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Abstract
Influenza has a major impact on the elderly due to increased susceptibility to infection with

age and poor response to current vaccines. We have studied universal influenza vaccine

candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting pro-

tection against influenza virus strains of divergent subtypes is induced, especially with

mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different

ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.)

boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP

+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young,

middle-aged, and elderly mice (2, 11–17, and 20 months old, respectively), but decreased

with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young

mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly

mice. A/NP+M2 vaccination by the two regimens above protected against stringent chal-

lenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated

with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16

months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd

given i.n. one month apart beginning in old age protected elderly mice against stringent

challenge. This study highlights the potential benefit of cross-protective vaccines through

middle age, and suggests that their performance might be enhanced in elderly individuals

who had been exposed to influenza antigens early in life, as most humans have been, or by

a two-dose rAd regimen given later in life.

Introduction
Influenza poses a public health threat, especially to the very young, elderly, or chronically ill.
Influenza killed about 10,000–20,000 people 65 years and older in the US alone in 2006–2007
[1]. Lower vaccine efficacy [2, 3] due to reduced immune function and underlying illnesses
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may contribute to susceptibility of the elderly. Conventional influenza vaccines are poorly
immunogenic in the elderly [4], with at least 20% of elderly recipients failing to develop protec-
tive hemagglutination inhibition (HAI) antibody titers after vaccination [5]. Given the increas-
ing elderly population, it is critical to evaluate how the senescent immune system responds to
vaccines, and to develop strategies to improve vaccine effectiveness [6, 7].

Vaccination is a valuable public health strategy for controlling influenza. However, viral
mutation and reassortment frequently alter the neutralizing antibody targets hemagglutinin
(HA) and neuraminidase (NA), rendering existing vaccines ineffective. Preparation of
updated strain-matched vaccines takes months [8]. An attractive alternative would be univer-
sal influenza vaccines inducing heterosubtypic immunity against relatively conserved influ-
enza proteins. Such vaccines would protect against diverse influenza virus strains of all
subtypes (reviewed in [9]). However, vaccines targeting conserved antigens do not induce
neutralizing antibodies and so do not prevent infection. Instead they limit disease severity,
viral replication and shedding [9], and transmission [10]. Universal vaccine candidates have
been based on M2 [11], NP [12], NP+M2 [13], M1 [14], HA-stem [15] and attenuated influ-
enza viruses [16, 17].

We have shown that DNA prime-recombinant adenovirus (rAd) boost vaccination to
highly conserved influenza antigens A/NP+M2 induces effective cross-protective immunity
against H1N1, H3N2, and H5N1 challenges [13, 18]. We subsequently showed that single-
dose rAd was effective with or without DNA priming. In mice, rAd was more effective when
given intranasally (i.n.) than intramuscularly (i.m.), resulting in increased survival, decreased
morbidity, and reduced lung viral titers [19]. Increased virus-specific IgA responses and
stronger lung T cell responses were induced by i.n. rAd and likely contributed to its effective-
ness [19].

Because cellular immune responses are decreased in the elderly, it is important to assess the
capacity of cross-protective vaccines which utilize not only antibody but also cellular responses
to protect the aged population. Therefore, we tested A/NP+M2 vaccination in mice 2, 11–17,
and 20 months old, approximating young (˂20 years old), middle-aged (40–54 years old), and
elderly (roughly 56–69 years old) humans respectively [20]. We measured antibody and T cell
responses in systemic and mucosal samples, and protection against challenge, and explored
additional vaccination regimens with potential to protect the elderly.

Materials and Methods

Vectors
CMV/R-based plasmids expressing NP (A/NP) from A/PR/8/34 (H1N1) or M2 of the consen-
sus sequence widely expressed in human influenza virus strains (A/M2Con, called M2 here), or
NP from influenza B/Ann Arbor/1/86 (B/NP) have been described [21–23]. rAd vectors (Ad5-
ΔE1ΔE3) expressing A/NP or A/M2Con, or B/NP have been described [23, 24]. All rAd stocks
were prepared, tested for replication competence, and particle titers calculated from OD260 by
ViraQuest, Inc. and stored in A195 buffer/5% sucrose. pAd⁄CMV⁄V5-GW/lacZ, a replication-
incompetent Ad5 vector expressing lacZ, was constructed using Gateway cloning and the Vira-
Power Adenoviral Expression System (Invitrogen, Carlsbad, CA) by previously described
methods [23]. The insert was derived from the control lacZ plasmid in the kit.

Viruses
Mouse-adapted A/FM/1/47-ma (H1N1) [A/FM-ma] [25] was obtained from Earl Brown, Uni-
versity of Ottawa, and prepared as described [13]. A/Mexico/4108/2009 (H1N1) [A/Mex],
kindly provided by Hang Xie and Zhiping Ye, CBER, Food and Drug Administration, was
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grown in MDCK cells (ATCC, Manassas, VA) in Opti-MEM with 1 μg/ml TPCK-trypsin
(Worthington Biochemical, Lakewood, NJ). Supernatant was harvested at 90% cytopathic
effect, spun 3 times at 304 g and supplemented with 3% (final) bovine serum albumin (Fisher
BioReagents, Fair Lawn, NJ). Stocks were frozen at -80°C. 50% tissue culture infectious doses
(TCID50) [26] were determined by the method of moving averages [27, 28]. Challenge doses of
the A/FM-ma stock in TCID50 units are given in figure legends. Influenza A/FM-ma virus and
A/Mexico virus, as well as the recombinant adenoviruses NP-rAd and M2-rAd, were tested
and contaminants ruled out by a standard screening for mouse pathogens (IMPACT II PCR
Profile), by RADIL (later named IDEXX RADIL), Columbia, MD.

Mice
Female BALB/cAnNCr mice 4 weeks old were purchased from the National Cancer Institute,
Frederick, MD and rested until use. Female BALB/cBy mice 20 months old were purchased
from the National Institute on Aging/Charles River (Kingston, NY). BALB/cJ animals from
Jackson Laboratories were kindly provided by Maryna Eichelberger, CBER/FDA at 11 months
of age and rested until use. BALB/cBy and BALB/cJ mice 4 weeks old were bought from Jack-
son Laboratories (Bar Harbor, ME). Use of multiple BALB/c sublines was necessitated by diffi-
culties obtaining aged mice. Each experiment used young and old mice of matched subline and
supplier to control for genetic effects.

Mouse immunizations and challenge infections
DNA priming used 50 μg each of A/NP and A/M2 DNA or 100 μg of B/NP DNA (control), i.
m., 50 μl in each quadriceps. Mice received a boost with rAd four weeks later, 1010 total viral
particles/mouse in 50 μl i.n. under isoflurane anesthesia. Some additional mice received rAd as
sole immunization, or two rAd doses, one month apart, also given i.n. under anesthesia. For
challenge, mice were infected i.n. under isoflurane anesthesia with A/FM-ma at indicated
doses. Body weight and survival until weight loss endpoint were followed until surviving ani-
mals were recovering weight. After influenza virus challenge, the animals were observed twice
daily including weekends (once by laboratory staff, once by vivarium staff). The animals were
weighed once per day during this time. Deaths in groups that had not been challenged with
influenza virus were very infrequent and occurred only in the elderly groups. Mice were eutha-
nized if weight fell below 75% of individual starting weight, unless specified otherwise. The
study was carried out in strict accordance with the recommendations in the Guide for the Care
and Use of Laboratory Animals of the National Institutes of Health. This study was approved
by the Institutional Animal Care and Use Committees at the Center for Biologics Evaluation
and Research (CBER; Protocol #1991–06) and carried out in animal facilities accredited by the
Association for Assessment and Accreditation of Laboratory Animal Care International.
Experiments were performed according to institutional guidelines. Vaccination of different age
groups in a figure was not always carried out simultaneously. When it was, that is indicated in
the figure legends.

Blood and Mucosal sampling
Mice were euthanized with an overdose of ketamine/xylazine corresponding to 300 mg/kg
ketamine and 60 mg/kg Xylazine. BAL and lung cells were obtained as described [18]. Blood
samples were collected from the abdominal vena cava or tail vein in BDMicrotainer tubes
(Franklin Lakes, NJ) and microcentrifuged 3 minutes at 13,200 g. Serum was heat-treated at
56°C for 30 minutes.
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Peptides and proteins
Peptides NP147-155 (TYQRTRALV), NP55-69 (RLIQNSLTIERMVLS), M2e2-24 consensus
sequence (SLLTEVETPIRNEWGCRCNDSSD) of the highly conserved [11], surface-exposed
M2 ectodomain (M2e), and SARS M209-221 (HAGSNDNIALLVQ) were synthesized by the
CBER core facility. Recombinant nucleoprotein (rNP) from A/PR/8/34(H1N1) was purchased
from Imgenex (San Diego, CA)

T-cell ELISPOT
Lungs and spleens were harvested, processed, and interferon (IFN)-γ ELISPOT performed as
described [23] with substrate from KPL (Gaithersburg, MD).

Antibody analysis
Antibody levels were measured by enzyme-linked immunosorbent assay (ELISA) as described
[13] using NUNC 96-well plates and human-adsorbed alkaline phosphatase-conjugated goat
anti-mouse IgG or IgA (Southern Biotechnology Associates, Birmingham, AL). For measure-
ment of IgG antibodies to adenovirus, pAd/CMV/V5-GW/lacZ was used to transfect 293 cells
(ATCC, Manassas, VA), and a lysate prepared and clarified by centrifugation. A 1:200 dilution
of clarified lysate in phosphate buffered saline (PBS) was used to coat ELISA plates. Absor-
bance at 405 nm was measured at 30 minutes in a Vmax kinetic microplate reader (Molecular
Devices, Sunnyvale, CA).

Flow cytometry
Memory marker staining. Lung T-cell phenotypes were assessed as described [19]. 2 x

106 lung cells/well were surface-stained with anti-CD3-eFluor450, anti-CD8-APC-Cy7, anti-
CD62L-PE-Cy7, anti-CD69-PE, anti-CD127-PerCP-Cy5.5 (eBiosciences, San Diego, CA), and
Live/Dead fixable green viability stain Vivid for 488 nm excitation (Invitrogen). The following
tetramer was obtained through the NIH Tetramer Facility: NP147–155-H2-Kd Tetramer-APC
(TYQRTRALV) (Atlanta, GA). 50,000 events per sample were acquired on an LSRII flow
cytometer.

FACS Diva V6 software (BD Biosciences, San Jose, CA) was used for data acquisition and
FlowJo V7.6.5 (TreeStar, Ashland, OR) for data analysis and display. Single color-stained cells
were used for compensation, and fluorescence minus one (FMO) controls were used for gate
setting.

CD107 staining. For stimulated cells, 106 cells/well were suspended in 100 μl MEM (Cell-
gro, Manassas, VA)/5% FBS medium containing anti-CD107a-eFluor450 (LAMP-1) (eBios-
ciences, San Diego, CA), 1 μg/mL each of anti-CD28 and -CD49d (BD Biosciences) and 0.7 μg/
mL monensin (BD Biosciences), with or without peptides: 2.5 μg/mL each of NP147-155, NP55-
69, and M2e2-24 or 2.5 μg/mL SARS M for 5–6 hours. After incubation, cells were washed and
stained with Live/Dead fixable blue viability stain Vivid for UV excitation (Invitrogen). Mouse
CD16/32-specific monoclonal antibody 2.4G2 was added to cells before incubation with anti-
CD3-PerCp-Cy5.5, anti-CD8-APC-Cy7, anti-CD4-AF700 (all from BD Biosciences), anti-
CD107a, and NP147–155-H2-Kd Tetramer-APC. Following washing, the cells were fixed and
permeabilized with Cytofix/Cytoperm buffer (BD Biosciences), and then incubated with anti-
CD3, anti-CD8, anti-CD4 antibodies labeled as explained above. 30,000 events were acquired
on a Fortessa flow cytometer (BD Biosciences,).

Cytotoxic assay. Cytotoxic activity was assessed by flow cytometry. As targets, naïve
BALB/c splenocytes were labeled for an ex vixo cytotoxicity assay as described in [29] with
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either carboxyfluorescein diacetate succinimidyl ester (CFSE) or chloromethyl-benzoyl-
amino-tetramethyl-rhodamine (CMTMR) (Molecular Probes, Eugene, OR). Cells labeled with
CFSE were pulsed with a mixture of 1 mM each of NP147-155, NP55-69, and M2e2-24 peptides
(target epitopes), or with SARS M peptide. Cells labelled with CMTMR were pulsed with SARS
as a specificity control. Assays were performed in round-bottom 96-well plates with a 10:1
effector to target cell ratio. Lung lymphocytes from A/NP+M2 or B/NP immunized mice or
mice infected with A/Mex under isoflurane were used as effectors. Cells were additionally
stained with blue dead cell stain Vivid. After 5–6 hours in culture, 30,000 events were acquired
on a Fortessa flow cytometer and analysis performed on gated live cells. The reduction in pep-
tide-pulsed CFSE-labeled cells relative to the internal negative control of SARS-pulsed
CMTMR-labeled cells served as a measure of specific cytotoxicity. SARS-pulsed CFSE-labeled
cells were used to measure non-specific death. Percent specific cell death for both CFSE and
CMTMR-stained cells is defined as 100 x [(% dead targets—% non-specific dead targets)/
(100%—non-specific dead targets)] with dead cells as defined by Vivid+ staining.

Virus titration
Virus titers in lungs were determined by TCID50 as described [30], except that samples were
homogenized using the PreCellys 24 system (Bertin Technologies; Atkinson, NH).

Statistical analysis
GraphPad Prism 6.0 (GraphPad Software, San Diego, CA) was used for graphing and log-rank
analysis, SigmaPlot12 (Systat Software Inc., San Jose, CA) for remaining statistics. Comparison
of survival used log-rank (Mantel-Cox) testing. T cell responses to influenza peptides were first
compared to SARS M responses by paired t-tests. For those responses differing from SARS M,
comparison of multiple vaccination groups used one-way ANOVA followed by pairwise com-
parisons by Holm-Sidak testing or Mann-Whitney rank sum testing when normality or equal
variance failed. Viral titers were compared by one-way ANOVA. When additional pilot groups
were run in an experiment, although not shown, we included them in ANOVA to apply the
penalty for more groups.

Results

Systemic and mucosal antibody responses decrease with age
In some previous work, we used three i.m. DNA doses followed by i.n. rAd boost. [18]. For the
present study, a single DNA priming dose was chosen as a streamlined regimen for emergency
use. In many of the immunization groups, we tested both the DNA prime-rAd-boost regimen
and the rAd i.n. without DNA priming. DNA priming is not necessary for protection in young
animals, but was included for comparison in parts of the present study in case the requirements
for protection were different in mice of different ages.

We immunized mice of different ages to A/NP+M2 using DNA i.m. followed by A/NP
+M2-rAd i.n. boost, or A/NP+M2-rAd i.n. alone. Controls received B/NP DNA i.m. with B/
NP-rAd i.n. boost. For the rAd vaccines we chose the i.n. route, because this route is more
effective for rAd immunization than i.m., whether for boosting or alone [18, 19].

IgG antibodies to NP and M2 were readily detectable in sera of young vaccinated mice (Fig
1A and 1B). Responses were at least as high in 11-month-olds as in two-month-olds (S1 Fig),
but somewhat lower in 16-month-olds than two-month-olds (Fig 1C and 1D).
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Fig 1. Antibody responses in sera of young andmiddle-agedmice. In all legends, ages given refer to age when immunization started. BALB/cAnNCr
mice 2 months old (Fig 1A, 1B, 1E and 1F) or 16 months old (Fig 1C, 1D, 1G and 1H) were primed i.m. with 50 μg each of A/NP and A/M2 DNA or 100 μg of B/
NP DNA. One month later these mice were boosted i.n. with 5×109 particles each of A/NP-rAd and M2-rAd (solid circles), or 1×1010 particles of B/NP-rAd
(solid triangles) respectively. A third group was given i.n. 5×109 particles each of A/NP-rAd and A/M2-rAd without priming (solid squares, with rAd given at the
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Immunized young mice had both IgG (S2A and S2B Fig) and IgA antibodies in BAL (Fig 1E
and 1F), with a higher IgA response to NP than to M2e. In 16-month-old mice, BAL antibody
responses were negligible (Figs 1G and 1H and S2C and S2D).

Responses were generally similar whether the mice had been given the DNA prime-rAd-
boost regimen or only rAd.

T-cell responses with age
Vaccination to A/NP+M2 by regimens including rAd has previously been shown to induce
lung T-cell IFN-γ ELISPOT responses [18, 19]. As shown in Fig 2, it can also induce cytotoxic
activity in the lungs and up-regulate surface expression of CD107a (a CTL degranulation
marker [31]). For study of functional T-cell responses in DNA prime-rAd-boost mice of differ-
ent ages, IFN-γ ELISPOT was used to analyze cells collected 2–3 weeks after the rAd boost.
Restimulation used NP147-155 (an immunodominant H-2Kd-restricted epitope) [32], M2e2-24
(MHC class II restricted epitope [33]), and SARS (specificity control) peptides. A/NP+M2
DNA prime-rAd-boost vaccination induced lung T-cell responses to NP147-155 significantly
above B/NP-immunized controls at both two and 16 months (Fig 1I–1L). Responses to the
MHC class II restricted epitope M2e2-24 [33] were specific but modest (Fig 1I–1K).

Splenic responses differed from those in lungs, as previously observed [18]. Vaccination i.n.
produced low frequencies of NP147-155 specific T-cells (Fig 1M and 1N). When recalculated as
responding T cells/organ (Fig 1K, 1L, 1O and 1P), responses were on average>5 times higher
in 16-month-old animals than younger ones for the dominant epitope NP147-155 (Fig 1O and
1P). The difference in T cell response was less dramatic in lungs.

Further characterization of responding T cells from DNA prime-rAd-boost immunized
mice revealed large numbers of NP147-155 tetramer+ CD8+ T-cells seen in the lungs of two- and
11-month-old mice (Fig 3A and 3B). Most had a CD62Llo, CD127lo (activated) phenotype,
with fewer CD62Lhi (central memory) cells (Fig 3C and 3D). Few cells from young animals and
none from 11-month-olds possessed a CD62Llo, CD127hi (effector memory) phenotype (Fig
3C and 3D). Compared to controls, animals immunized to A/NP+M2 had more influenza-spe-
cific cells expressing the early activation marker CD69 (Fig 3E and 3F).

Protection from high-dose H1N1 challenge
Amonth after rAd immunization, mice were challenged with 104 TCID50 of A/FM-ma. Both
DNA prime-rAd-boost and i.n. rAd only vaccination to A/NP+M2 was highly protective in
young and middle-aged mice, reducing weight loss (Fig 4A and 4B) and preventing most mice
from reaching the weight loss endpoint, while B/NP controls succumbed (survival p<0.001 for
both ages compared to B/NP-immunized controls, Fig 4C and 4D). Older animals lost some-
what more weight than younger ones, and recovered it more slowly (Fig 4A and 4B).

same time point the other two groups were given the rAd boost). Sera and BAL were collected two to three weeks after the rAd immunization. ELISA testing
of all serum samples, and of all BAL samples, was simultaneous. Antibody responses were measured by ELISA as described in Materials and Methods, on
plates coated with NP or M2e as indicated. For serum (Fig 1A–1D), plates were developed with enzyme conjugates recognizing total IgG. For BAL (Fig 1E–
1H), plates were developed with conjugates recognizing total IgA. Results shown are the mean absorbance ± SEM of 4 mice per group, except that only 3
BAL samples were available for the A/NP+M2 old-mice group. Background from secondary antibody alone was subtracted. T cell responses in lungs and
spleens of young andmiddle agedmice. BALB/cAnNCr mice 2 months old (Fig 1I, 1K, 1M and 1O) or 16 months old (Fig 1J, 1L, 1N and 1P) were
immunized as above. About 2 weeks after the rAd immunization, T cell responses were determined by IFN-γ ELISPOT. IFN-γ responses of lung cells from
individual mice (I-L) or pooled spleen cells (M-P) are shown following stimulation with peptides NP147–155, M2e2–24, and SARSM as a specificity control. Bars
showmean total lung IFN-γ secreting cells per million (I, J, M, and N) or per organ (K, L, O, and P) from 3 mice aged 2 months and 4 mice aged 16 months per
group. Error bars indicate ± SEM in I, J, K, and L. Results were first compared pairwise by t-test to SARSM. For those differing significantly from SARS,
immunization groups were compared to all other groups at the same time point using one way ANOVA followed by the pairwise Holm-Sidak method.
Significant differences from the B/NP-rAd immunized control group are as follows: * p�0.001 or ** p�0.01 or ***p�0.05.

doi:10.1371/journal.pone.0153195.g001
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Fig 2. Cytotoxic activity. BALB/cBy mice of age 2 months were immunized as in Fig 1, and lung cells analyzed about 3 weeks after the last vaccination.
Lung cells frommice infected 6 days earlier with A/Mex were used as a positive control for cytotoxicity. (A) Total number of CD3+CD8+CD107+Tetramer+

cells in lung cells pooled from 4 animals was determined by multicolor flow cytometry after stimulation with peptides NP147–155+NP55–69+M2e2–24 (NP/M2e;
solid bars), or SARSM peptide control (open bars). (B) Splenocytes were labeled with CFSE or CMTMR, and pulsed with peptides as indicated. 200,000 of
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these splenocytes were then incubated with 2x106 lung cells of A/NP+M2- or B/NP-immune or A/Mex-infected mice for 5.5 hours. Staining with CFSE is
displayed on the horizontal axis, staining with CMTMR on the vertical axis. Dead cells were defined as Vivid+ and values shown in the top right corner for
each treatment. Top panel: Both CFSE- and CMTMR-labeled cells were control-pulsed (SARSM peptides). Bottom panel: CFSE-labeled target cells were
pulsed with NP/M2e peptides, CMTMR-labeled target cells were control-pulsed. (C) Percent specific cell death calculated from the flow cytometry data as
described in Materials and Methods. All results shown are representative of two experiments. We were not able to obtain enough elderly mice for comparison
of CTL activity to that in young mice.

doi:10.1371/journal.pone.0153195.g002

Fig 3. Characterization of lung T cells from young andmiddle-agedmice. BALB/cAnNCr mice were immunized at 2 months (A, C, and E) or 11 months
old (B, D, and F) as in Fig 1 or left unvaccinated (naïve). Lung T cells were prepared and analyzed by flow cytometry. (A, B) Total numbers of Kd-NP147–155-
tetramer+ CD8+ T cells recovered from the lungs 12–13 weeks after vaccination were determined by multicolor flow cytometry. Bars showmean ± SEM of
3–4 animals per group for the two-month-old mice (A). For 11- month-old mice, cell yield after Ficoll was low and lung cells had to be pooled to permit analysis
(B). (C, D) Lung CD8+ T cell phenotypic analysis: Proportions of activated effector memory (CD62Llo, CD127lo), effector memory (CD62Llo, CD127hi) and
central memory (CD62Lhi) among tetramer+ CD8+ T cells from A/NP+M2 vaccinated animals are displayed as pie charts. (E, F) Activation status of pooled
lung CD8+ T cells characterized by positive staining for both tetramer and CD69 marker. Fluorescence minus one (FMO) controls were used to identify gating
boundaries and adjusted based on internal negative controls for each treatment group. Percent of total CD8+ T cells are displayed per quadrant.

doi:10.1371/journal.pone.0153195.g003
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Fig 4. Morbidity, survival, and lung viral titers after influenza virus challenge of young andmiddle-agedmice.Groups of 14 BALB/cAnNCr mice of
age 2 months (A, C, and E) or 11 months (B, D, and F) were immunized as in Fig 1. In addition, 6 mice per age group were left unvaccinated (naïve, Fig 4E
and 4F). One month after rAd, animals were challenged with 104 TCID50 A/FM-ma. Panels A and B show the mean% starting body weight + SD of 8 mice per
group. Panels C and D show survival until weight loss endpoint; *p�0.001 by the log-rank (Mantel-Cox) for all groups compared to B/NP control. Lung virus
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We tested lung virus titers after challenge to assess immune-mediated control of virus repli-
cation (Fig 4E and 4F). Mice immunized to A/NP+M2 with either DNA prime-rAd-boost or
rAd alone showed lower viral titers than B/NP and naïve groups as early as day 3 post-
challenge.

Immune responses in elderly mice
We extended the study to an age near the limit of the mouse lifespan. Due to difficulty in
obtaining mice 20 months old, we used BALB/c mice from a different source and subline, and
available numbers were limited. First, we verified that young animals from this source and sub-
line responded to vaccination similarly to those in previous experiments. Young BALB/cBy
animals vaccinated to A/NP+M2 by DNA prime-rAd boost had robust IFN–γ T-cell ELISPOT
responses (Fig 5A). Responses to NP147-155, NP55-69 (T helper epitope [34]), and M2e2-24 pep-
tide were significantly above the B/NP group (p<0.05). In 20-month-old animals (Fig 5B),
responses were much weaker, not reaching statistical significance for any peptide above the
higher background.

In elderly mice, serum IgG responses to NP were weaker compared to young mice (Fig 5C
vs. 5E), both in maximum binding and in titer. Serum responses to M2e were strong in young
mice, but very weak in elderly mice (Fig 5D vs. 5F).

In BAL, young mice had substantial levels of IgA antibodies, with greater levels against NP
(Fig 5G) than M2e (Fig 5H). In contrast, 20-month-olds had negligible responses (Fig 5I and
5J).

Protection of elderly mice from H1N1 challenge
Amonth after DNA prime-rAd boost immunization, mice were challenged with 200 TCID50

of A/FM-ma, a modest dose chosen to reveal protective immunity in elderly mice, if present.
The control groups of young A/NP+M2-vaccinated mice lost little weight (Fig 6A and 6E) and
all of them survived (Fig 6B and 6F). A/NP+M2 vaccination also protected 17-month-old
mice, reducing morbidity (Fig 6C) and enhancing survival (Fig 6D). However, A/NP+M2 vac-
cination did not protect elderly animals of 20 months, which lost weight rapidly (Fig 6G) and
reached the weight loss endpoint (Fig 6H). Controls of each age immunized against B/NP lost
weight rapidly and most reached the weight loss endpoint (Fig 6A–6H).

Immunological experience early in life can affect outcomes during old age. In an earlier
study, mice had impaired influenza virus-specific CTL responses if primed when old, but better
responses if primed when young and tested when old [35]. Early priming with influenza virus
was also reported to lead to long-term maintanance of memory T cells [36]. We explored
whether A/NP+M2 vaccination, which protects in part via T-cell activity [23, 24], might show
a similar impact of priming early in life. We had mice vaccinated i.n. twice at two and three
months of age with A/NP-rAd or A/M2-rAd, or B/NP-rAd, and held them until they reached
20 months of age. We challenged these animals with 103 TCID50 A/FM-ma to test for long-
term protection provided by the early vaccination (Fig 7A and 7B). The mice immunized to A/
NP or A/M2 lost less weight than controls (Fig 7A) and approximately half of them survived
(Fig 7B). B/NP-vaccinated controls all reached the weight loss endpoint. This result suggests

titers (E and F) were determined by TCID50 assay on the lungs of 3 animals per group harvested on day 3 (open bars) and day 5 (solid bars) after challenge,
along with lungs from naïve mice of the same age infected at the same time. Shown are the mean ± SEM of 3 mice per group with the limit of detection
indicated by a horizontal line. ** p�0.01 was determined by ANOVA vs. the B/NP and naïve control groups. The difference was statistically significant
(**p<0.01) on day 5 for two-month-old animals. The 2- and 11-month-old groups were not performed simultaneously, so we cannot conclude that there was
superior control of viral replication in one age group.

doi:10.1371/journal.pone.0153195.g004
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Fig 5. Immune responses in young and elderly mice. BALB/cBy mice of age 2 months (A, C, D, G, and H) or 20 months (B, E, F, I, and J) were immunized
as in Fig 1. T cell responses: Three weeks after the rAd immunization, T cell responses in lungs were determined by IFN-γ ELISPOT (A, B). IFN-γ
responses of lung T cells are shown following stimulation with peptides NP147–155, NP55–69, and M2e2–24. SARSM stimulated cells were used as controls.
Bars showmean total lung IFN-γ secreting cell number per organ ± SEM for 3 or 4 mice per group. ***p�0.05 comparison of A/NP+M2 versus B/NP by
Mann-Whitney rank sum test determined for each peptide, performed only for those samples significantly above SARSM. Antibody responses: (C-J)
Samples were collected three weeks after rAd from A/NP+M2 DNA prime-rAd boost (solid circles) and B/NP DNA prime-rAd boost (solid triangles) mice. Sera
(C-F) or BAL (G-J) were analyzed by ELISA. Results show the mean of absorbance ± SEM of sera from 3–12 mice or BAL samples from 3–4 mice per group.
Background from secondary antibody alone was subtracted.

doi:10.1371/journal.pone.0153195.g005
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Fig 6. Morbidity and survival following challenge in young and elderly mice. (A-D) Groups of BALB/
cAnNCr mice or (E-H) BALB/cJ mice were immunized to A/NP+M2 (N = 6 to 8) or B/NP (N = 6 to 7) by DNA
priming followed by rAd boosting. They were challenged with 200 TCID50 of A/FM-ma one month after rAd.
(A, C, E, and G) Weight loss after challenge shown as the mean + SD. (B, D, F, and H) Survival until weight
loss endpoint after challenge. Animals were euthanized if weight decreased by more than 30% of the
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that a universal vaccine, even one containing a single antigen, can provide some long-term pro-
tection extending into old age.

We then considered the possibility that a rAd boost might strengthen protection in the
elderly. Elderly mice were immunized with rAd i.n. twice at an interval of one month. Groups
were given A/NP-rAd or A/M2-rAd, or A/NP+M2 rAd, or B/NP-rAd. Two month-old mice
were used as controls. Antibody responses were measured in these groups of mice. Serum IgG
responses to NP and M2e in old mice were somewhat weaker than in young mice; there was
some increase in antibody after the boost (S3 Fig). We also measured serum IgG responses to
adenovirus (S4 Fig). Responses were minimal after priming in both age groups. They increased
after the boost, more so in young mice than in old. These groups of mice were challenged one
month after the second rAd dose with 103 TCID50 A/FM-ma (Fig 7C–7F). The young mice
immunized to A/NP or A/M2 or A/NP+M2 lost less weight than controls (Fig 7C), with vacci-
nation to A/NP+M2 giving the best protection as we have seen before [13], and all three of the
vaccine groups survived (Fig 7D). Weight loss was more severe in the elderly mice (Fig 7E), but
approximately 43% of the A/M2-rAd-, 57% of the A/NP-rAd- and all of the A/NP+M2-rAd-
vaccinated mice survived (Fig 7F). B/NP-vaccinated controls all reached the weight loss end-
point. These results are evidence that universal vaccination of this type can provide some pro-
tection to elderly recipients if they are given two doses.

Discussion
Given the dramatic differences in influenza risk with age, it is important to study new candi-
date vaccines for their potential to protect different age groups. Alternative adjuvants, doses,
and routes of administration are being explored to overcome limitations in effectiveness
(reviewed in [37]). We tested a candidate universal influenza vaccine in mice of different ages,
both for immune responses and for protection against challenge infection.

Mice two and 11 months old responded with systemic and mucosal antibodies, as well as
with influenza virus-specific memory T cells in the lungs demonstrated by tetramer analysis.
Analysis of surface markers showed high levels of activated effector memory T cells in the
lungs of mice immunized at 2 months and 11 months. Moreover, vaccination of young mice
increased IFN-γ secreting cells as measured by ELISPOT, CD107a expression, and influenza
virus-specific cytotoxic activity of lung cells. Substantial T cell responses to A/NP+M2 were
observed by ELISPOT even in mice 16 months of age, but antibody responses declined by this
age, especially in the mucosal compartment. By 20 months of age, mice showed greatly
impaired cellular and humoral immune responses to vaccination. The limited availability of
elderly animals for purchase and attrition in groups we aged in our facility meant we could not
perform all experiment types with mice 20 months old. However, T cell ELISPOT responses at
this age were marginal. Antibody responses were detectable but lower in sera than in young
mice, and negligible in BAL.

Immunization with A/NP+M2-rAd given once protected young and middle-aged mice up
to 17 months of age against challenge with virulent mouse-adapted A/FM-ma. B/NP-immu-
nized controls were not protected, as all of them reached the weight loss endpoint, confirming
that protection is antigen-specific.

individual starting weight (a pre-determined endpoint for this experiment so that even weak protection would
have been seen in 20-month-old mice, if present). Not all groups were vaccinated and challenged
simultaneously, but each old group was vaccinated and challenged simultaneously with a young control
group of the same BALB/c subline. Young animals in different groups showed similar results.

doi:10.1371/journal.pone.0153195.g006
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Fig 7. Morbidity and survival following rAd given twice and the impact of prior vaccination. (A-B) Groups of 4 (A/NP) or 9 (A/M2) or 4 (B/NP) BALB/
cAnNCr mice were available from groups given 1×1010 particles of the respective rAds at two and three months of age. They were then challenged with 103

TCID50 of A/FM-ma at 20 months of age. (A) Weight loss after challenge, shown as the mean + SD. (B) Survival after challenge until weight loss endpoint,
p = 0.016 for A/M2 vs B/NP control group (*). The A/NP group was too small to reach significance for protection versus the B/NP control group. (C-F) Groups
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Both antibodies and T cell immunity may contribute to protection. While antibodies to NP
and M2 are not neutralizing, they can be protective [11, 23, 38]. The mechanism could be anti-
body-dependent cell-mediated cytotoxicity (ADCC) [39] and perhaps also intracellular disrup-
tion of viral replication, as seen in a variety of other examples reviewed in [40].

In mice, passively transferred A/M2-specific antibody reduced influenza A [23, 41], but not
influenza B [41], virus replication. Pre-existing immune responses including M2- and NP-spe-
cific antibodies in BAL and lung-resident virus-specific T cells with an activated effector mem-
ory phenotype, are likely to be important for early control of infection at the respiratory
mucosa. Crucially, unlike naïve T cells, effector memory T-cells can immediately exert antiviral
functions, including secretion of perforin, granzymes, and cytokines such as IFN-γ, upon
encountering the challenge virus. While cytotoxic activity is generally thought to be protective,
some argue that CD8+ T cell stimulation might exacerbate disease, as shown in old mice for
one regimen [42]. We saw no evidence of exacerbated morbidity (weight loss) with A/NP+M2
vaccine compared to control.

Both mice and humans show impaired T cell responses with age. Age-related changes in
protein phosphorylation involved in T lymphocyte proliferation have been reported [43], and
responses to mitogens are blunted in old compared to young mice [43]. Following influenza
virus infection of immunized mice, in vitro restimulated T cell responses are delayed and
decreased in old compared to young mice [44, 45]. In humans, immune responses are greatly
affected by aging, with decreased antibody responses and lower T cell proliferation and cyto-
toxicity [7, 46–49], which affect recovery from infection (reviewed in [50]). The elderly also
possess a reduced proportion of naïve cells and decreased repertoire diversity [51], thus
decreasing their potential to respond to new antigens.

Although their response to new antigens is impaired, cytotoxic T cell responses in old mice
are greatly enhanced if the mice had been primed while young [35]. We explored the implica-
tions of this for vaccination with A/NP-rAd or M2-rAd given twice in youth. Despite the
16-month gap between vaccination and challenge at 20 months, partial protection was seen.
We had shown previously that a single vaccination to A/NP+M2 in young mice provided pro-
tection against virulent challenge 8–10 months later [18, 19], but this is our first demonstration
of protection in elderly mice.

In the hope of developing a regimen effective when begun in old age, we examined a regi-
men using two doses of rAd. This regimen was successful in protecting elderly mice. The
improvement in protection compared to a single dose may be due to the boosting, since anti-
body responses to NP and M2 rose after the second dose (S3 Fig) Alternatively, improved pro-
tection may be due to response kinetics, with the delay in challenge providing a longer time
interval for immune response maturation.

A potential drawback to this two-dose rAd regimen is that prior exposure to Ad of the same
serotype could interfere with vaccine effectiveness, but use of the intranasal route has been
reported to circumvent prior anti-Ad immunity to a considerable extent [52, 53]. Indeed, in
our system, the antibody response to adenovirus was marginal after one i.n. dose and consider-
able only after the boost (S4 Fig). Thus blocking might not be induced by a single dose.
Humans have blocking antibody from a different source, namely prior wild type adenovirus
infections. However, alternative vectors such as those based on Pan Adenovirus type 3 [54, 55]

of BALB/cAnNCr mice (N = 4 to 7) were given 1×1010 particles of individual rAd, or 5×109 of each rAd in the mixture of A/NP and M2 at two and three months
of age (Fig 7C-D) or 20 and 21 months (Fig 7E and 7F), then challenged with 103 TCID50 of A/FM-ma a month after the boost. (C, E) Weight loss after
challenge shown as the mean + SD. (D, F) Survival after challenge until weight loss endpoint.

doi:10.1371/journal.pone.0153195.g007
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or other nonhuman primate adenovirus vectors [56] are being developed and are not neutral-
ized by antibodies widely circulating in the human population [55].

We and others have discussed previously the protective value of heterosubtypic immunity
(reviewed in [9]) and others have emphasized the potential downside of annual strain-matched
vaccination, which can provide sterilizing immunity but thereby preclude beneficial T cell
priming induced by infection [57–59]. The universal vaccine studied here would induce broad
cross-protective immunity, including T cell priming, without the health risks of undergoing a
wild type influenza virus infection. Critically, elderly humans have been primed by previous
infections, asymptomatic exposures, and/or live-attenuated influenza vaccines, and may thus
respond to A/NP+M2 vaccination more strongly than elderly SPF mice that have never had
such previous exposures.

Our findings suggest advantages to offering immunization while the immune system is
young and optimally responsive in order to protect later in life. Vaccination during youth to
antigens conserved in all influenza viruses might not only enhance function at the time, but
have a lasting impact by stimulating relevant repertoire elements while they are still available
and thus preserving responsiveness. In addition, the findings suggest some promise for first use
of the universal vaccine in the elderly, if given with an enhanced regimen. Overall, the work
helps define strategies to improve vaccine effectiveness in the elderly and thus has important
public health implications.

Supporting Information
S1 Fig. Antibody responses in sera from another middle-age comparison. As Fig 1 but
BALB/cAnNCr mice were two months (A and B) or 11 months (C and D) old. Analyses were
performed at two to three weeks after the boost. (A, C) NP-specific IgG; (B, D), M2e-specific
IgG. Responses in serum were measured by ELISA as described in Materials and Methods.
Results are shown for 6 mice per group. Background from secondary antibody alone was sub-
tracted. ELISA testing of all samples was simultaneous.
(EPS)

S2 Fig. IgG antibody responses in BAL of young and middle-aged mice. BALB/cAnNCr
mice 2 months old (A and B) or 16 months old (C and D) were immunized as in Fig 1. Samples
were collected two to three weeks after the rAd immunization. Antibody responses in BAL
were measured by ELISA as described in Materials and Methods on plates coated with NP or
M2e as indicated, and developed with enzyme conjugates recognizing total IgG. Results shown
are the mean absorbance ± SEM of 4 mice per group, except for the A/NP+M2 primed group
where only 3 mice were available. Background from secondary antibody alone was subtracted.
ELISA testing of all samples was simultaneous.
(EPS)

S3 Fig. IgG responses to NP and M2e in sera after one and two adenovirus doses. NP and
M2e-specific IgG in 2-month-old mice (A, B, E, and F) or 20-month-old mice (C, D, G, and
H). Responses in serum were measured by ELISA as described in Materials and Methods
except that plates were coated with rNP from GenScript (Piscataway, NJ). Results are shown
for 4 mice per group after the first (A, C, E, and G) and second (B, D, F, and H) doses of rAd.
Background from secondary antibody alone was subtracted. ELISA testing of all samples was
simultaneous.
(EPS)

S4 Fig. IgG responses to adenovirus in sera after one and two adenovirus doses. Adenovi-
rus-specific IgG in 2-month-old mice (A and C) or 20-month-old mice (B and D). Responses
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in serum were measured by ELISA as described in Materials and Methods after the first (A and
B) and second (C and D) doses of rAd. Results are shown for 4 mice per group. Background
from secondary antibody alone was subtracted. ELISA testing of all samples was simultaneous.
(EPS)
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