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Abstract: Global health is facing the most dangerous situation regarding the novel severe acute
respiratory syndrome called coronavirus 2 (SARS-CoV-2), which is widely known as the abbreviated
COVID-19 pandemic. This is due to the highly infectious nature of the disease and its possibility
to cause pneumonia induced death in approximately 6.89% of infected individuals (data until
27 April 2020). The pathogen causing COVID-19 is called severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), which is believed to be originated from the Wuhan Province in China.
Unfortunately, an effective and approved vaccine for SARS-CoV-2 virus is still not available, making
the situation more dangerous and currently available medical care futile. This unmet medical need
thus requires significant and very urgent research attention to develop an effective vaccine to address
the SARS-CoV-2 virus. In this review, the state-of-the-art drug design strategies against the virus are
critically summarized including exploitations of novel drugs and potentials of repurposed drugs.
The applications of nanochemistry and general nanotechnology was also discussed to give the status
of nanodiagnostic systems for COVID-19.

Keywords: COVID-19; SARS-CoV-2; coronavirus; medicinal chemistry; theranostic strategies;
public health

1. Introduction

As from the beginning of 2020, the global health sector is passing through a perilous situation
owing to the ongoing outburst of a novel severe acute respiratory syndrome called coronavirus 2
(SARS-CoV-2) [1]. This pandemic is abbreviated as COVID-19 (Coronavirus Disease 2019), as is
occurred in Wuhan, Hubei province, in 31 December, 2019 and rapidly spread throughout China [2–4].
At the time of this writing, COVID-19 has spread most of the countries around the globe and it may

Nanomaterials 2020, 10, 852; doi:10.3390/nano10050852 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0003-4766-9214
https://orcid.org/0000-0002-4042-8525
https://orcid.org/0000-0003-1516-3761
http://dx.doi.org/10.3390/nano10050852
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/5/852?type=check_update&version=2


Nanomaterials 2020, 10, 852 2 of 23

have badly affected millions of people. Data updated as of 27 April, 2020, count 210 countries and
territories around the world and one international conveyance (the “Diamond Princess” cruise ship
harbored in Yokohama, Japan) with around 3,004,926 cases and 207,262 confirmed deaths (data until
24 April 2020) [5]. This virus appeared as a novel human pathogen that causes severe acute respiratory
syndrome (SARS). According to the World Health Organization (WHO), there is incessant emergence
of viral diseases, which causes serious issues to public health and medical communities [6].

In the past 18 years, several viral diseases have been reported, such as severe acute respiratory
syndrome coronavirus (SARS-CoV) in 2002 to 2003, and H1N1 influenza in 2009. In 2012, Middle East
respiratory syndrome coronavirus (MERS-CoV) was reported for the first time in Saudi Arabia [7,8].
In the beginning of the COVID-19 spread, it was not possible to identify the causative agent, and
the first cases were reported as “pneumonia of unknown etiology”. Later, The Chinese Center for
Disease Control and Prevention (CDC) and local CDCs conducted rigorous outbreak research programs.
The etiology of this disease is now identified to a new virus belonging to the coronavirus (CoV) family.
Compared with the SARS-CoV in 2002, this new virus has a much stronger communicable capacity
and has hastily spread globally. On 30 January 2020, the outbreak of SARS-CoV-2 was declared by
the WHO as a Public Health Emergency of International Concern (PHEIC) because it had spread to
18 countries and because four countries reported human-to-human transmission [9].

As we know, genetic information is usually carried by DNA, however, for many viruses including
HIV and the influenza virus, RNA is used as their basic genetic material. The corona viruses also
belongs to the RNA virus family and it consists of a single, 30,000-base-long RNA [10]. A large
family of single-stranded RNA viruses (+ssRNA) can be isolated from different animal species [11].
These viruses can cross species barriers and in humans it can cause illness ranging from the common
cold to more severe diseases such as SARS and MERS. SARS viruses have possibly originated from
bats and then transmitting into other mammalian hosts. For example, the Himalayan palm civet acts
as intermediate for SARS-CoV, and the dromedary camel for MERS-CoV before transition to humans.
The dynamics of SARS-Cov-2 are presently unknown, but there is conjecture that it also has an animal
origin [12–15].

At present there are no vaccines, monoclonal antibodies (mAbs), or drugs available for COVID-19.
However, a sturdy research effort is presently under way to develop a vaccine against COVID-19
and some may be available in a short time [6]. Currently, most of the countries have taken strategies
such as social distancing in order to reduce community spread. Such approaches could include
isolating ill persons (including voluntary isolation at home), school closures, and telecommuting where
possible [16].

Kampf et al. conducted a systematic review on the analysis of literature regarding different
human corona viruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East
Respiratory Syndrome (MERS) coronavirus, or endemic human coronaviruses (HCoV). The authors
concluded that these viruses can persist on inanimate surfaces such as metal, glass, or plastic for up to
9 days. Further they can be effectively eliminated by using surface disinfection procedures with 62% to
71% ethanol, 0.5% hydrogen peroxide, or 0.1% sodium hypochlorite within 1 min [17].

This article summarizes the state-of-the-art drug design strategies against the COVID-19 virus
including exploitations of novel drugs and potentials of repurposed drugs. The applications of
nanochemistry and generally nanotechnology were also discussed to give the status of nanodiagnostic
systems for COVID-19.

2. New SARS-CoV-2 (COVID-19)

2.1. Society Impact, Diagnosis, Treatment Approaches

The World Health Organization (WHO) announced “COVID-19” as the official name for the
2019 novel CoV, a CoV variety that infected and distressed the lower respiratory tract of patients
with pneumonia in Wuhan, China. Additionally, it has been provided with reference names such
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as SARS-CoV-2. In the fall 2019, a group of patients were reported with pneumonia of indefinite
cause with association to a native Huanan South China Seafood Market in Wuhan, Hubei Province,
China, after which it has spread globally [18–20]. As compared to SARS-CoV, the COVID-19 has
showed enhanced levels of pandemic and transmission risk, as the effective reproduction number (R)
of COVID-19 or SARS-CoV-2 (2.9) was found to be more than the earlier reported effective reproductive
number (R) of SARS-CoV (1.77) during the early stage [21]. Results from various laboratories have also
revealed that COVID-19 exhibited similar pathogenesis and behavioral conditions as that of beta-CoV
genera recognized in bats, which was located in a cluster of SARS or SARS-like CoV [22].

To date, complete and comprehensive clinical expression for COVID-19 or SARS-COV-2 is not
distinct and clear, as the reported and observed symptoms and indications in infected patients ranges
from mild to severe, even resulting in death for some [19]. From the study cases reports of till date,
fever, cough, pneumonia, myalgia or fatigue, and complex dyspnea were found to be some of the most
common symptoms, however, headache, diarrhea, runny nose, hemoptysis and phlegm-producing
cough were reported as less common symptoms [9,19]. It was reported that the patients with mild
symptoms improved their health conditions after one week while the patients with severe infections
due to virus experienced progressions in respiratory tract most likely due to the alveolar injury
and ultimately lead to death [23]. Medical experts and virologists have suggested the patients with
suspected infections to follow the diagnosis procedures: execution of RT-PCR to recognize the positive
nucleic acid of COVID-19 in sputum, swabs from throat and secretions of the lower respiratory
tract samples.

As far as the reports have showed, no specific and exact antiviral treatment has been established yet
for the effective treatment or management of COVID-19. Concerning the COVID-19 infected patients,
it has been suggested to follow suitable symptomatic management and supportive cautions [9,19].
For the evaluation of the efficiency or safety of the targeted medication for the prognosis of COVID-19,
six clinical trials have been registered in both the Chinese Clinical Trial Registry and the International
Clinical Trials Registry [20,24]. Moreover, as this severe pandemic spreads worldwide, no vaccine has
been developed yet for the prevention or management of COVID-19. So far, the preeminent approach
for prevention from this pandemic virus is to circumvent ourselves from being exposed to this viral
infections [25].

The treatment with established antiviral drugs and general corticosteroids used for general
clinical practice including neuraminidase inhibitors (oseltamivir, zanamivir, peramivir, etc.), acyclovir,
ganciclovir and ribavirin, as well as methylprednisolone for influenza virus, have found to be
inacceptable for the prevention and treatment of COVID-19 and also are not recommended [26].
Moreover, remdesivir (GS-5734), a 1′-cyano-substituted adenosine nucleotide analog prodrug, have
exhibited potent antiviral activity against numerous RNA viruses. In one of the reported case in
US, being the first case reported till date, remdesivir usage effectively treated COVID-19 infected
patient [27].

On the other hand, recent publications have disclosed that chloroquine (CQ) can potentially inhibit
the in vitro replication of some CoVs. So, the experts hypothetically suggested that CQ can progress
the clinical consequences of the COVID-19 infected patients. However, the molecular mechanisms
by which CQ could accomplish such outcomes remains to be further examined and explored. Since,
COVID-19 was established a few days ago, to utilize the similar cell surface receptor ACE2 against
SARS-CoV-1 [28,29], it might be hypothesized that CQ could potentially inhibit the glycosylation of
the ACE2 receptor and thus could prevent the COVID-19 or SARS-CoV-2 binding to the targeted cells.
Certainly, if COVID-19, as other CoVs (beta-CoVs), targets the sialic acids on some cell subtypes, then
CQ could hinder the interactions and thus could be able to treat the viral infections [30,31]. Today,
primary studies have indicated that CQ interfere with COVID-19 efforts to acidify the lysosomes and
apparently hinders the cathepsins, which requires a low pH for optimum cleavage of COVID-19 spike
protein, a prime necessity to the establishment of the auto-phagosome [32,33]. It could be suggested
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that a combination of CQ and remdesivir could be a potent therapy for the management of pandemic
COVID-19 in vitro.

ARDS (acute respiratory distress syndromes) are distressing conditions of prodigious pulmonary
inflammations and hypoxemic circumstances, leading to severe illness and mortalities. The key
therapeutic approaches have been concentrated over various strategies that could efficiently inhibit
extreme inflammations or managing the subsequent physiological imbalance, triggering respiratory
lapse [34]. There are various therapeutic interventions which are currently used in patients suffering
from ARDS, including anti-inflammatory agents (corticosteroids, pharmaconutrients, antioxidants,
anti-proteases, ketoconazole), ventilator agents (neuromuscular blockers, β2 agonists, surfactants),
diuretics, anti-coagulants, vasodilators and others. Apart from these approaches, various emerging
therapies have also been reported, which includes anti-inflammatory agents (statins, insulin, macrolides,
MMPs, aspirin, vitamin D, anti-interleukin 8), cellular therapies (stem cells, growth factors, colony
stimulating factors) angiotensin-converting enzyme (ACE) inhibitors and forth more [35]. Moreover, in
2002, the importance of the ACE-2 enzyme was found seemingly widespread in the case of severe acute
respiratory syndrome (SARS). Interestingly, for a novel coronavirus infection that caused impaired
functions, unobstructed functioning of renin-angiotensin system (RAS) and thus caused acute lung
injuries, the ACE-2 enzyme was recognized as a specific receptor [36]. Furthermore, such strategies
could possibly decrease the incidence of mechanical ventilation injuries, so preclinical or clinical trials
focusing hindrance and initial interventions should be accessed to mitigate ARDS.

2.2. Pathophysiology and Related Facts

Coronavirus possesses a positive-sense single-stranded-RNA genome. The angiotensin responsible
in converting enzyme 2 (ACE2) has been recognized as the host cellular receptor for SARS-CoV2
envelope spike glycoprotein [37]. The type I membrane protein, ACE2, particularly expressed on cells
in the heart, blood vessels, kidney, gastrointestinal tract, and, most importantly, lung AT2 alveolar
epithelial cells, are easily prone to viral infections [38]. SARS-CoV-2 infection leads to the down
regulation of ACE2 expression, thus resulting in excessive production of angiotensin II by the related
enzyme ACE. Pulmonary vascular permeability is increased by the stimulation of type 1a angiotensin II
receptor (AGTR1A) and thus the decreased expression of ACE2 leads to an increased lung damage [39].
It has been postulated that, this type of mechanistic pathway causes an increased risk of infection as well
as the harshness of COVID-19 [40]. When the viral RNA genome is discharged into the cytoplasm, and
the RNA is uncoated to permit translation of transcription of the sub-genomic RNAs as well as for the
replication of viral genome [41]. Progression to ARDS causes Cytokines Release Syndrome (CRS), that
is, the upregulation of pro-inflammatory cytokines and chemokines, and this pattern, is very similar to
that of secondary haemophagocytic lymphohistiocytosis (sHLH). Approximately around 50% patients’
sHLH causes unrelenting fever, cytopenias and hyperferritinaemia, and pulmonary involvement [42,43].
In the majority of severe COVID-19 infections, a sHLH-like cytokine profile has been reported. This
cytokine profile is characterized by increased levels of a number of cytokines (interleukin-1β [IL-1β],
IL-2, IL-6, IL-7, IL-8, tumor necrosis factor-α [TNF]) and chemokines (CXC-chemokine ligand 10
[CXCL10] and CC-chemokine ligand 2 [CCL2]) [44,45]. The administration of this cytokine tornado is
one of the major challenges concerning COVID-19 infection.

3. Drug Development for SARS-CoV-2

Until now (unfortunately) there is no any effective recipe for drug synthesis or use for SARS-CoV-2
infection; the latter results in fatal inflammatory responses and acute lung injury. Effective and suitable
drug candidates have to be designed to resolve this due to this urgent and unmet medical need.
SARS-CoV-2 Mpro protease constitutes one of the most attractive antiviral drug targets, especially in
the design and development of SARS drugs.

Rut et al. provided a structural framework for the design of inhibitors as antiviral agents or
diagnostic tests by preparing a combinatorial library of fluorogenic substrates with glutamine in the P1
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position [46]. The authors detected substrate specific preferences of the SARS-CoV and SARS-CoV-2
proteases, using natural and a large panel of unnatural amino acids.

Ton et al. developed a novel deep learning platform called “deep docking” (abbreviated as DD)
and conducted docking studies on 1.3 billion compounds from ZINC15 library and identified the
top 1000 potential ligands for SARS-CoV-2 Mpro protein [47]. These structures are made available to
the research community for doing subsequent experiments involving cell culture and animal model
experiments. This study is very relevant since it is very fast in obtaining docking score from in silico
experiments and enables structure-based virtual screening of billions of purchasable compounds in a
short time. DD relies on a deep neural network trained with docking scores of small random samples of
molecules extracted from a large database to predict the scores of remaining molecules and, therefore,
discard low scoring molecules without investing time and resources to dock them.

On the other hand, controversial inference which indicates the lack of suitability of SARS-CoV-2
Mpro as the protein target was also reported. Molecular dynamics investigations on Mpro with a
highly similar SARS protein was also reported [48]. This study stated that the active sites in both
proteins showed major differences in both shape and size indicating that repurposing small molecule
inhibitor SARS drugs for COVID-19 may be a futile exercise. The neutralizing antibody, which binds
to viral capsid to inhibit cellular entry of virus and uncoating of the genome, is the specific defense
against viral pathogens.

Park et al. attempted an investigation to identify neutralizing antibodies that can bind to
SARS-CoV-2 Spike (S) protein and interfere with the interaction between viral S protein and a host
receptor by bioinformatics tools [49]. The sequence analysis of S protein showed two major differences
in the RBD region of the SARS-CoV-2 S protein compared to SARS-CoV and SARS-CoV related bat
viruses (btSARS-CoV). The insertion regions were close to interacting residues with the human ACE2
receptor. The authors successfully demonstrated that the CR3022 neutralizing antibody in human
beings may have higher binding affinity with SARS-CoV-2 S protein than SARS-CoV S protein. Further,
F26G19 and D12 mouse antibodies could bind to SARS-CoV S protein with high affinity.

Qamar et al. conducted an effective multi-epitope vaccine (MEV) against SARS-CoV-2 by
taking seven antigenic proteins as target and epitopes (B cell, IFN-γ and T-cell) [50]. Docking
studies demonstrated a stable and strong binding affinity of MEV with TLR3 and TLR8, while codon
optimization and in silico cloning ensured increased expression in the Escherichia coli K-12 system.
Future experimental validations in this direction can give valuable results in vaccine development.

Ko et al. reported 54 molecular hits with a therapeutic index (TI) greater than 6 by screening
5406 molecules including US Food and Drug Administration (FDA) approved drugs and bioactive
compounds [51]. This study demonstrated that out of 12 FDA approved drugs, 8 and 4 therapeutics
act on the early and late stages of the viral life cycle, respectively. Among the early acting drugs, 3
therapeutics with a TI > 100 were cardiotonic agents.

Zhang et al. suggested the potential of Chinese medicine to develop a drug against COVID-19
by in silico screening and network pharmacology of Chinese herbal medicines [52]. Zhu et al.
introduced a ligand-based approach, named “D3Similarity”, which is based on the molecular similarity
evaluation between the submitted compound structures and those in an active compound database [53].
This study revealed reliability and efficiency of D3Similarity based on the two-dimensional and
three-dimensional similarity evaluation of molecular structures, virtual screening, and target prediction
could be performed according to similarity ranking results.

Some other receptors were also reported as the therapeutic target for designing drugs against
COVID-19. Zhang et al. reported angiotensin converting enzyme 2 (ACE2) receptor as a potential
target [54]. It is based on the fact that cell lines that facilitate viral replication in the presence
of ACE2 may be most efficient in large-scale vaccine production. The authors demonstrate four
major therapeutic approaches regarding ACE2 receptor such as: (i) spike protein-based vaccine;
(ii) inhibition of trans-membrane protease serine 2 (TMPRSS2) activity; (iii) blocking ACE2 receptor;
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and (iv) delivering excessive soluble form of ACE2. These approaches are schematically represented
in Figure 1 given below.Nanomaterials 2020, 10,  6 of 23 
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4. Old Drug Recipes for the New Target

The concept of drug repurposing deserves significant attention in managing COVID-19 treatment
owing to its extremely high infectious rate and urgency for the unmet medical need. Repurposed
drugs are very beneficial since they can bypass the preclinical trials associated with drug research and
can give quick benefit to patients [55]. Guo have summarized the importance of repurposed drugs in
COVID-19 therapeutics and other viral diseases related to it [56].

Wang et al. evaluated FDA approved drugs including ribavirin, penciclovir, nitazoxanide,
nafamostat, chloroquine (CQ) and two well-known broad-spectrum antiviral drugs remdesivir (RDV,
GS-5734) and favipiravir (T-705) against a clinical isolate of 2019-nCoV in a cell culture infection
model [33]. The authors found that two compounds CQ (EC50 value = 1.13 µmol/L; CC50 > 100 µmol/L,
SI > 88.50) and RDV (EC50 = 0.77 µmol/L; CC50 > 100 µmol/L; SI > 129.87) potently blocked virus
infection at low-micromolar concentration and showed high selectivity index. RDV is already proved
to be active against several viruses and currently under clinical trials to evaluate its efficacy against
Ebola virus infections. This study gives additional insights on the use of this adenosine analogue
prodrug against COVID-19 infections. On the other hand, CQ is already well known for its action
against malarial parasite infections and anti-inflammatory properties [57,58].

Further CQ has been approved for the clinical treatment of autoimmune diseases such as lupus
erythematosus and rheumatoid arthriti [59]. Recently, CQ have been revealed to suppress the
infection of a diverse group of viruses including SARS-CoV, MERS-CoV, EBOV, influenza A virus,
Chikungunya virus, human immunodeficiency virus, dengue virus, West Nile virus, Crimean Congo
hemorrhagic fever virus, and hepatitis A virus [60]. Savarino et al. demonstrated that CQ can
efficiently enter the cells and accumulate in acidic compartments such as lysosomes, endosomes and
trans-Golgi network vesicles, consequently raising their pH value, while many viruses need the acidic
endocytic organelles at some stages of their replication, such as viral uncoating and cellular entry via
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membrane fusion [61]. The detailed mechanism of action of CQ thus requires significant attention.
Tony et al. provides the most possible mechanism of action of CQ against SARS-CoV-2, which is the
suppression of phosphatidylinositol binding clathrin assembly protein (PICALM), which prevents
endocytosis-mediated cellular uptake of SARS-CoV-2 [62]. This can be represented, as shown in
Figure 2.Nanomaterials 2020, 10,  7 of 23 
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Figure 2. Mechanism of action of chloroquine against SARS-CoV-2. Reprinted with permission taken
by Springer Nature [62].

Gao et al. reported that Chloroquine phosphate was very effective and safe for COVID-19
associated pneumonia in multicenter clinical trials conducted in China [63]. The hydroxyl derivative
of CQ, hydroxychoroquine (HCQ) was also very recently reported for its action against SARS-CoV-2.
Zhou et al. suggested the efficacy of HCQ in attenuating the severe progression of COVID-19, inhibiting
the cytokine storm by suppressing T cell activation and with an advantage of safety clinical profile
especially suitable for pregnant women [64].

Gautret et al. successfully demonstrated the synergistic effect of hydroxychoroquine and
azithromycin in 20 COVID-19 cases and observed efficient viral elimination [65]. Similarly, Xu et al. also
reported the efficacy of broad spectrum antiviral agent Niclosamide against COVID-19 [66]. This work
is also a significant example for drug repurposing extending the scope to clinical trials. Fan et al. used
pangolin coronavirus GX_P2V as a workable model for evaluating the efficacy of repurposed drugs for
2019-nCoV treatment [67]. This study revealed that cepharanthine (CEP), selamectin, and mefloquine
hydrochloride exhibited complete inhibition of cytopathic effects in cell culture at 10 µmol/L with CEP
having most potent inhibition of GX_P2V infection, with a concentration for 50% of maximal effect
[EC50] of 0.98 µmol/L. Hui et al. suggested the use of remdesivir, lopinavir/ritonavir, lopinavir/ritonavir
combined with interferon-β, convalescent plasma, and monoclonal antibodies 2019-nCoV pneumonia
patients [68].

Controversial results are indicated by Cao et al; lopinavir-ritonavir treatment did not resulted in
any benefit beyond standard care [69].Wang et al. reported that there was significant improvement in
patients who underwent antiviral treatment including lopinavir/ritonavir regarding their pneumonia
associated symptoms [2]. This treatment also significantly reduced β-coronavirus viral loads. Russel
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et al. reported that corticosteroid treatment for 2019-nCoV lung injury is not effective [70]. All these
observations suggest a thorough investigation for understanding the effects of conventional antiviral
drugs against COVID-19.

Favalli et al. provides an indication for using antirheumatoid arthritis drugs for COVID-19 with
their pros and cons by correlating with the pathophysiology of COVID infection [71]. The authors
suggested following type of anti-rheumatoid arthritis drugs for possible effect towards COVID virus
as shown in Table 1.

Table 1. Role of anti-rheumatic drugs in COVID-19 infection [71].

Drug Mechanism of Action

Chloroquine
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Chen et al. did virtual screening using 3CL (pro) molecular model and observed that antivirals ledipasvir 
or velpatasvir are particularly attractive as therapeutics acting through dual inhibitory actions on two viral 
enzymes with minimal side effects [74]. Phytochemicals with antiviral effects should also get significant 
attention. Shaghaghi reported the effectiveness of terpenoids for the use as low risk drugs by doing molecular 
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Liu et al. observed that an anticoagulant agent dipyridamole (DIP) suppressed HCoV-19 replication
at an EC50 of 100 nM as evident from in vitro studies [72]. The authors selected DIP by screening
an FDA approved drug library and concluded that HCoV-19 infected patients could potentially
benefit from DIP adjunctive therapy by reducing viral replication, suppressing hypercoagulability, and
enhancing immune recovery.

Sang et al. verified the assumption of using HIV-1 protease inhibitors as anti-SARS drugs
by targeting SARS-Co-V 3CLpro [73]. The authors employed six approved anti-HIV-1 drugs to
investigate their binding interactions between 3CLpro. Molecular docking and MM-PBSA binding free
energy calculations demonstrated that Darunavir has the best binding affinity with SARS-Co-V-2 and
SARS-Co-V 3CLpro among all inhibitors, indicating the potential to become an anti-COVID-19 drug.

Chen et al. did virtual screening using 3CL (pro) molecular model and observed that antivirals
ledipasvir or velpatasvir are particularly attractive as therapeutics acting through dual inhibitory
actions on two viral enzymes with minimal side effects [74]. Phytochemicals with antiviral effects
should also get significant attention. Shaghaghi reported the effectiveness of terpenoids for the use as
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low risk drugs by doing molecular docking studies in novel COVID-19 protease [75]. Elfiky suggested
the effectiveness of Sofosbuvir, IDX-184, Ribavirin, and Remidisvir as potent repurposed drugs against
the HCoV disease, which is a good example of drug repurposing [76]. Baron et al. reported Teicoplanin,
an antibiotic used to treat staphylococci infection as an alternative drug against SARS-Cov-2 affected
patients [77]. This observation has to be confirmed through animal studies since it was already proved
to be active against previous corona viruses.

5. Perspectives in Nanoscience against Respiratory Viruses

Advancements in nanoscience regarding viruses causing respiratory diseases can be found.
Although there is not any literature available regarding drastic and successful therapeutic strategies of
nanotechnology against COVID-19, the following data can guide the upcoming research works for
developing both a successful and effective nanomedicine against SARS-CoV-2 and “give an obstacle”
of related pulmonary disorders associated with these viral infections.

The advantages of using nanomedicine for the management of respiratory viruses were reviewed
in literature [78]. The gateway of respiratory entry for most of the viruses including influenza and
respiratory syncytial virus is the respiratory mucosa. Their journey to the lower respiratory tract
after infecting the upper respiratory tract is the cause of respiratory diseases. Conventional and
subunit vaccines possess limitations such as reversion to pathogenic virulence leading to weak immune
response and partial or limited immunogenicity, respectively. These limitations can be resolved by the
implementation of nanoparticles (NPs) based therapeutic approaches due to their features such as size
and shape control and surface functionalization which ultimately leads to strong immunogenicity and
enhanced antigen presentation. Recent literature suggests the toxicity concerns of NPs as quantum dots
which need to be carefully addressed while designing theranostic NPs for respiratory diseases [79].

Novel NPs were reported, which can improve the performance in the treatment of respiratory
diseases through different mechanism of action which are (i) the development of polymers with faster
mucus penetration and do not remain stuck, overcoming this barrier, (ii) the creation of biodegradable
NPs with the stability to overcome the cell membrane and act in the lung with minimal levels of
toxicity, causing no lesions during treatment, (iii) modification of the chemical structure of NPs by
adding surface capping agents such as polyethylene glycol (PEG).

5.1. Nanoscience to Face Various Viruses

Influenza virus: Genomic mutations and antigenic shifts between various influenza species yields a
high degree of variance that leads to the inception of novel influenza viral strains as well as unnecessary
drug resistance [80]. A polymeric nanosystem of STP702 (FluquitTM) derived from Sirnaomics is
presently under preclinical investigations. The systems encapsulate siRNA that could target the
conserved areas of influenza to display significant antiviral reaction against H1N1 (swine flu), H5N1
(avian flu), and the newly found H7N9 [81]. Heat stimulant hydrogels called ‘Nanotraps’ are successful
in trapping living viral cell, RNA, and proteins [82]. This novel technology could be further employed
for treating infectious disorders such as influenza virus. Hendricks et al. successfully employed
liposomes for transporting glycan sialylneolacto-N-tetraose c (LSTc)- sialoside, a synthetically derived
receptor to bind and capture the influenza A virus, in a dose dependent fashion [83]. Hemagglutinin
(HA) as well as neuraminidase (NA), are influenza glycoproteins, which function in viral attachment
(to sialic-acid containing receptors on the cell surface) and release, respectively [84] Oseltamivir, a NA
inhibitor, impedes the cell-cell spread of influenza virus [85]. Li et al. modified silver NPs (AgNPs)
with oseltamivir to proficiently reduce H1N1 infection by constraining both HA and NA, in vitro.
Nanocarriers also demonstrated antiviral actions by DNA fragmentation prevention, condensation of
chromatin and caspase-3 function. Toxicity studies of oseltamivir-modified silver nanoconstructs were
identified by TEM, electron microscopy, cell viability assays, and cytopathic effect and were seen more
than oseltamivir control drugs in MDCK cell lines [86]. In a different study, polylysine-linker was used
to fabricate DNA functionalized titanium dioxide (TiO2) nanocarriers that targeted the 3′non-coding
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area of influenza a virus. These NPs entered cells without the aid of transfection agents and strongly
inhibited influenza A in vitro [87].

Human papillomavirus: These viruses target the epithelial cells and yield a lot of symptoms,
which include common warts, cervical carcinoma, and cancer. More than 100 types of HPV have been
identified and classified to be highly risky STP909 (CervisilR), a nano drug candidate, is loaded with
siRNA to combat HPV16 and HPV18, which account for 70% of cervical cancer. In vitro studies show
that from the E7 genes of HPV16 and HPV18, mRNA duplexes were formed, while tests in rabbits
demonstrated that the NPs result in a knock-down of E7 gene. Many other gene silencing experiments
that target E7 gene in mice models, mammalian cells, as well as vaccine studies, have been investigated
in vaccine formulations [88,89].

Respiratory syncytial virus (RSV): A siRNA loaded lipid based nanocarrier, ALN-RSV01, combats
the nucleocapsid “N” gene which is a key viral protein of RSV. It was the first RNAi-based treatment
authorized for clinical studies and has now reached phase II, which indicate very safe and successful
antiviral consequences [90,91].

Human parainfluenza 3 (HPIV-3): The latest research revealed suppression of HPIV-3 replication,
possibly due to a blocking function of the cell-virus leveraging AgNPs. The findings of this analysis
indicate that the inhibitory behavior depends on both the NPs size and zeta potential [92].

Although, till date, no specific targeted delivery systems have been developed or explored for
the management SARS-CoV, SARS-CoV-2 (COVID-19) and other CoV strains, it is expected that
nanotechnology-based treatment approaches including monoclonal antibodies or vaccines, can find a
way for efficient and rapid diagnosis.

5.2. Specific Examples of Nanoparticles against Viruses

Disease caused by respiratory syncytial virus (RSV) was reported to be eliminated in mice by
using virus-like NPs carrying RSV fusion proteins (F VLP). The advantage of using FVLP is that they
act against RSV by inducing natural killer cells, activated IFN-γ(+), and IFN-γ(+) tumor necrosis
factor (TNF)-α(+) CD8(+) T-cells in the lung and bronchiolar airways during the infection stage but
not forming harmful lung plasmacytoid dendritic cells (DCs) and effector T-cells [93]. RSV was
also successfully inhibited by 56% in BALB/c mice by gold nanorods through upregulated antiviral
genes due to GNR mediated TLR, NOD-like receptor and RIG-I-like receptor signaling pathways.
Figure 3 illustrate the major types of nanoparticles which are reported to act against viruses and can be
promising tools to act against COVID-19 infections.
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Major NPs reported for acting against respiratory viruses are three categories given below [78].
Polymeric NPs: They possess exciting properties such as tunable properties, feasible synthetic

protocols, and good biocompatibility, which makes them interesting candidates for biomedical
applications. Poly (lactic-co-glycolic acid) (PLGA) is one of the well-known member of this
category which is approved by FDA for application in human body. This is due to the excellent
biocompatibility and biodegradability in the human body [94]. Other examples include chitosan,
and N-(2-hydroxypropyl) methacrylamide/N-isopropylacrylamide (HPMA/NIPAM) which showed
promising results as intranasal vaccines against respiratory viruses

Self-assembling proteins NPs: These are prepared through the oligomerization of monomeric
proteins, which were found suitable for biomedical applications [95].

Inorganic NPs: Extensive literature is available regarding the biological effects of inorganic NPs
such as metal oxide NPs, which showed good results in antibacterial and antifungal studies [96].
Features such as easy synthesis, biocompatibility, and optical properties make them suitable for
biological applications. However, inorganic NPs that show good action against respiratory viruses are
scarce and need to be investigated thoroughly with urgent attention.

Peptide-based NPs: Earlier studies have showed applications of peptide inhibitors
(short-sequenced) and mutations of amino acids could potentially act against the infections associated
with SARS-CoV [97]. As reported, a peptide-based vaccine which could express HRC, trimeric coil
conformation stage, could act as an ideal therapeutic approach for the intervention of SARS-CoV
associated infections, and this approach is established through peptide-based NPs [98]. In another
study, a vaccine moiety, P6HRC1, was achieved by binding a peptide ligand with a B-cell epitope from
the SARS-B HRC1 spike protein and self-accumulated through dialysis in presence of refolding buffer.
Results showed that the researchers were able to generate the requisite conformation-specific antibodies
which potentially neutralized the SARS-CoV infections via NPs-based systems [99]. In recent days,
researchers are concurrently working on the establishment of potential peptide-based approaches on
the basis of preliminary molecular dynamics simulation studies. In a recent study, a peptide inhibitor
isolated from ACE2 provided significant traces for the blocking of SARS-CoV-2. Furthermore, it was
reported that the binding efficacy can be increased through multiple binding of nanocarrier-linked
peptides [100].

The reported NPs against different respiratory viruses through nasal administration are
summarized in Table 2.
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Table 2. Types of nanoparticles against respiratory viruses [78].

Material Size (nm) Virus Antigen/Epitope Adjuvant References

Polymeric nanoparticles

PLGA a 225.4 Bovine parainfluenza 3 virus (BPI3V) BPI3V proteins - [101]
Swine influenza virus (H1N2)

200–300 Inactivated virus H1N2
virus - [102]

γ- PGA b 100–200 Influenza (H1N1) Hemagglutinin - [103]

Chitosan

140 Influenza (H1N1) H1N1 antigen - [104]
300–350 Influenza (H1N1) HA-Split - [105]

571.7 Swine influenza virus (H1N2) Killed Swine influenza - [106]
200–250 Influenza (H1N1) Antigen M2e Heat shock protein 70 ◦C [107]

HPMA/NIPAM c 12–25 Respiratory syncytial virus (RSV) F protein TLR-7/8 agonist [108,109]
Polyanhydride 200–800 Respiratory syncytial virus (RSV) F and G glycoproteins - [110,111]

Self-assembly proteins and peptide-based nanoparticles

N nucleocapside protein
of RSV

15 Respiratory syncytial virus (RSV) RSV phosphoprotein R192G [112]
15 Respiratory syncytial virus (RSV) Fsll Montanide™ Gel01 [113]
15 Influenza (H1N1) Antigen M2e Montanide™ Gel01 [114]

Ferritin 12.5 Influenza (H1N1) Antigen M2e - [115]
Q11 peptide d - Influenza (H1N1) Acid polymerase - [116]

Inorganic nanoparticles

Gold 12 Influenza Antigen M2e CpG [117]

Other

Virus-like particles (VLP) 80–120 Influenza (H1N1) Hemagglutinin - [118]
80–120 Influenza (H1N1, H3N2, H5N1) Antigen M2e - [119]

80–120 Respiratory syncytial virus (RSV)
F protein et G

glycoprotein of RSV and
M1 protein of influenza

- [120]

ISCOM e 40 Influenza (H1N1) Hemagglutinin ISCOMATRIC [119]

DLPC liposomes f 30–100 Influenza (H1N1) M2, HA, NP MPL and trehalose 6,6′

dimycolate [121]

a poly(lactic-co-glycolic acid); b poly-γ-glutamic acid; c N-(2-hydroxypropyl) methacrylamide/N-isopropylacrylamide, d fibrilizing peptide(Ac-QQKFQFQFEQQ-Am), e Quillaia saponin,
cholesterol, phospholipid, and associated antigen; f Dilauroylphosphatidylcholine.
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There exists a huge urgency for developing a successful nanovaccine in order to reduce mortality
and hospitality currently faced by most of the countries. “LIF nano”, which is a special class of
mesenchymal stem cells, are also reported to improve patient’s biological resistance to COVID-19 using
stem cells [122]. These types of approaches are very optimistic since they can reduce the massive health
deterioration occurring in pneumonia-affected patients as a part of COVID-19 infection. All above can
be schematically represented in Figure 3.

6. Nanosensors

NPs-based biosensors are vital tools that contribute to the detection of individuals affected
with pathogens. Theragnostic aspects of nanosystems as quantum dots were reviewed in recent
literature [123]. Sensory systems were successfully reported for other microorganisms in literature.
Unfortunately, such rapid and sensitive diagnostic systems for COVID-19 is limited and urgently
demonstrated due to its longer incubation period and extremely higher infectivity. Conventional
detection methods rely on nucleic acid detection and have various demerits which are (i) low sensitivity
and laborious experimental procedures, (ii) large time duration between sample collection and results
interpretation, (iii) high false negative rates, and (iv) lack of specificity which results in misdiagnosis in
patients having other viral infections.

Zhu et al. reported a NPs-based biosensor system for COVID-19 which works via a “one step
and single tube” reaction pathway [124]. This sensor employs a single step reverse transcription
loop-mediated isothermal amplification (RT-LAMP) coupled with NPs-based biosensor (NBS) assay
(RT-LAMP-NBS). Additionally, equipment for providing isothermal condition (63 ◦C) is needed for
40 min and the time duration for result interpretation from sample collection is only 1 h, approximately.
This SARS-CoV-2 RT-LAMP-NBS biosensor was successfully demonstrated for COVID-19 confirmed
patients with a promising sensitivity of 12 copies (each of detection target) per reaction with no
cross-reactivity was generated from non-SARS-CoV-2 templates. Labour-intensive and time-consuming
features of conventional RT-PCR-based sensoring techniques makes them not suitable for rapid and
efficient diagnosis.

Zhao et al. demonstrates a promising alternative to this approach by using poly (amino ester)
with carboxyl groups (PC)-coated magnetic NPs (pcMNPs) [125]. The authors successfully fabricated
pcMNPs and directly introduced into RT-PCR reaction initiated by combining the lysis and binding step
into single step. MNPs were previously reported for their effective application in sensory systems [126].
This method can purify viral RNA from multiple samples within 20 min and 10-copy sensitivity and
a strong linear correlation between 10 and 105 copies of SARS-CoV-2 pseudovirus particles. These
results are very promising since it reduces operational requirements in current molecular diagnosis of
COVID-19, which assist early clinical diagnosis of the affected individuals.

Wang et al. reported a rapid and simultaneous detection system for both SARS-CoV-2 and
other respiratory viruses using nanopore target sequencing (NTS) [127]. The authors successfully
tested 61 nucleic acid samples from suspected COVID-19 cases and confirmed that NTS is efficient in
identifying positive cases within 6 to 0 h. NTS is based upon amplification of 11 virulence-related and
specific gene fragments (orf1ab) of SARS-CoV-2 using a primer panel, followed by sequencing the
amplified fragments on a nanopore platform. The authors focused on the virulence region (genome
bp 21,563–29,674; NC_045512.2), encoding S (1273 amino acids; AA), ORF3a (275 AA), E (75 AA),
M (222 AA), ORF6 (61 AA), ORF7a (121 AA), ORF8 (121 AA), N (419 86 AA), and ORF10 (38 AA)
proteins. We also considered the RNA-dependent RNA polymerase (RdRP) region in orf1ab. This
work is very significant since it provides valuable insights for developing sensory systems for other
respiratory pathogens.

Yu et al. also employed the NTS method to detect the alterations of gut microbiota homeostasis
in COVID-19-affected individuals [128]. There is huge urgency for developing a potential and rapid
nanosensor for detecting SARS-CoV-2 due to the time-consuming process of conventional diagnosis
tests. Recently, reports are available claiming the development of rapid detection of recent COVID-19
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infections by using COVID-19 IgG-IgM combined antibody colloidal Gold Method Tests [129]. These are
a perfect example of “lab to real” transition of useful experimental results and a very optimistic.

7. Safety and Limitations

The NPs-based delivery approaches have exhibited significant potential applications, however,
studies have showed that these approaches could cause severe damages in respiratory sites and
even could impair lung function. The four major patho-biological aspects, including oxidative
stress, genotoxicity, inflammation, and fibrosis must be considered with the context of NPs and
associated approaches.

The oxidative stress typically arises due to disparity amongst the reactive oxygen species
(ROS) production and the capability of a biological system to voluntarily eradicate the reactive
moieties. Sometimes, it could be caused directly due to generation of ROS within the cell or indirectly
disturbing the mitochondria respiration [130] or reduce the antioxidant moieties inside the cell
environment [131]. The hindrance of oxidative stress might act as an significant phase in initiating few
harmful patho-biological activities within cellular microenvironment [132]. Moreover, the effect of
NPs over the oxidative stress conditions in the animal models or at cellular level is usually considered
as common endpoint studies to detect the toxicity profile of NPs. Both in vivo and in vitro studies play
crucial role in understanding the mechanisms of NPs causing oxidative stress. For example, studies
have showed significant accumulation of titanium dioxide NPs (TiO2-NPs) in the lungs of mice after a
90-day successive intra-tracheal administration of TiO2 NPs. The TiO2-NPs expressively enhanced the
accumulation of ROS level, inflammation, lipid peroxidation level, and also reduced the antioxidants
competency in the lungs. The NPs could produce ROS followed by oxidation of antioxidant moieties,
and thus could influence the respiratory system and associated patho-biological activities including
pulmonary inflammation and genotoxicity [133].

In some cases, it has been observed that the NPs, administered through nasal route, caused chronic
or acute inflammation-mediated processes such as inclusion of inflammatory cells and proclamation of
cytokines [134,135]. In one of the studies, it was noticed that the direct administration of graphene
oxide (GO) solution into lungs of C57BL/6 mice caused extreme pulmonary inflammation with
alveolar exudate [135]. The NPs are involved in triggering few pro-inflammatory pathways, including
mitogen-activated protein (MAP) kinases [136]. The NPs-treated cells have showed an increased
level of AP-1 (activator protein-1) transcription factors and NF-κB (nuclear factor kappa enhancer
of triggered B cells), thus affecting the DNA transcription, production of cytokines, and survival of
cells [137].

Genotoxicity, either primary or secondary, is a major concern associated with NPs-mediated
delivery systems. The genotoxic moieties or NPs affect directly by binding with the DNA structures
or constituent of the cellular division such as microtubule spindle or centromeres [138]. The carbon
nanotubes (CNTs) have directly interacted with DNA assemblies [139]. This indicated that CNTs
might cause genotoxicity either in vivo (animal models) or at cellular levels. Studies have revealed
that the pulmonary administration of multi-walled CNTs caused genotoxicity by inducing chronic
inflammation, which led to insistent oxidative stress [140].

Fibrosis is considered as an indicator of accumulation of inhaled NPs in the pulmonary sites and
causes uncommon modes of pulmonary inflammation such as eosinophilia [141]. In one of the studies,
the inhaled single-walled CNTs caused multifocal granulomatous pneumonia and fibrosis in treated
C57BL/6 male mice model [142].

Currently, various enormous and significant efforts are going on to develop a scientific risk
management research structures. The United States National Nanotechnology Initiative/Environmental,
Health, and Safety Research Strategy is one of the structures that majorly focusses over the
establishment of measuring tools which could efficiently determine the physico-chemical properties of
nanotechnology-based delivery systems or nanomedicines [143]. Thus, it is very important to focus
on the above mentioned patho-biological processes for delineating the limitations and enhancing the
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safety concerns of NPs-based approaches for the effective management of respiratory tract infections,
diseases or disorders.

8. Unsolved Concerns and Perspectives

In spite of the global efforts to apprehend the causes and treatment approaches for COVID-19,
many concerns still remain indistinct. Among these concerns, the first concern is that one of the
report that has disclosed the presence of COVID-19 in the patient’s stool [27]. Although, COVID-19
could be diffused through the fecal-oral route remains indistinct. Secondly, preceding studies have
showed that SARS-CoV and other strains of CoV can endure in environmental surfaces and inorganic
objects [17,144] yet, the existence of COVID-19 in the environment surfaces have not been reported.
Earlier studies have showed that the CoV can be competently deactivated with the use of surface
disinfectants including ethanol (62–71%), hydrogen peroxide (0.5%) and sodium hypochlorite (0.1%)
within initial minutes (1–2 min), whereas some other biocidal agents such as benzalkonium chloride
(0.05–0.2%) and chlorhexidine digluconate (0.02%) were found to be less effective [17]. However,
the present exploration of the efficiency of regularly used disinfectants against COVID-19 is unclear.
Thirdly, while the restrictions in travelling were applied in numerous countries, and whether this
interference was effective or not, is still unclear. Fourthly, as of now, one case in US has showed a
positive response towards remdesivir [27] and also in one of the in vitro study, remdesivir and CQ
were found to be an effective therapeutic combination for the management of COVID-19 [33], further
clinical trials on the efficiency of remdesivir and CQ for the management of SARS-CoV-2 or COVID-19
should be accomplished for clarity of mechanism. Lastly but most importantly, although numerous
studies have been demonstrated with the clinical symptoms of COVID-19 pneumonia in patients of
Wuhan and Beijing, which were effectively treated, but as of now there is no specific and effective
treatment available worldwide [9,145].

To summarize, these days a dramatic situation on the planet exists. The invisible enemy with the
abbreviated name “COVID-19 pandemic” threatens the global health, causing pneumonia induced
death in approximately 7% of infected individuals (data up to now, which unfortunately are changing
in higher levels). The pathogen causing COVID-19 is SARS-CoV-2, which is believed to be originated
from the Wuhan Province in China. Until now, there is no drastic, effective, or successfully applied
recipe to face SARS-CoV-2 virus. However, in the last days, there has been a strong effort of R&D
of many pharmaceutical industries to discover the appropriate anti-virus cocktail of the already
discovered drugs or find a new one. In the whole situation, the impact of nanoscience (nanochemistry,
nanomedicine) is significant, but only few scientists worldwide have published their research findings.
The latter was due to some preliminary few tests and results exported from animals and in further
fewer test in the hospitalized infected patients. It is considered that the first (validated) vaccine can be
shared in market during the next year, but until then, all efforts must be done to discover a drastic
drug so as to face this invisible enemy, COVID-19.

The most promising statement of the few last days has come from Chinese scientists who claimed
to have developed a new weapon to combat COVID-19. They say that they have found a nanomaterial
that can absorb and deactivate the virus with 96.5% to 99.9% efficiency [145].

9. Conclusions

Global health is facing the most dangerous situation regarding the novel severe acute
respiratory syndrome called coronavirus 2 (SARS-CoV-2), which is widely known as the abbreviated
COVID-19 pandemic. In this review, the state-of-the-art drug design strategies against the virus are
critically summarized including exploitations of novel drugs and potentials of repurposed drugs.
The applications of nanochemistry can be summarized in the use of some specific nanomaterials as
(i) polymeric, (ii) self-assembling proteins, (iii) inorganic, (iv) peptide-based. Also, special attention is
given to NPs-based biosensors, which are vital tools that contribute to the detection of individuals
affected with pathogens. Conventional detection methods rely on nucleic acid detection and have
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various demerits, which are (i) low sensitivity and laborious experimental procedures, (ii) large
time duration between sample collection and results interpretation, (iii) high false negative rates,
and (iv) lack of specificity which results in misdiagnosis in patients having other viral infections.
Some studies have showed that these approaches of nanotechnology could cause severe damages
in respiratory sites and even could impair lung function. The four major patho-biological aspects,
including oxidative stress, genotoxicity, inflammation, and fibrosis, must be considered with the context
of NPs and associated approaches. So, the basic conclusion is that COVID-19 is a new pandemic,
and can be initially faced with some already known nanomaterials, which have been applied to the
previous SARS-CoV or similar viruses. This knowledge will be a significant tool the fight for this
new virus.
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