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Abstract

Background: Measurement of plant traits with precision and speed on large populations has emerged as a critical
bottleneck in connecting genotype to phenotype in genetics and breeding. This bottleneck limits advancements in
understanding plant genomes and the development of improved, high-yielding crop varieties. Results: Here we
demonstrate the application of deep learning on proximal imaging from a mobile field vehicle to directly estimate plant
morphology and developmental stages in wheat under field conditions. We developed and trained a convolutional neural
network with image datasets labeled from expert visual scores and used this “breeder-trained” network to classify wheat
morphology and developmental stages. For both morphological (awned) and phenological (flowering time) traits, we
demonstrate high heritability and very high accuracy against the “ground-truth” values from visual scoring. Using the traits
predicted by the network, we tested genotype-to-phenotype association using the deep learning phenotypes and uncovered
novel epistatic interactions for flowering time. Enabled by the time-series high-throughput phenotyping, we describe a new
phenotype as the rate of flowering and show heritable genetic control for this trait. Conclusions: We demonstrated a
field-based high-throughput phenotyping approach using deep learning that can directly measure morphological and
developmental phenotypes in genetic populations from field-based imaging. The deep learning approach presented here
gives a conceptual advancement in high-throughput plant phenotyping because it can potentially estimate any trait in any
plant species for which the combination of breeder scores and high-resolution images can be obtained, capturing the
expert knowledge from breeders, geneticists, pathologists, and physiologists to train the networks.
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Background

Limitations in phenotyping are widely recognized as a critical
constraint in genetic studies and in plant breeding [1, 2]. Ini-

tial developments in field-based, high-throughput phenotyping
(HTP) have focused on direct sensor or image measurements
to extract proxies for traits of interest such as vegetation in-
dexes from spectral reflectance [3, 4] or plant height from digital
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elevation models [5]. While lending great insight to plant pro-
cesses, this first generation of HTP is limited in assessment of
“complex” traits such as plant morphology or growth stage that
cannot be assessed by a linear function of pixel values. While
these complex morphological and developmental features are
readily distinguished by a trained eye, the assessment of these
phenotypes with high-throughput platforms is challenging,
particularly under field conditions used in plant breeding
programs.

Deep learning has emerged as a powerful machine learning
approach that takes advantage of both the extraordinary com-
puting power and very large datasets that are often now avail-
able [6]. Deep learning bypasses the need to explicitly define
which features are most useful or needed for data analysis. In-
stead deep learning optimizes a complete end-to-end process
to map data samples to outputs that are consistent with the
large, labeled datasets used for training the network. For im-
age analysis tasks, convolutional neural networks (CNNs) learn
this end-to-end mapping by optimizing for many layers of fil-
ters. The first filters are easily interpreted as low-level image
features (e.g., detecting edges, bright points, or color variations),
and subsequent layers are increasingly complicated combina-
tions of earlier features. When there is sufficient training data,
CNNs dramatically outperform all alternative existing methods
for image analysis. For benchmark classification tasks attempt-
ing to label which of 1,000 different objects are in an image,
results have increased from 84.6% in 2012 [7]to 96.4% in 2015
[8].

On the basis of this impressive performance of the latest
CNNs, these deep learning approaches are being applied to chal-
lenging tasks in plant phenomics [8] including root and shoot
feature identification [9], leaf counting [10, 11], classifying types
of biotic and abiotic stress [12], counting seeds per pod [13], and
detection of wheat spikes [14]. Initial studies have shown a wide
array of potential applications for CNNs in plant phenomics.
With increasingly robust image datasets, the use of CNNs has
great potential for accurate estimation of plant phenotypes di-
rectly from images.

One challenge that has emerged in using CNNs for plant phe-
nomics is the development of suitable datasets that are suffi-
ciently annotated for training the networks [8, 9]. The labeling of
images, particularly when going from weak to stronger annota-
tions, is a time- and resource-intensive constraint for the future
of plant phenomics [10]. While it is a greater challenge to train
networks with weaker annotations, the size of these datasets
can be greatly expanded beyond what is tractable with exten-
sive manual annotation. Furthermore, approaches that can gen-
erate a large number of images with imputed labels from visual
scoring as demonstrated in this study have potential to expo-
nentially increase the size and scope of labeled image datasets
for the phenomics community.

Given the broad applications and demonstrated success of
deep learning, we hypothesized that this deep learning ap-
proach could be a powerful tool for estimating phenotypes of
interest directly from images in segregating plant populations
under field conditions used by breeding programs. Such imple-
mentations of HTP would have direct application to improve the
efficiency of plant breeding while being directly relevant to the
phenotypes of interest to breeders and the sizes of populations
used by these breeding programs. When applied in a relevant
context at the scale of entire breeding programs (e.g., thousands
to tens of thousands of field plots), these phenomics tools can
contribute to accelerated development of high-yielding, climate-
resilient new varieties.

Data Description
Field-based high-throughput imaging of wheat plots

To advance high-throughput phenotyping of complex morpho-
logical and developmental traits under field conditions, we de-
veloped a high-clearance field vehicle [15] equipped with an ar-
ray of DSLR cameras collecting geo-positioned images (Fig. 1a
and b). This platform was deployed across wheat field trials in
2016 and 2017. Each year we grew 2 trials, (i) a recombinant
inbred line (RIL) population from a cross between wheat cul-
tivars “Lakin” and “Fuller” and (ii) a panel of diverse histori-
cal and modern winter wheat varieties consisting of a total of
1,398 plots each year. We captured >400,000 proximal images
of the wheat canopies throughout the growing seasons in 2016
and 2017. These images were geo-referenced and 135,771 and
139,752 of the images were assigned to individual field plots in
2016 and 2017, respectively, on the basis of surveyed coordinates
of the field plots and geo-tagged images (Fig. 1, Supplementary
Fig. S1). This approach enabled high-throughput proximal imag-
ing on an individual plot level (1.5 m × 2.4 m plot size). Concor-
dant with imaging, field plots were visually scored for percent
heading and spike morphology of awned or awnless. To gener-
ate a large collection of labeled images suitable for deep learning
while avoiding time-consuming manual annotations, the im-
ages from a given plot were labeled with the “breeder scores”
of awned/awnless and percentage heading visually assessed at
the same time points on the same respective plots as the im-
age data collection (Fig. 1c). The labeled image dataset(s) col-
lected and analyzed in this study are available in the GigaDB
repository [16].

Analysis
Development of convolutional neural networks

To assess plant features that cannot be measured directly by
sensors with the high-throughput platform, we developed a
CNN network that could be trained using these geo-positioned
images that are labeled with visual scores and subsequently au-
tomatically classify and estimate the phenotypes of interest. As
a starting point, we first approached the qualitative trait of awn
morphology (Supplementary Fig. S2).

An initial challenge in the development of the CNN was
memory constraints that limit the networks to analyzing rela-
tively small images, but the images were captured at very high
resolution. Because the relevant image features are quite small
(e.g., wheat awns at 1–2 mm width), reducing the size of the im-
age would make these features invisible. We therefore cropped
the images into a 3 × 3 grid of 9 patches of 224 × 224 pixel size. To
build the full “WheatNet,” we then extended the CNN architec-
ture that analyzes images with a small additional network that
combined features from the 9 patches to create a consensus es-
timate for the image (Fig. 2).

We used this developed CNN architecture in a training-
validation-testing approach to predict the awn phenotype in the
diverse panel of inbred lines in which there were awned and
awnless variants. The training and validation images were from
this diversity panel evaluated in 2017 with 700 plots, of which
29 plots were awnless and 671 were awned. Model training used
2,000 images for awned plots and 1,800 images for awnless plots.
As a validation dataset, we sampled 70 plots from the awned
and 5 plots from the awnless and left the remaining plots as the
training data. We validated the WheatNet on a set of 300 images
each from awned and awnless plots. On this set, the network
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Figure 1: Phenotyping platform and “breeder-trained” image datasets in this study. (a) Aerial view of field-based high-throughput phenotyping platform deployed in
present study traversing wheat plots with superimposed example representation of imaging positions and example field plot boundaries. (b) imaging array of multiple

DSLR cameras deployed on the phenotyping platform to collect geo-referenced proximal images of the wheat canopy. (c) combination of images assigned to respective
field plots and merged with visual breeder scored to develop the labeled imaged dataset for training the neural networks.
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Figure 2: Schematic of the “WheatNet” neural network developed for classifying cropped image patches followed by census voting network for the whole image.

classification matched the visual score at 99.2% on the training
set and 98.6% on the validation set.

To test the WheatNet for predicting awn morphology, we ap-
plied the network trained with data from 2017 to test images
from field trials of the diversity panel in 2016, which contained
12,504 images from 675 awned plots and 32 awnless plots. At
the level of individual images, the prediction accuracy was 98.9%
for awned and 98.7% for awnless phenotypes (Supplemental

Table S1). Because many images were captured for each plot,
we applied a plot-level consensus voting, which increased the
accuracy to 99.7% for awned and 100% for awnless. Strikingly,
we observed that only 2 plots were inconsistent between visual
scoring and the CNN predictions and that these 2 plots were the
same variety (“MFA-2018”) across both field replications. Further
inspection showed that this variety was a heterogeneous “atypi-
cal awnlette” phenotype (Supplementary Fig. S2), indicating that
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Figure 3: Example of logistic regression to score heading date from time-series measurements for a single field plot (17ASH20014). Shown are visual scores (circles)
and predictions from the convolutional neural network (squares) and the respective fitted regression lines. The 50% interaction of the regression was identified and

scored as the heading date.

the CNN was able to detect subtle atypical phenotypes that were
lost or ignored in the human scoring.

Measurement of percentage heading

Observing initial proof of concept for using deep learning to
score a simple morphological trait with 2 classes, we extended
this approach to a more complex problem of developmental phe-
notypes using time-series imaging. Flowering time is a critical
trait under intense selection in natural populations and breed-
ing programs. Owing to tightly closed flowers in wheat, spike
emergence (heading time or heading date) is used as a close
proxy for flowering time in breeding and genetics studies. To es-
timate the heading date of wheat, which is classically defined
as the date in which spikes (ears) have emerged from 50% of the
tillers [17], we applied the CNN to classify percentage heading
over the longitudinal image datasets. For the initial trait estima-
tion of percent heading we used the same CNN architecture and
training approach as was used for predicting the wheat awn phe-
notype and trained the network with 2 years of image data from
the diversity panel. An additional feature of predicting percent-
age heading makes this problem different from standard clas-
sification problems, in that the breeder labels are given in 10%
increments, and there is some inconsistency in these labels. To
address this, we modified the algorithm that trains the CNN to
give partial credit for predictions that are within 10% and 20%
from the assigned label.

On the classification problem for percent heading the net-
work prediction exactly matched the 10 percentile classifica-
tions from visual assessment on 45.12% (training set) and 41.27%
(validation set) of the images, which is much better than a ran-
dom guess at 9.10% (1 out of 11 classes). The confusion matrix
for training, validation, and testing the CNN for predicting per-
cent heading showed clear diagonal patterns, indicating linear
consistency between the observed and predicted values (Sup-
plemental Fig. S3). Although there was lower accuracy in the
testing phase, the diagonal linear pattern remained consistent.
From these observations, we had strong evidence that the CNN
is accurately estimating percentage heading for images across
the range of heading values and throughout the season. Fol-
lowing this conclusion, we applied the CNN trained on the di-
versity panel to predict percentage heading and calculate head-
ing date for a biparental RIL population and determine whether

genotype-to-phenotype associations could be detected directly
from phenotypes estimated through deep learning.

To translate the time-series imaging and CNN phenotypic
predictions into a single time point for heading date, we ap-
plied a logistic regression to the percent heading measurements
for each individual plot (Fig. 3). From the logistic regression fit,
we then found the date intersecting the regression at 50% and
assigned this time point as the heading date commensurate
with the classical definition of 50% of heads emerged from the
boot. Applying this logistic regression individually to each plot
we obtained heading dates from the CNN predictions that were
highly accurate compared with the heading date measured di-
rectly from visual scoring (Fig. 4). We observed that >57% and
>88% of heading date measurements were within 1 and 2 days,
respectively, with a mean absolute error of 0.99 and root mean
square error of 1.25 days. The slope of the regression between
the visual and CNN measurements of 1.02 indicated lack of bias
from the CNN predictions. Reflecting accurate phenotypes un-
der strong genetic control, the broad-sense heritability for head-
ing date was very high when measured by both visual scoring (H2

= 0.982) and CNN predictions (H2 = 0.987).
An interesting novel phenotype that can be assessed with

this time-series approach is the developmental rate of flower-
ing (heading) progression within an inbred line. This measure of
the rate of heading is derived from the slope of the logistic re-
gression. Measuring the slope for each inbred line, we found her-
itable genetic variance for the rate of heading (H2

VISUAL = 0.621,
H2

CNN = 0.514), indicating that this developmental rate pheno-
type is also under genetic control. Because the rate of heading
might simply be an artifact from the heading date per se, we
tested the correlation between timing and rate of heading and
found weak negative correlation (r = −0.19, P-value < 0.001).
Looking at RILs within the normal early range of heading date
(e.g., before May 5; Day 125) we found no significant correlation
(r = 0.078, P-value = 0.079), suggesting that the rate of heading
is indeed under independent genetic control from heading date.

Genetic analysis of flowering time

Following the measurement of heading date using the neural
network, we sought to determine the utility of phenotypes es-
timated directly from deep learning to uncover the genetic ba-
sis of the variation in flowering time present in the biparental
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Figure 4: Heading date compared between visual scoring and convolutional neural network (CNN) from logistic regression applied individually to 676 field plots in

“Lakin × Fuller” recombinant inbred line population in 2017 for percentage heading from time-series observations (visual scoring) and time-series imaging (CNN
predictions). The dates of visual scoring (VISUAL) and imaging data collection (CNN) are shown on the axes.

population. Although the parental lines “Lakin” and “Fuller”
are very similar in heading, the progeny showed vast trans-
gressive segregation and also segregation distortion, indicating
some underlying epistatic gene action (Supplementary Fig. S4).
We implemented a genome-wide scan of 8,237 genotyping-by-
sequencing markers and found strong associations for PpD-D1
and PpD-B1 as well as associations on 5B and a novel quanti-
tative trait locus (QTL) positioned at the distal end of chromo-
some 1B (Fig. 5). Suspecting epistatic gene action based on the
phenotypic distribution, we tested all significant markers for pu-
tative epistatic interactions and found strong interactions be-
tween PpD-D1 and Ppd-B1 as well as between PpD-D1 and the lo-
cus on 1B (Fig. 5). Interestingly, the modeling of the interactions
between all 3 loci removed the main effect of the 1B locus per
se, with this locus having an opposite effect in the presence of
PpD-D1 early (insensitive) allele (Fig. 6).

While we found heritable genetic variance for the rate of
heading, we were not able to find any genetic association within
this population (Supplementary Fig. S5). Implicating missing
heritability for the rate of flowering suggested a diffuse ge-
netic architecture of many small effect alleles. We therefore
tested whole-genome polygenic models (BayesA and G-BLUP)
to capture the genetic variance for the rate of heading. We
ran 100 replications of cross-validation predicting 10% masked

phenotypes and were able to model 18–25% of the heritable ge-
netic variance.

Discussion

From this study, we have demonstrated that deep learning with
“breeder-trained” neural networks from proximal field-based
imaging can accurately classify plant morphology. When applied
to time-series image datasets this approach can likewise accu-
rately predict developmental stages such as flowering time. Fur-
thermore, these machine vision phenotypes can be used directly
to uncover genetic determinants in the populations, connecting
genotype to phenotype in the same way as classical approaches
to phenotyping.

An important advancement of the approach presented here
is that there is no additional time investment in developing the
labeled image set for training. Many applications applying deep
learning for image-based phenotyping require extensive anno-
tation of the training image sets, such as annotating plant fea-
tures of interest prior to network training [9, 18]. As demon-
strated in this study, HTP image datasets from field trials can
be labeled through direct imputation of visual scores routinely
collected in the field by breeders. This approach can be used to
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develop very large labeled image datasets for training networks
on any phenotype of interest without any further human input.

Although the images are labeled, and hence the network sub-
sequently trained, by experienced individuals, there are inher-
ent limitations and bias associated with visual scoring of any
type [19]. Just as expert breeders, pathologists, and physiolo-
gists can disagree among themselves on how to classify subtle
phenotypic differences, the CNN developed here notably had a
case of consistent disagreement with the visual scores from the
expert that were actually used to train it. Indeed, it has been
shown in different fields how deep learning can surpass the ac-
curacy of experts [20]. Moving beyond the input of a single per-
son, deep learning for high-throughput phenotyping has the po-
tential power to synthesize the consensus knowledge of an en-
tire community of experts through training on shared datasets.
When combined with high-resolution imaging that is becoming
more easily acquired from unmanned aerial systems, the collec-
tion of this level of image data across many research groups and
breeding programs could develop robust training sets for all phe-
notypes of interest along with the built-in feature of consensus
from many experts.

Potential Implications

The first generation of high-throughput plant phenotyping has
focused on sensor and image features that can be directly

mapped to plant phenotypes, but it remains limited on explor-
ing the full scope of phenotypic variants. Conceptually, deep
learning approaches for the next generation of high-throughput
phenotyping can be extended to any trait of interest in any
species for which high-resolution imaging and expert scoring
of the phenotypes can be obtained. This development in high-
throughput plant phenotyping can enable breeders and geneti-
cists to measure complex phenotypes on the size of populations
that are used in breeding programs and is needed to understand
gene function on a genome-wide scale and uncover genetic vari-
ants to develop vastly improved varieties for a future of food se-
curity.

Methods
Development of field-based high-throughput platform
for image collection

A phenotyping mobile unit (“PheMU”) [15] was developed to im-
age winter wheat field plots at Kansas State University, Manhat-
tan, Kansas, USA. PheMU was constructed on a high-clearance
sprayer (Bowman Mudmaster, Bowman Manufacturing Co., Inc.,
Newport, Arkansas, USA) with a height-adjustable sensor boom
to capture images throughout the growing season from consis-
tent distance from the canopy. An imaging array including mul-
tiple digital single-lens reflex (DSLR) cameras (EOS 7D, Canon,
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Ohta-ku, Tokyo, Japan) was carried by the PheMU to capture
high-resolution crop images. For georeferencing images, 2 GNSS
antennae (AG25, Trimble, Sunnyvale, California, USA) were in-
stalled at each end of the sensor boom and connected to an RTK
GNSS receiver (BX982, Trimble, Sunnyvale, California, USA). A
laptop computer was used to control cameras, collect images,
and log positioning data. To reduce the shadows on the canopy
and capture images in a balanced light condition, a rectangle-
shape shade sail (Kookaburra OL0131REC, Awnings-USA, Ca-
manche, Iowa, USA) was mounted over the sensor boom.

Plant materials and field experiments

Two populations were used in this study, (i) a recombinant in-
bred line (RIL) population consisting of 318 RILs developed from
single seed descent to the F5 generation from a cross between
US winter wheat varieties “Lakin” and “Fuller,” with seed for field
trials increased from a single plant in the F5 generation; and (ii) a
diverse panel of winter wheat inbred lines (Diversity Panel) con-
sisting of 340 lines (Supplementary Data S1) that was an aug-
mented panel from a previously described set of 299 historical
and current winter wheat cultivars [21].

Field trials were planted at the Kansas State University Ash-
land Bottoms research farm (39 7.015 N, 96 37.003 W) on 10 Oc-
tober 2015 and 18 October 2016 for the Lakin × Fuller and 20
October 2015 and 19 October 2016 for the diversity panel for the
2 years, respectively. Trials were planted in 2 replications of an
augmented incomplete design with 1 check plot per block of
“Lakin” and “Fuller” for the Lakin × Fuller population and “Ever-
est” for the AM Panel (Supplementary Data S1).

Phenotypic measurements for awns and percent heading
were visually scored and recorded using FieldBook [22]. Awn
morphology was scored on the diversity panel according to Crop
Ontology CO 321:0000027 [23]. The Lakin × Fuller population is
completely awned. Percent heading was visually scored at 2–4

day intervals through the season, scored corresponding to de-
velopmental stages of Zadoks et al. [17] 49–59 (Crop Ontology
CO 321:0000476). Percent heading was scored as the percentage
of heads emerged from the boot to give a direct indicator with
multiple linear classes from 0% to 100% of heading progression
to model with the deep learning. A score of 50% heading was
given consistent with the standard visual observation of heading
date when 50% of the spike is emerged on 50% of all stems (Crop
Ontology CO 321:0000840). For imaging timepoints that corre-
sponded to visual measurements on the same date, we assigned
labels to all images from a given plot on that date with the visual
score for that respective plot.

For imaging timepoints that did not correspond with visual
measurement dates, the successive visual measurements for
dates directly before and after the imaging date were used to
impute the percentage heading labels for images on that date. A
weighted average of the visual scores based on number of days
from the imaging date was used as follows:

PCTt = [PCTt−1 ∗ (Tt − Tt−1) + PCTt+1 ∗ (Tt+1 − Tt)] ∗ 1
(Tt−1 − Tt+1)

,

where PCT is the visual score of percentage heading at the cor-
responding timepoint and t is the respective timepoint in days.
The timepoints t − 1 and t + 1 correspond to the timepoints of
the respective visual scores directly before and after the date of
imaging. This gives a weighted average of the 2 successive visual
measurements for imaging timepoints that did not correspond
to the same days when visual measurements were taken.

Field mapping and image collection

Proximal imaging of the field plots was also conducted at tar-
get intervals of 2–3 days. Owing to rain and wet field conditions,
there was a gap in imaging date in 2017 of 5 days. Cameras in
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the imaging array were set to capture proximal images of wheat
plots in nadir and off-nadir view angles, and from different parts
of each plot. The PheMU was operated at 0.3–0.5 m/s with the
cameras positioned at 0.5 m above the canopy. Each DSLR cam-
era was triggered to take mid-size JPEG images (8 megapixels) in
1.25 Hz by a C# program using the Canon EOS Digital SDK (EDSDK
v2.14, Canon, Ohta-ku, Tokyo, Japan). To capture unblurry and
focused images on a mobile platform, the camera was set us-
ing manual focus, 1/500-second shutter speed, and f/5 aperture.
The camera ISO was adjustable according to the light condition
at the beginning of each image acquisition. Each image was di-
rectly transferred from the camera to the laptop computer. Im-
age file names and the time stamps when captured were logged
in a text file for subsequent georeferencing. Images were then
georeferenced and positioned to individual field plots using the
approach of Wang et al. [24]. The boundary coordinates of each
field plot were delineated in Quantum GIS (QGIS [25]) using an
orthomosaic field map generated from aerial images using the
approach of Haghighattalab et al. 2016 [5]. Images inside each
plot boundary were geotagged with designated plot IDs to be
linked with the plot level scores (as described above) and geno-
type information based on the entry for that respective field plot
(Supplementary Dataset).

Neural networks

We followed the standard approach of starting with an exist-
ing network pre-trained on the Imagenet dataset [26] and fine-
tuning that network to give optimal performance for our task.
We subsequently made slight modifications to standard CNN to
optimize the network for the phenotyping task. For the base-
line model we used Resnet [27], which has been previously used
for many applications including people re-identification [28] and
flower species identification [29].

Training data preparation and size
For the awned phenotype, training and validation images were
from a 2017 association mapping panel (AM Panel) containing
700 plots, of which 29 plots were awnless and the remaining
were awned. As a validation dataset, we reserved 70 plots from
the awned and 5 plots from the awnless and sampled images
from the remaining plots as the training data. For the training
set, we used 2,000 images for awned plots and 1,800 images
for awnless plots. The “WheatNet” network was trained with
the following parameters: mini-batch stochastic gradient with
a batch size of 44. The learning rate is initialized at 0.01 and was
reduced by 80% every 5 training epochs. Training continued for
30 epochs.

For estimating heading percentage the training dataset is
from the AM-Panel image set from 2016 and 2017, which con-
sists of 711 plots. In these plots, the training set contains 611
randomly sampled plots, and the validation set contains the re-
maining 100 plots. Each plot was imaged on multiple dates, and
on each date, multiple images were taken of each plot. Each plot
was assigned 1 of 11 classes, corresponding to a visual score
of percentage heading of 0, 10, 20, . . . 100. To create a training
dataset, images from each plot were randomly selected to get
2,000 images per class. A validation dataset was sampled from
images from the 100 plots from the diversity panel by randomly
selecting 200 images for each class.

Resnet, and most CNNs, are presently restricted in the size
of the image they can analyze owing to current hardware lim-
itations (e.g., GPU memory) used for training the networks.
We therefore cropped the large images captured by the tractor

system into 3 by 3 blocks (patches). Each of the 2,000 images
per class give 9 ×2000 patches per class. Therefore, overall we
trained the networks with 198,000 image patches cropped from
22,000 images. The test dataset comes from the Lakin × Fuller
RIL population in 2017. This dataset contains ∼80,000 images per
class, and all images came from 676 plots and germplasm that
were never seen in the test or validation data.

To develop a more robust CNN for heading percentage we de-
veloped 2 important modifications of the base network.

Modification 1: Error function that gives partial credit for classifica-
tions that are within 10–20% of the label
The output of a CNN can be viewed as a probability distribu-
tion of classes, with close percentage classes being more simi-
lar. Meanwhile, a given visual labeled maturity percentage can
have a ±10% or ±20% offset mislabeled condition. In our data,
we evaluated repeatedly visual scoring a small subset of the
field plots and estimated the percentage of the mislabeled im-
ages that have a discrepancy of 10% at ∼10% in each class and
that have a discrepancy of 20% at ∼5% in each class. There was
negligible discrepancy of ≥30%. Therefore, the image label was
modeled as a distribution that the labeled class has the value 0.7
for correct class, 0.1 for 10% discrepancy, and 0.05 for 20% dis-
crepancy, respectively, and the remaining classes have value 0,
which ensure that the sum of all class probability is 1. The er-
ror function calculates the average mismatch of the probability
of output and the target distribution, which calculate the abso-
lute difference of each class value between output and the target
value.

Modification 2: WheatNet
In order to keep as much of the full details of the images as pos-
sible, which is sensitive to maturity classification, the modified
architecture keeps the input image with the resolution of 672
× 672 pixels. The main idea of the design of the architecture is
to mimic how experienced individuals assign a phenotype (e.g.,
the maturity percentage) from a wheat plot or image, by tak-
ing a consensus from viewing all parts of the images. To capture
this feature of visual scoring in the CNN, the network classified
the maturity percentage of each image patch and then summa-
rized all predictions and gave output for the consensus predic-
tion for a whole image. The validation dataset for each network
was used to determine the optimal number of training epochs
and hyper-parameters. Full detail of each layer in the WheatNet
is included as Supplementary Table S3.

Genetic analysis

RILs from the Lakin × Fuller population were genotyped us-
ing genotyping-by-sequencing with 2 enzymes, PstI and MspI
[30]. Two sets of libraries for the RILs and replicated samples
of the parents were made in 95-plexing and 190-plexing and
sequenced with Illumina HiSeq2000 and NextSeq, respectively.
Single-nucleotide polymorphisms (SNPs) were called using TAS-
SEL 5 GBS v2 pipeline [31] anchored to the IWGSC wheat genome
v1.0 assembly [32] with the following parameters: -mnQS 10, en-
zyme PstI-MspI, -c 20, -minMAPQ 20, and -mnMAF 0.1. Unique
sequence tags were mapped to the wheat reference genome
(Chinese Spring) using bowtie2 [33] with the following settings:
–end-to-end -D 20 -R 3 -N 0 -L 10 -i S,1,0.25. SNPs passing ≥1 cri-
terion were recovered: inbreeding coefficient of ≥0.8, Fisher ex-
act test (P < 0.001) to determine bi-allelic single locus SNPs [30],
and χ2 test for bi-allelic segregation with 96% expected inbreed-
ing. SNPs having 2 parents homozygous within and polymorphic
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between were extracted and missing loci were imputed with LB-
impute [34] with parameter settings of -readerr 0.1 -genotypeerr
0.1 -window 7. Finally, SNP sites were removed if minor allele
frequency (MAF) < 0.1, missing > 30%, or heterozygosity > 6%.
The TASSEL pipeline gave ∼82% useable reads out of 2.15 billion
reads. The overall alignment of 1,973,081 unique tags against the
reference genome was 91%, with a unique alignment of 37.8%. A
total of 44,679 SNPs was discovered, of which 28,972 passed fil-
tering. We then filtered RILs for missing data and heterozygosity,
resulting in 306 RILs and the 2 parents with suitable genotypes.
Finally, 8,797 SNPs were recovered after imputation with the ad-
ditional filtering for MAF, missing, and heterozygosity. All raw
sequencing data for the Lakin × Fuller RIL population are avail-
able from the NCBI SRA under accession number SRP136362.

Using traits directly from visual scoring and from the net-
work image classification by the K-net we calculated trait distri-
butions, variance components, and best linear unbiased predic-
tors in R statistical software [35] (Supplemental Information).

To model heading date from time-series scoring/predictions
of percent heading, we fit a logistic growth curve model for each
individual plot according to the function

yi = phi1
1 + e−(phi2 + phi3 ∗ day)

,

where yi is the ith observation of heading percentage for a given
plot. phi1 is the asymptote maximum and was set to fixed at
100 for maximum percent heading. This model allows for dif-
ferent rates of development through heading as defined by phi2
and phi3. The independent variable ”day” was calculated as the
day of the year for observation i. The model was fit using the nls
function from the nlme package [36]. To increase the robustness
of fit we added points of 0 and 100% heading at 10, 20, and 30
days before the first and after the last visual measurements, re-
spectively, corresponding to dates when all of the plots were not
started and completely headed. The heading date for each plot
was calculated as the date closest to 50% using the predict func-
tion in R at 0.1-day increments over the full range of the days.

For heading date, phi2 and phi3, we calculated broad-sense
heritability on a line mean basis according to Holland et al. [37]
for replicated trials of inbred lines (e.g., clonal species) in 1 loca-
tion within 1 year as:

H2 = σ 2
G

σ 2
G + σ 2

e
r

,

where σ 2
G is the total genetic variance for entries in the trial, σ 2

e

is the error variance, and r is the number of replications. Heri-
tability can be estimated across multiple years at 1 location as
follows:

H2 = σ 2
G

σ 2
G + σ 2

GY
y + σ 2

e
yr

,

where σ 2
GY is the genotype by year variance and y is the number

of years evaluated. Variance components were estimated by fit-
ting mixed models in the asreml package [38] in R. Models were
fit with random effects for entry, year, and replication within
year and using a row-column autoregressive variance structure
using the following model:

yi jk = gi + yj + rk( j) + e,

where yi jk is the observed plot-level phenotype, gi is the random-
effect genotype effect of entry i distributed as independent and
identically distributed random variables where gi ∼ N(0, σ 2

i ), yj

is the random effect for year j, rk( j) is the random effect of repli-
cation k within year j, and e is the residual variance partitioned
with a 2-dimensional autoregressive spatial structure (AR1 ⊗
AR1). Best linear unbiased estimates were estimated for each en-
try within and across years by fitting the same model with entry
as a fixed effect and using the predict function in R.

Following calculation of heading date, we observed a bimodal
distribution of heading dates from the multi-year model BLUPs
(Supplemental Fig. S4). The distribution was delimited at 124
days to calculate the number of “early” and “late” lines. The
number of lines in each group was fit to a χ2 test for 2 classes
with probability of 0.75 and 0.25 according to a 2-gene dominant
epistasis model for inbred lines using the chisq.test function
in R.

We tested for genetic association of heading date in the Lakin
× Fuller population as measured by the logistic regression using
a standard mixed model:

y = Wv + Xβ + Zu + e,

where y is the projected phenotype of heading date (50% in-
tersect) or rate of heading (phi3) from the logisitic regression
models. The use of a bi-parental population without population
structure or kinship greatly simplified the equation to

yi = βi,k + e,

where βi, k is the allele substitution effect for locus k in individ-
ual i , and e is residual error. Each marker effect was estimated
using the lmer function in R and Bonferroni for multiple testing
correction of experimental α of 0.05.

Following identification of significant marker association, we
tested for 2-way epistatic interactions for all markers that were
associated with heading date using the following model:

yi = αi, j + βi,k + εi, j·k + e,

where yi is the phenotype of the individual i ; αi, j is the allele sub-
stitution effect for locus j in individual i ; βi, k is the allele sub-
stitution effect for locus k in individual i ; εi, j·k is the interaction
between locus j and k; and e is residual error.

Availability of Source Code and Requirements
� Availability of source code: Code used for camera control

is available at [39]. Code used for neural networks is avail-
able at [40]. Code used for genetic analysis is available
at [41].

� Operating system(s): Program used for camera control is run
on Windows 10 operating system. Other programs are plat-
form independent.

� Programming language: Code used for camera control is
scripted in C#. Code used for neural networks is scripted in
Python. Code used for genetic analysis is scripted in R.

� Other requirements: The code for deep learning is run on the
Pytorch (Version 0.3). The computer used for deep learning
required ≥2 GPUs with 12 GB memory on each one.

� License: R as a package is licensed under GNU GPL.
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Availability of Supporting Data and Materials

Snapshots of our code and other supporting data are openly
available in the GigaScience repository [16].

Additional files

Figure S1. Example of geolocations of images from one camera
(yellow points) marked on the field map (white polygons on the
orthomosaic photo). GIS datasets (shape files) for all positioned
images are included as supplemental data.
Figure S2. Example of (a) awnless and (b) awned phenotypes
from the image dataset for the diversity panel. (c and d) Image
examples of misclassified entry “MFA-2018” showing a heteroge-
nous atypical awnlette phenotype.
Figure S3. The confusion matrix for (a) training, (b) validation,
and (c) testing the CNN for predicting percentage heading.
Figure S4. Phenotypic distribution of Lakin × Fuller recombinant
inbred lines for heading date (day of year) in 2017 field trial.
Figure S5. Genome-wide association testing of phi2 (slope of
logistic regression). No significant markers above Bonferroni
multiple-test correction threshold.
Table S1. Individual image predictions (a) and accuracy (b) for
awns phenotypes.
Table S2. Supplemental dataset table of field plot entries and
field design for Diversity Panel and Lakin × Fuller Recombinant
Inbred Line (RIL) populations in 2016 and 2017.
Supplemental Table S3. Full details of each layer in the Wheat-
Net.
Table S4. Analysis of variance for full interaction model of Ppd-
D1, Ppd-B1, and locus on 1B. test = lm(Y ∼ g.2B ∗ g.2D ∗ g.1B).

Abbreviations

AM Panel: association mapping panel; BLUP: best linear unbi-
ased prediction; CNN: convolutional neural network; DSLR: dig-
ital single-lens reflex; GPU: graphics processing unit; HTP: high-
throughput phenotyping; NCBI: National Center for Biotechnol-
ogy Information; PheMU: phenotyping mobile unit; QTL: quan-
titative trait locus; RIL: recombinant inbred line; SNP: single-
nucleotide polymorphism; SRA: Sequence Read Archive.
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