercise training correlate with responses in late phase

b-cell function and insulin secretion in adults with type 2 diabetes.

Moderate-intensity exercise training does not change glucagon and amylin in adults with

type 2 diabetes

Because one of the key findings in our study is the effect of exercise training on late phase DI in adults with

type 2 diabetes, we next investigated how exercise training may improve insulin synthesis. Late phase DI is

associated with insulin synthesis in the b-cell of the pancreas and exercise training may also affect other

aspects of pancreatic function. Here, we assessed other pancreatic hormones involved in the regulation

of insulin synthesis in response to OGTT. Amylin, a 37-residue peptide hormone that is co-secreted

from the pancreatic b-cells with insulin, and glucagon, a 29-amino acid peptide hormone produced by

the pancreatic a-cells and glucose counter-regulatory hormone, were measured. Amylin and glucagon

concentrations under fasting and during OGTT were similar pre- and post-exercise training and did not

change with training (Figure 3) suggesting that the effects of exercise training specifically relate to the in-

sulin-producing function of b-cells, and not to endocrine factors from a-cells and b-cells.

Changes in VO2peak positively correlate with exercise-induced improvements in b-cell

function

To better understand exercise-induced improvements in late phase DI index and the relationship with

other metabolic parameters, we next evaluated and identified significant associations between late phase

DI and all of the measured parameters, including anthropometrics, peak exercise capacity, glucose param-

eters, and pancreatic hormones at baseline and post-training intervention. Baseline late phase DI nega-

tively correlated with baseline HbA1C (Figure 4A), and serum glucose concentrations at 90min and

120min during OGTT (Figures 4B and 4C). Changes in late phase DI post training positively correlated

with changes in VO2peak (Figure 4D). The decrease in pro-insulin to C-peptide ratio tended to negatively

correlate with increased late phase DI (R = �0.55, p = 0.1, Figure 4E), indicating a potential link between

exercise-induced improvements in proinsulin to mature insulin processing and improved late phase DI.

Of interest, we also observed a correlation between higher metformin dose and lower change in

VO2peak (Figure 4F). Together, these data show an inverse relationship between late phase DI and glucose

concentrations at baseline, and a positive association between changes in DI and change in VO2peak after

exercise training.

Fasting serum RREB1 is negatively associated with late phase b-cell function

RREB1 is a transcription factor that is ubiquitously expressed in all tissues throughout the body. Mutations

in RREB1, identified by genome-wide studies, are linked to increased risk for type 2 diabetes.19 Therefore,

RREB1 concentrations may play a role in regulating b-cell function.27 To examine whether RREB1 plays a

role in exercise-induced improvements in late phase DI, we first measured serum RREB1 pre- and post-

training. Of interest, baseline serum RREB1 protein concentrations were negatively associated with

baseline late phase DI (Figure 5A) and the exercise training intervention tended to decrease serum

RREB1 concentrations (Figure 5B). Based on these findings, we investigated whether acute exercise regu-

lates RREB1 and measured RREB1 in the same subjects in response to an acute bout of maximal exercise
iScience 26, 107226, July 21, 2023 5
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during the cardiorespiratory fitness test. We found that a bout of maximal exercise decreased RREB1 con-

centrations by 51% (p = 0.0039) (Figure 5C). Together, these data indicate RREB1 as an exercise-regulated

circulating protein, which relates to improved b-cell function with exercise training.

DISCUSSION

Exercise training is critical in the prevention and treatment of type 2 diabetes, but the effects of exercise

training on b-cell function and insulin secretion are not fully understood. Here, wemake the novel observation

that 10 weeks of moderate-intensity endurance training improves late phase b-cell insulin secretory function in

adults with type 2 diabetes. We find that exercise training improves glycemic control, which may be partially

explained by improvement in insulin secretory function.We also observe heterogeneous responses in VO2peak

among adults with type 2 diabetes, and find that the improvement in late phase b-cell function is associated

with a change in VO2peak, and pre-training circulating RREB1 protein concentrations.

Type 2 diabetes is characterized by peripheral insulin resistance and b-cell dysfunction. Type 2 diabetes

develops when b-cells fail to compensate for insulin resistance, and b-cell dysfunction progressively

worsens with disease duration.28 In our study, we determined late phase b-cell function by disposition in-

dex derived from 30min to 120min of OGTT, which is an integrated and sensitive measure of b-cell function

adjusted for insulin sensitivity.29,30 Previous endurance training studies have demonstrated that in adults

with type 2 diabetes, 12 weeks of cycling (up to 75% VO2peak) improved overall b-cell insulin secretory func-

tion as measured by a hyperglycemic clamp.4 However, this improvement was only observed in adults with

moderate b-cell secreting capacity at baseline, but not low b-cell secreting capacity.4 This is in line with our

study, as low b-cell secretion is generally seen with a longer duration of diabetes and insulin dependence,

which was not observed in our subjects. In contrast to our finding of improved b-cell function, two

other studies that investigated endurance exercise training in adults with type 2 diabetes showed no

change in overall insulin secretion rate during OGTT.31,32 The methods used to measure b-cell function,

pre-training insulin secretory capacity, stages of type 2 diabetes, and the types of exercise training could
6 iScience 26, 107226, July 21, 2023
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all be potential factors for differences in exercise training effects on b-cell function. Although GLP-1 has

previously been investigated in relation to exercise training in various studies, it was not the primary focus

of our study tomeasure GLP-1. We did not determine changes in GLP-1 concentrations and cannot exclude

a role for GLP-1 as potential contributor. Our study has dissected the biphasic pancreatic b-cell insulin

secretory function in response to endurance exercise training and supports the beneficial effects of endur-

ance exercise training in adults with type 2 diabetes.

We found that endurance training resulted in heterogeneous changes in VO2peak among our subjects with

type 2 diabetes with five subjects increasing and five subjects decreasing VO2peak. Lower VO2peak is asso-

ciated with poor glycemic control,13 making it important to understand why some subjects fail to increase

VO2peak. Previous endurance exercise training studies in adults with type 2 diabetes have also shown a het-

erogeneous response in VO2peak.
33–35 Here, we identify a positive association between VO2peak and exer-

cise-induced improvements in late phase b-cell insulin secretory function and also find that while late phase

b-cell insulin secretory function improved in all participants, this beneficial adaptation was more evident in

the subgroup with improved VO2peak. Whether there is a connection between these changes in insulin

secretory function and VO2peak is not known, but will be important to study in subjects with both pre-dia-

betes and type 2 diabetes of longer duration and with different training regimens such as high-intensity

interval training.
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Factors including, but not limited to medications could affect the changes in VO2peak in response to exer-

cise training.36,37 On analyzing all parameters, we observed that the heterogeneous response of VO2peak is

linked to doses of metformin intake in these participants. Metformin has been reported to blunt the im-

provements in VO2peak, insulin sensitivity, and hyperinsulinemia by exercise training in adults with predia-

betes.38–40 Given the number of people that are treated with metformin, future studies are needed to

determine the specific mechanisms by which metformin may negatively affect cardiorespiratory fitness in

response to exercise training.

We determined that RREB1 is an exercise-regulated circulating factor. RREB1 is present in exosomes.41 Little is

known about RREB1 but, based on the RREB1 reductions after 12–14min of maximal exercise, we speculate the

individual exercise sessions that occur during the weeks of exercise training lead to recurring rapid RREB1 clear-

ance from the circulation and reduced RREB1 concentrations, potentially impacting late phase DI. In line with

this, GWAS studies have determined an association between the RREB1 locus and type 2 diabetes. Moreover,

carriers of a minor allele p.Ans1171-RREB1, predicted to reduce RREB1 function, tend to have reduced risk of

type 2 diabetes.27 Our findings show that exercise regulates circulating RREB1, and, as RREB1 is a secreted pro-

tein as well as a transcriptional factor in the cell nucleus, it will be important in future studies to determine

whether RREB1 regulates pancreatic b-cell insulin secretion in response to exercise training.

In summary, we find that in adults with type 2 diabetes, moderate-intensity endurance training improves

glycemic control as well as late phase b-cell function. This effect of exercise training on late phase b-cell

function is more pronounced in subjects with improved VO2peak. In addition, we demonstrate that

RREB1 is an exercise-induced circulating factor and that RREB1 concentrations are negatively associated

with late phase b-cell function. Whether and how RREB1 affects b-cell function remains to be explored.

We anticipate further investigations in this field to elucidate the underlying mechanisms, and potentially

lead to the development of targeted exercise interventions to enhance b-cell function and improve glyce-

mic control in individuals with type 2 diabetes.

Together, our study presents novel findings by evaluating distinct phases of beta cell function, stratifying

late-phase function based on VO2peak, and identifying a new link between RREB1 and b-cell function. These

insights deepen our understanding of beta cell function dynamics, the relationship between function and

aerobic capacity, and potential molecular mechanisms for regulating beta cell performance, with implica-

tions for future therapeutic interventions. Understanding the molecular underpinnings regulating insulin

secretion in response to exercise training is critically important in identifying novel targets for new thera-

pies for type 2 diabetes.

Limitations of the study

Some of the limitations of the study include a lower number of male participants, hence, we cannot defin-

itively exclude sex-differences in the effects of exercise training on late phase insulin secretion. Deter-

mining whether exercise-induced improvements in late phase b-cell insulin secretory function are directly
8 iScience 26, 107226, July 21, 2023
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affected by metformin requires a larger sample size. We show a correlation between circulating RREB1 pro-

tein concentrations and exercise-induced improvements in late phase b-cell function, but causality cannot

be determined in this study. It will be important to carry out future mechanistic studies to determine the

role of RREB1 in regulating insulin secretion in response to exercise training.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human serum samples This study N/A

Critical commercial assays

Human insulin ELISA Mercodia Cat#10-1113-01

Human c-peptide ELISA Crystal Chem Cat#80954

Human amylin ELISA Novus Cat#NBP2-76733

Human glucagon ELISA Crystal Chem Cat#81520

Human pro-insulin ELISA Crystal Chem Cat#90110

RREB1 ELISA Mybiosource Cat#MBS7248141

Software and algorithms

GraphPad Prism v9 GraphPad https://www.graphpad.com

Other

Bio impedance body composition analyzer Tanita Cat#TBF-215

OneTouch Verio Glucometer OneTouch Cat#XBHNGBW4

DCA Vantage Analyzer Siemens Cat#06489205

H1 Heart rate monitor Polar Cat#92053169

RT 6000D Centrifuge Sorvall Cat#323710

VO2peakmetabolic system ParvoMedics MMS-2400 Cat#24-4150HCU

75g oral glucose solution Trutol Cat#401223P
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact: Roeland J. W. Middelbeek, MD (roeland.middelbeek@joslin.harvard.edu).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ten adults with type 2 diabetes (7 females, 3 males) completed a supervised 10-week exercise training pro-

gram. Inclusion criteria included: HbA1c 6.5-9.0%, BMI 25-37kg/m2, age 25-55 years. All subjects were pre-

viously sedentary (%150mins of moderate-to-intense activity/week in the last 3 months). Exclusion criteria

consisted of: type 1 diabetes, severe complications of diabetes, heart or lung disease, current dieting or

weight loss efforts, cancer, renal or hepatic dysfunction, neurological disease, clinical history of stroke, un-

controlled hypertension, and inability to exercise at 50% of predicted heart rate reserve, among others.
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Subjects taking beta-blockers were excluded. Subjects were asked to maintain a constant diet, avoid

weight-loss efforts, and maintain all extracurricular activities during the study. During the training program,

subjects continued their current medication regimen. Anti-hyperglycemic medications used by partici-

pants included: Biguanides (8/10), GLP-1 receptor agonists (5/10), SGLT2-inhibitors (3/10), Meglitinides

(1/10), Sulfonylureas (2/10), andGlargine insulin (2/10). The study was approved by the Joslin Diabetes Cen-

ter’s Institutional Review Board and registered at Clinicaltrials.gov (#NCT03133156).
METHOD DETAILS

VO2peak test and exercise training intervention

To determine peak aerobic capacity, a standard VO2peak test was conducted by the exercise physiologist.

Subjects were not required to be fasted. For the 10-week supervised exercise training program, training

intensity was based on a target heart rate range (�70-75% of VO2peak). Initially, subjects exercised 20-

30min per day at �40-50% VO2 peak, 3 days per week. The duration, intensity and frequency of exercise

were gradually increased to 45-60 min of exercise per day, 4 times per week by week 4, at �70-75% of

VO2 peak. Subjects wore activity trackers and heart rate monitors during activities to assure compliance

with the training regimen.
Body composition and metabolic measurements

Body composition was obtained by bioimpedance (Tanita, Arlington Heights, Illinois). An OGTT was per-

formed pre- and post-training. For the OGTT, subjects were given a 75g-oral glucose solution and blood

was drawn through an IV catheter at 0, 15, 30, 60, 90, and 120 min. Serum was obtained by centrifuging the

blood at 2800rpm, 15 minutes, at 4�C in the Sorvall RT 6000D centrifuge. Capillary blood glucose was

measured by glucometer (Onetouch), serum insulin was measured by ELISA (Mercodia). HbA1C was

measured by Siemens DCA Vantage Analyzer. Homeostatic Model Assessment for Insulin Resistance

(HOMA-IR) was calculated as the product of fasting glucose and insulin (Matthews et al., 1985). HOMA-b

was calculated as ((20 X fasting insulin)/ (Fasting glucose-3.5))*100%.42,43 QUICKI index was calculated as

1/(log (fasting insulin) + log (fasting glucose)).44 Matsuda index was calculated as 10,000/(fasting

glucose 3 fasting insulin 3 mean of glucose from 0min to 120min of OGTT 3 mean of insulin from 0min

to 120min of OGTT)1/2.45 Stumvoll index was calculated as 0.226-(0.00323 BMI- (0.0000645 3 insulin at

2-hr OGTT)-0.00373glucose at 1.5-hr OGTT).22 Oral disposition index was calculated as DInsulin0–30/

DGlucose0–30 3 (1/fasting insulin).46 Early phase DI was calculated as the product of Matsuda index and

early phase insulinogenic index (Insulin30 �0/Glucose30 �0).
47–49 Late phase DI was calculated as the product

of Matsuda index and late phase insulinogenic index (Insulin tAUC (30-120min) / Glucose tAUC (30-120min)).
47–49
Hormonal and cytokine measurements

Fasting serum samples collected during OGTT, pre-training and at least 48 hours after the last exercise

bout of the training program, were analyzed for insulin (Mercodia), C-peptide (Crystal Chem), amylin

(Novus), glucagon (Crystal Chem), and pro-insulin (Crystal Chem) only at 0 min of OGTT, according to man-

ufacturer’s instructions. RREB1 was measured in fasting serum samples before, immediately after, and

30minutes of rest post VO2peak using a commercially available ELISA (Mybiosource). All the assays were

run in duplicates.
QUANTIFICATION AND STATISTICAL ANALYSIS

Prism v9 (GraphPad) was used for statistical analyses. Data are described as meanG SD. Differences in pre-

and post-exercise training intervention were compared by two-tailed paired t-test. Sub-group analyses

were performed by two-way ANOVA, with Bonferroni’s multiple comparisons test as post hoc analyses

when there was significant interaction. The post to pre training study outcomes were calculated as post

(raw value) minus pre (raw value). Normality of the data was assessed by a Shapiro-Wilk test and a D’Agos-

tino & Pearson omnibus test. Pearson’s correlation was used to examine associations for parametric data.

Spearman’s rank correlation was for nonparametric data. Significance was accepted as p % 0.05.
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