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ABSTRACT
Although gene-environment (G×E) interactions play an important role in many biological systems, detect-

ing these interactions within genome-wide data can be challenging due to the loss in statistical power

incurred by multiple hypothesis correction. To address the challenge of poor power and the limitations

of existing multistage methods, we recently developed a screening-testing approach for G×E interaction

detection that combines elastic net penalized regression with joint estimation to support a single omnibus

test for the presence of G×E interactions. In our original work on this technique, however, we did not

assess type I error control or power and evaluated the method using just a single, small bladder cancer

data set. In this paper, we extend the original method in two important directions and provide a more rig-

orous performance evaluation. First, we introduce a hierarchical false discovery rate approach to formally

assess the significance of individual G×E interactions. Second, to support the analysis of truly genome-

wide data sets, we incorporate a score statistic-based prescreening step to reduce the number of single

nucleotide polymorphisms prior to fitting the first stage penalized regression model. To assess the sta-

tistical properties of our method, we compare the type I error rate and statistical power of our approach

with competing techniques using both simple simulation designs as well as designs based on real disease

architectures. Finally, we demonstrate the ability of our approach to identify biologically plausible SNP-

education interactions relative to Alzheimer’s disease status using genome-wide association study data

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
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1 INTRODUCTION

Statistical gene-environment (G×E) interactions are known to

be biologically important for a wide range of human pheno-

types and environmental exposures (Buil et al., 2015; Hunter,

2005; Murcray, Lewinger, & Gauderman, 2009). Knowledge

of significant G×E interactions has the potential to improve

our understanding of disease mechanisms, enable the creation

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.
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of better risk prediction models, and guide the development of

more effective prevention and treatment strategies (Aschard

et al., 2012b). Motivated by these benefits, researchers have

used the data generated by genome-wide association stud-

ies (GWASs) to search for G×E interactions relative to many

common human diseases. Unfortunately, few significant and

replicated G×E interactions have been identified using GWAS

data to date (Aschard et al., 2012a; Campa et al., 2011;

Genet. Epidemiol. 2016; 40: 544–557 www.geneticepi.org 544
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Hutter et al., 2013). Although G×E interaction detection

is challenged by confounding, exposure measurement error,

population stratification, and G×E interaction dynamics,

insufficient statistical power may be the most important factor

behind the limited success researchers have had finding G×E

interactions (Aschard et al., 2012b). Because GWAS data sets

measure on the order of one million genetic markers, mul-

tiple hypothesis correction (MHC) has a significant impact

on the power of methods that assess marginal and interaction

effects using a separate statistical test per marker. Even when

the sample size is large enough to identify expected marginal

associations after MHC, a common requirement for GWAS

data sets, G×E interactions may be missed because the power

to detect interactions is much lower than the power to detect

main effects for a specific sample size (Murcray, Lewinger,

Conti, Thomas, & Gauderman, 2011; Mukherjee, Ahn, Gru-

ber, & Chatterjee, 2012).

In an attempt to improve statistical power, researchers

recently developed a number of new G×E interaction detec-

tion methods based on a multistage or screening-testing

framework (Dai, Kooperberg, Leblanc, & Prentice, 2012;

Hsu et al., 2012; Kooperberg & Leblanc, 2008; Murcray,

Lewinger, & Gauderman, 2009; Murcray, Lewinger, Conti,

Thomas, & Gauderman, 2011; Wu, Chen, Hastie, Sobel, &

Lange, 2009). In these methods, the set of all candidate mark-

ers is first screened according to a filter statistic computed sep-

arately for each marker, e.g., the marginal association between

a marker and the phenotype. The subset of markers passing

the screen at the desired threshold are then tested using the

standard approach of one model per marker. The key bene-

fit of these methods is a dramatic reduction in the number

of hypotheses that must be considered for MHC. If the filter

statistic used for screening is statistically independent of the

test statistic used to assess G×E interactions under the null

hypothesis, then type I error control is maintained with MHC

performed for just the family of hypotheses associated with

the markers that pass screening. Although these screening-

testing methods are statistically valid and have been shown

to be more powerful than approaches that test one model per

marker, they have several important drawbacks including var-

ied performance based on the choice of filter statistic, the fact

that markers are filtered and tested in separate models, and

the fact that power is still impacted by MHC (the number of

tested hypotheses is reduced by screening but multiple tests

are performed) (Frost, Andrew, Karagas, & Moore, 2015).

To address the deficiencies of standard screening-testing

methods, we recently developed a new screening-testing

approach for G×E interaction detection, detailed in Frost et al.

(2015), that uses a single elastic net penalized regression

model in the screening stage following by a single unpe-

nalized regression model in the test stage to support an

omnibus test for the presence of G×E interactions. Although

our new method, here dubbed sequential penalized and unpe-

nalized regression or SPUR, was shown to be an improve-

ment on prior screening-testing approaches, it had two

serious methodological limitations. The first restricted the

number of markers that could be analyzed and the sec-

ond prevented a formal test of the significance of individ-

ual interactions. Evaluation of SPUR in Frost et al. (2015)

was also based on only a single, small bladder cancer data set

with measurements for approximately 1,500 single nucleotide

polymorphisms (SNPs) after quality control (QC).

To correct these limitations, we have extended the orig-

inal SPUR method to include a score statistic-based pre-

screening step and to assess the significance of indi-

vidual interactions using hierarchical false discovery rate

(FDR) (Yekutieli, 2008). The SPUR method has also been

generalized to support both dichotomous and continuous

environmental exposures. To augment the cursory evaluation

in Frost et al. (2015), we have performed a more extensive and

robust evaluation of both the statistical properties and practi-

cal effectiveness of the SPUR method. Specifically, the sta-

tistical properties of the method, i.e., type I error control and

power, have been evaluated using a variety of simulation stud-

ies and the practical effectiveness of SPUR has been evaluated

through analysis of GWAS data from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) (Weiner et al., 2013).

The remainder of this manuscript is organized as fol-

lows: Section 2 provides further background on data assump-

tions, the G×E interaction model, standard detection methods,

screening-testing approaches, and the original SPUR method.

Section 3 outlines the methodological extensions made to

SPUR and the design of both the simulation studies and real

GWAS data analysis. Section 4 contains the simulation and

real data results with a discussion in Section 5.

2 BACKGROUND

2.1 Data assumptions

It is assumed that detection of G×E interactions is based on

the values of an environmental exposure, a clinical outcome

or phenotype, genetic markers, and other relevant covariates

for a set of subjects captured as part of a GWAS. Specifically,

the GWAS data are assumed to contain measurements of the

following variables for 𝑛 subjects:

• 𝑝 genetic markers, 𝐆1,… ,𝐆𝑝. It is assumed these are SNPs

with genotype values specified using additive coding, i.e.,

0, 1, or 2 corresponding to the number of minor allele

copies.

• A single binary clinical endpoint, 𝐃, e.g., disease

case/control status.

• A single binary or continuous environmental exposure, 𝐄.

• 𝑐 other covariates, 𝐂1,… ,𝐂𝑐 that can be either discrete or

continuous variables.
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2.2 G×E interaction model and standard detection
methods

Assuming the outcome 𝐃 is binary, a G×E interaction can be

defined as a departure from additivity on either a log-odds

scale or an absolute risk scale. In this paper, we assume a log-

odds scale for interactions, which can be tested using the fol-

lowing logistic regression model:

logit(𝑃 (𝐷 = 1|𝐺𝑖, 𝐸)) = 𝛽0 + 𝛽𝐺𝑖𝐺𝑖 + 𝛽𝐸𝐸 + 𝛽𝐺𝑖𝐸𝐺𝑖𝐸. (1)

Here, the null hypothesis of no G×E interaction is 𝐻0 ∶
𝛽𝐺𝑖𝐸

= 0 and the alternative hypothesis is 𝐻𝐴 ∶ 𝛽𝐺𝑖𝐸 ≠ 0.

The standard approach to G×E interaction detection for a

binary outcome and log-odds scale interactions fits a sepa-

rate version of model (1) for each of the 𝑝markers. Under this

approach, the statistical significance of an interaction is tested

using either a likelihood ratio (LR) test comparing the model

with the interaction term to the model without the interaction

term or a Wald test based on the estimated 𝛽𝐺𝑖𝐸 . To control

either the family-wise error rate (FWER) or FDR, the inter-

action P-values generated via LR or Wald tests must to be

adjusted using the desired MHC approach for the family of

𝑝 separate hypothesis tests. Variations of this approach exist

that also perform a separate hypothesis test for each genetic

marker. These include the case-only gene-environment asso-

ciation test, the test of marginal association (i.e., testing the

𝛽𝐺𝑖
coefficient in a model without the interaction term) and

the combined marginal and interaction test (i.e., a joint test

of the 𝛽𝐺𝑖 and 𝛽𝐺𝑖𝐸 coefficients)(Ziegler & König, 2010).

Because all of these approaches directly test each marker

using separate models, they are often referred to as “one step”

or “single stage” methods in the literature. Although one step

methods are easy to understand and simple to implement, they

can be severely underpowered when the number of markers,

𝑝, is large. As mentioned above, this is due to the penalty

incurred by MHC for the entire family of 𝑝 hypotheses.

2.3 Screening testing

Screening-testing methods divide the G×E interaction detec-

tion process into screening and testing stages with the goal of

improving power by reducing the number of G×E interaction

tests that must be considered during MHC (Dai et al., 2012;

Hsu et al., 2012; Kooperberg & Leblanc, 2008; Murcray et al.,

2009, 2011). In the screening stage, filter statistics are com-

puted for all 𝑝 markers using a separate regression model per

marker. In the test stage, the significance of a G×E interac-

tion is checked for each marker that passes the screen using

the same regression models employed for one step methods,

e.g., model (1). As long as the filter statistic is independent

of the test statistic under the null hypothesis, type I error con-

trol is maintained for individual hypothesis tests during the

test stage (Bourgon, Gentleman, & Huber, 2010). If the filter

and test statistics are strongly associated under the alternative

hypothesis, this approach can provide a large improvement in

statistical power. As shown by Bourgon et al. (2010), control

of the type I error rate for individual tests also ensures control

of both the FWER and the FDR with the family of hypothe-

ses used for the adjustment including just the small number

of interactions actually tested. By similar reasoning, hierar-

chical FDR methods will also provide the expected FDR con-

trol when applied to just the family of hypotheses that pass

the filter (see Section 3.1.2 for a more detailed discussion of

hierarchical FDR methods).

Screening-testing methods are primarily distinguished

from one another by the choice of filter statistic with the

marginal association filter and gene-environment correlation

filter the most common choices. For the marginal association

filter, a binary outcome and log-odds scale interactions, the

filter statistic is based on the significance of the 𝛽𝐺𝑖 coeffi-

cient in the following logistic regression model:

logit(𝑃 (𝐷 = 1|𝐺𝑖)) = 𝛽0 + 𝛽𝐺𝑖𝐺𝑖. (2)

For the gene-environment correlation filter and a binary expo-

sure, the statistic is based on the significance of the 𝛽𝐺𝑖 coef-

ficient in the following logistic regression model:

logit(𝑃 (𝐸𝑖 = 1|𝐺𝑗)) = 𝛽0 + 𝛽𝐺𝑗𝐺𝑗. (3)

If the environmental exposure is continuous, the following

model is used instead:

𝑃 (𝐸𝑖 = 1|𝐺𝑗) = 𝛽0 + 𝛽𝐺𝑗𝐺𝑗. (4)

2.4 SPUR method

The workflow for the original SPUR method, as described

in Frost et al. (2015), is illustrated in Figure 1. To simplify

notation, covariates are not included in this flow chart or in

the regression models below. As shown in Figure 1, a single

penalized multiple logistic regression model with predictors

for all 𝑝markers is fit in the screening stage. For the marginal

association filter, this model takes the following form:

logit(𝑃 (𝐷 = 1|𝐺)) = 𝛽0 + 𝑝∑
𝑖=1
𝛽𝐺𝑖
𝐺𝑖. (5)

For the gene-environment correlation filter, a penalized mul-

tiple logistic regression model of the following form is used:

logit(𝑃 (𝐸 = 1|𝐺)) = 𝛽0 + 𝑝∑
𝑖=1
𝛽𝐺𝑖
𝐺𝑖. (6)

Models (5) and (6) are both fit using an elastic net (Zou &

Hastie, 2005) penalty, which performs coefficient estimation

under both L1, i.e., LASSO, and L2, i.e., ridge, penalties. This
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F I G U R E 1 Workflow for the SPUR screening-testing G×E detection method as presented in Frost et al. (2015)

corresponds to maximization of the following objective func-

tion:

−
log(𝐿(𝛽1,… , 𝛽𝑝|𝐺)

𝑛
+ 𝜆

(
1 − 𝛼
2

𝑝∑
𝑖=1
𝛽2
𝐺𝑖

+ 𝛼
𝑝∑
𝑖=1

|𝛽𝐺𝑖 |
)
,

(7)

where 𝛼 is the elastic net mixing parameter (𝛼 = 1 corre-

sponds to only LASSO penalization and 𝛼 = 0 corresponds

to only ridge penalization). Selection of the elastic net penalty

parameter 𝜆 can be done based on cross-validation or to gen-

erate a specific number of nonzero coefficients. Note that if

marginal terms for additional covariates are included in either

model (5) or model (6), they are excluded from penalization.

In Frost et al. (2015), 𝛼 was set to 0.999 to provide estimation

stability via a small L2 penalty (Friedman, Hastie, & Tibshi-

rani, 2010) and 𝜆 was set so that the number of nonzero coef-

ficients would give a ratio of observations to predictors in the

test stage model of 7, per the recommendation of Vittinghoff

and McCulloch (2007) for multiple logistic regression.

The test stage model for SPUR is an unpenalized multiple

logistic regression model with marginal and interaction terms

for all genetic markers that had nonzero coefficients in the

penalized screening stage mode l (marginal terms for addi-

tional covariates are typically also included in this model):

𝑙𝑜𝑔𝑖𝑡(𝑃 (𝐷 = 1|𝐺,𝐸)) = 𝛽0 + 𝛽𝐸𝐸 +
𝑞∑
𝑖=1
𝛽𝐺𝑖
𝐺𝑖

+
𝑞∑
𝑖=1
𝛽𝐺𝑖𝐸

𝐺𝑖𝐸. (8)

The primary statistical test performed on this model is an

omnibus LR test comparing the model with interaction terms

to the model without interactions terms. This tests the null

hypothesis that all of the interaction coefficients are 0. Statis-

tical tests, e.g., Wald tests, were also performed separately on

the interaction coefficients for each marker in the model.

In the bladder cancer example included in Frost et al.

(2015), the marginal association and gene-environment cor-

relation filters were evaluated in parallel, with a Bonfer-

roni correction on the omnibus test P-values for the two test

stage models. Although standard G×E approaches failed to

detect any statistically significant interactions in this data set,

this SPUR-based analysis successfully identified statistically

significant associations between SNPs and smoking status

relative to bladder cancer status that were biologically plausi-

ble based on prior research findings.

2.5 Limitations of original SPUR method

The version of the SPUR method described in Frost et al.

(2015) had two major methodological limitations. The first

limitation restricted the total number of genetic markers that

could be analyzed; the second prevented a formal test of sta-

tistical significance for individual G×E interactions.

The original SPUR method required all genetic markers in

the data set to be fit by a single penalized multiple logistic

regression model in the screening stage. Because it is com-

putationally impractical to fit models with more than sev-

eral tens of thousands of predictors with current penalized

logistic regression implementations (e.g., the R glmnet pack-

age; Friedman et al., 2010), this requirement meant that the

original SPUR method could not be used with truly genome-

wide data sets measuring hundreds of thousands to millions

of genetic markers.
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In the original SPUR method, statistical significance was

only formally assessed for the global test of the null hypoth-

esis that none of the G×E interactions in the test stage model

were significant, i.e., 𝐻0 ∶
∑𝑞

𝑖=1 𝛽𝐺𝑖𝐸 = 0. Although a Wald

or LR test was performed for individual G×E interactions

in significant test stage models, with a correction for the

total number of interactions in the model, these adjusted

interaction P-values failed to account for the prior global

test and could therefore only used as an informal guide to

help researchers identify promising interactions for follow-on

investigations.

3 METHODS

3.1 SPUR extensions

To address the limitations of the original SPUR method, as

outlined in Section 2.5, we have extended the technique to

include both a score statistic-based prescreening step and the

hierarchical FDR assessment of individual G×E interactions.

We have also generalized the formulation of the method to

support dichotomous and continuous environmental expo-

sures. Figure 2 shows the workflow for the extended SPUR

method. Technical details for each extension are provided in

Sections 3.1.1 and 3.1.2 and Section 3.1.3 outlines a gener-

alized version of the SPUR regression models for continuous

environmental exposures.

3.1.1 Extension of SPUR to use a score statistic-based
prescreening step prior to penalized regression

To support the analysis of large GWAS data sets, i.e., data

sets with hundreds of thousands to over one million markers,

we have extended the SPUR method to include a prescreening

step that uses a score statistic to reduce the set of measured

genetic markers to a size feasible for penalized regression.

This technique is motivated by the work of Wu et al. (2009)

in which they advocated the use of a score statistic filter

prior to fitting a LASSO-penalized regression model for the

identification of significant marginal genetic associations,

gene-gene interactions, and gene-environment interactions.

Specifically, Wu et al.’s method performed score statistic-

based filtering using the following steps (see Section 2.6 of

Wu et al., 2009 for more details):

1. Compute a score statistic 𝑎𝑗 for each of the 𝑝 genetic mark-

ers in the input data set. Using the notation from Section

2.1, this is defined as follows:

𝑎𝑗 =
||||
𝑛∑
𝑖=1

(
𝐷𝑖 −

1
𝑛

𝑛∑
𝑖=1
𝐷𝑖

)
𝐺𝑖,𝑗

||||. (9)

2. Select the 𝑘 genetic markers with the largest 𝑎𝑗 . They

suggest setting 𝑘 = 10𝑞, where 𝑞 represents the desired

number of markers selected from the penalized regression

model.

3. Fit the penalized regression model and select the LASSO

penalty 𝜆 to achieve exactly 𝑞 predictors.

4. Check that both the 𝑞 selected markers and the 𝑘 − 𝑞
omitted markers satisfy the expected Karush-Kahn-Tucker

(KKT) conditions specified by equations (5) and (6) in Wu

et al. (2009).

5. If one of the omitted markers fails to satisfy the expected

KKT condition, increase k by a factor of 2 and repeat start-

ing at step 2.

In our extension of the SPUR method, we have adopted a

simplified version of the Wu et al. approach. Specifically, we

set 𝑘 to be at least 20𝑞 (in practice, 𝑘 ≥ 100𝑞 is used) and

skip the explicit check of the KKT conditions and potential

iterative refinement of 𝑘. This simplification is motivated by

the observation in Wu et al. (2009) that 𝑘 = 10𝑞 often works

directly and, when it does not, one or two doublings (i.e.,

𝑘 ∼ 40𝑞) usually suffices to satisfy the KKT conditions. The

score statistic-based prescreening step included in SPUR also

differs from the Wu et al. (2009) approach in the form of the

score statistic, 𝑎𝑗 . For prescreening prior to fitting penalized

logistic regression model (5) for the marginal association fil-

ter, the score statistic defined in (9) is used. However, for pre-

screening prior to fitting penalized logistic regression model

(6) for the gene-environment correlation filter, the score

statistic instead takes the form:

𝑎𝑗 =
||||
𝑛∑
𝑖=1

(
𝐸𝑖 −

1
𝑛

𝑛∑
𝑖=1
𝐸𝑖

)
𝐺𝑖,𝑗

||||. (10)

3.1.2 Extension of SPUR to assess significance of specific
G×E interactions using hierarchical FDR

To address the lack of a formal significance test for specific

G×E interactions, we have extended the SPUR method to use

the hierarchical FDR technique of Yekutieli (2008) to test the

significance, at a specific FDR, of each G×E interactions in

a test stage model with a significant omnibus test result. To

support hierarchical FDR, statistical testing of model (8) is

organized into a hierarchy whose top level is comprised by

the hypotheses associated with the omnibus LR tests. The

number of hypotheses in this level therefore corresponds to

the number of distinct filter statistics evaluated; currently

two for SPUR: the marginal association filter and the gene-

environment correlation filter. The children of each of these

omnibus test hypotheses are the hypotheses that correspond

to the Wald or LR tests on the interaction coefficients for all

markers included in the test stage model. This form of hierar-

chy is qualitatively similar to the hierarchy used in the quan-

titative trait locus (QTL) example provided in Section 1.2

of Yekutieli (2008) in which the top level of the hierarchy

held hypotheses corresponding to QTL tests for entire chro-

mosomes and child levels held hypotheses corresponding to

increasingly finer divisions of each chromosome. Importantly,
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F I G U R E 2 Workflow for SPUR extended to support score statistic prescreening and hierarchical FDR

it satisfies the requirement for interlevel independence under

the null needed for hierarchical FDR, i.e., the distribution of

hypotheses in a given level must still be 𝑈 (0, 1) under 𝐻0
given rejection of the parent hypothesis.

As detailed in Yekutieli (2008), hierarchical testing

of hypotheses using the Benjamini and Hochberg (1995)

method at 𝑞 within each level of the hierarchy will provide

level-specific FDR control of approximately:

𝐹𝐷𝑅 = 𝑞𝛿∗(𝑑 + 𝑓 )
𝑑 + 1

, (11)

where 𝛿∗ is approximately 1, 𝑑 is the number of discover-

ies made within the level (i.e., the number of hypotheses

rejected at level 𝑞), and 𝑓 is the number of families tested. For

the bladder cancer example presented in Frost et al. (2015),

𝑓 = 2 (for the omnibus tests associated with the test stage

models populated using the marginal association filter and

gene-environment correlation filter) and 𝑑 = 4 for the four

SNP-smoking interactions that had significant Wald tests at a

level-specific FDR of 𝑞 = 0.1. Therefore, if hierarchical FDR

been employed in this case with 𝑞 = 0.1, approximate FDR

control for the interaction-specific Wald test results would

have been achieved at a level of 0.1(2 + 4)∕(4 + 1) = 0.12.

3.1.3 Generalization of SPUR to support continuous
exposure measures

If the environmental exposure, 𝐄, is continuous rather than

binary, the gene-environment correlation filter statistic is

computed using an elastic net penalized version of the fol-

lowing multiple linear regression model:

𝑃 (𝐸 = 1|𝐺) = 𝛽0 + 𝑝∑
𝑖=1
𝛽𝐺𝑖
𝐺𝑖. (12)

3.1.4 SPUR and FDR control

The extended SPUR method described above and illustrated

in Figure 2 performs statistical tests in four distinct stages with

the goal of maintaining FDR control for the tests in the last

stage:

1. Score statistic prescreening.

2. Marginal association or gene-environment correlation fil-

tering via penalized multiple logistic regression models.

3. Omnibus test on unpenalized multiple logistic regression

model.

4. Individual interaction tests.

The first two stages together filter the set of hypothe-

ses using statistics that are independent of the logistic
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regression-based𝐺 × 𝐸 test statistics computed in the last two

stages under 𝐻0. As detailed in Section 2.3, the fact that fil-

tering is performed using filter statistics that are independent

of the test statistics under 𝐻0 ensures that FDR control can

be maintained on just the family of hypotheses that pass the

filter(s). Thus, the SPUR method can provide FDR control

on just a single level of postfiltering hypotheses using stan-

dard FDR methods (Benjamini & Hochberg, 1995) (e.g., the

family of two omnibus tests for the test-stage models based

on the marginal association and gene-environment correlation

filters) or on a hierarchy of postfiltering hypotheses using hier-

archical FDR methods (Yekutieli, 2008) (e.g., the hierarchy

formed by omnibus tests at the top level followed by individ-

ual interaction tests).

3.2 Evaluation approach

To evaluate the extended SPUR method, we analyzed a com-

bination of simulated and real genotype data sets. The first

simulation study used a simple framework similar to that

employed by Dai et al. (2012) to evaluate type I error con-

trol and power. The second simulation study also assessed

type I error control and power and was based on the dis-

ease architecture models developed by Aschard et al. (2012a)

for breast cancer, type 2 diabetes, and rheumatoid arthri-

tis. Finally, GWAS data from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) study was used to evaluate the

ability of the SPUR method to detect biologically interesting

interactions between SNPs and educational attainment rela-

tive to Alzheimer’s disease (AD) status.

3.2.1 G×E interaction detection methods

To support comparative evaluation of the extended SPUR

method, the same alternative methods used in Frost et al.

(2015) were also employed to identify G×E interactions for

the simulated and real data sets. For each evaluated data set,

G×E interaction detection was performed using three bench-

mark methods:

1. One step approach (as detailed in Section 2.2 using regres-

sion model (1)).

2. Standard screening testing using marginal association fil-

ter (as detailed in Section 2.3 using regression model (2)

in the screening stage and model (1) in the testing stage).

3. Standard screening testing using gene-environment corre-

lation filter (as detailed in Section 2.3 using either regres-

sion model (3) or (4) in the screening stage and model (1)

in the testing stage).

and four variations of the extended SPUR method:

1. SPUR using just the marginal association filter. In this

case, an omnibus test is not performed and the signifi-

cance of G×E interactions for all markers retained after

screening is assessed using Wald tests with FDR correc-

tion (according to the method of Benjamini and Hochberg

(1995)).

2. SPUR using just the gene-environment correlation filter.

An omnibus test is also skipped in this case with signif-

icance of G×E interactions again assessed using FDR-

adjusted Wald tests.

3. SPUR using hierarchical FDR, as detailed in Section 3.1.2,

to evaluate the marginal association filter and the gene-

environment correlation filter in parallel.

4. SPUR based on just the omnibus test for interactions

considering both the marginal association filter and the

gene-environment correlation filter in parallel. Specifi-

cally, each of the G×E terms included in the test stage

model is assigned the FDR q-value computed for the

omnibus test. The FDR adjustment is based on the family

of two omnibus test P-values, one for the marginal asso-

ciation filter and one for the gene-environment correlation

filter. To support the comparison of this approach with the

other methods, the number of markers to retain in the test

stage model was set equal to the number with a real G×E

interaction.

For all four SPUR variations, score statistic-based pre-

screening, as detailed in Section 3.1.1, was performed using

𝑘 = 20𝑞, where q is set to be the same for all SPUR meth-

ods and for the two screening-testing benchmark approaches.

The SPUR method and all benchmark approaches were

implemented in R (R Core Team, 2014).

3.2.2 Simple simulation design

A simple simulation design, based on the study in Dai

et al. (2012), was used to characterize the statistical prop-

erties of the extended SPUR method relative to the bench-

mark approaches and to highlight favorable conditions for

each of the two supported filter statistics. To assess type I

error control, we simulated 1,000 data sets, each contain-

ing 2,000 SNPs and one binary environmental exposure for

1,000 subjects. The SNPs were generated under an assump-

tion of Hardy-Weinberg equilibrium with a minor allele fre-

quency (MAF) equal to 0.2. Similar to Dai et al. (2012),

the pairwise correlation between SNPs was set to 0.1 and

the environmental exposure was simulated as Bernoulli(0.5).

A correlation was simulated between the first 10 SNPs and

the environmental exposure with a correlation coefficient of

0.05. For each of these 1,000 data sets, the binary outcome

𝐷 was generated according to model (8). Because the data

were simulated to have no true interaction effects, all 𝛽𝐺𝑖𝐸
coefficients were set to a value of 0. For consistency with

Dai et al. (2012), the other coefficients were set as follows:

(𝛽0, 𝛽𝐸, 𝛽𝐺𝑖 ) = (−4, log(1.5), log(1.5)) for 𝑖 = 1,… , 10, i.e.,

a marginal association was simulated for the first 10 SNPs.

Score statistic-based prescreening was configured to remove
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1,950 of the 2,000 SNPs. The 𝜆 parameter used with the elas-

tic net penalty for the screening stage models was set so that

the number of nonzero coefficients in the estimated model, 𝑞,

was 25. The number of markers retained after screening for

the standard screening-testing method was also set to 25 to

support a comparative evaluation. The type I error rate was

computed at an 𝛼 = 0.05 level for all benchmark method and

SPUR using either the marginal association filter or the gene-

environment correlation filter, i.e., all methods that generate

unadjusted P-values for individual G×E interactions.

To assess statistical power, data were simulated according

to two different models. Model 1 was designed to work well

with the marginal association filter and model 2 was designed

to favor the gene-environment correlation filter. For each of

these models, a collection of data sets was simulated using

a similar approach to that described for the type I error con-

trol assessment above. For these simulated data sets, 2,000

SNPs were generated with true G×E interactions for the first

five markers. Coefficient values for these interactions were

set as 𝛽𝐺𝑖𝐸 = 𝑙𝑜𝑔(3) with all other interaction coefficients

set to 0. For both models the SNP-SNP correlation was set

to 0.1 and the SNP-exposure correlation was set to 0.3. For

model 1, the other coefficients were simulated as simulated

as (𝛽0, 𝛽𝐸, 𝛽𝐺𝑖 ) = (−4, log(1.5), log(1.5)) for 𝑖 = 1,… , 5 and

the SNP-exposure correlation was 0 except for the second

five SNPs, i.e., only SNPs with a true G×E interaction had

a marginal association and none of the SNPs correlated with

the exposure had a true interaction. For model 2, the other

coefficients were simulated as simulated as (𝛽0, 𝛽𝐸, 𝛽𝐺𝑖 ) =
(−4, log(1.5), log(3)) for 𝑖 = 6,… , 10 and the SNP-exposure

correlation was 0 except for the first five SNPs, i.e., only SNPs

with a true interaction were correlated with the exposure and

none of the SNPs with a marginal association had a true inter-

action. Score statistic-based prescreening was configured to

remove 1,900 of the 2,000 SNPs. The 𝜆 parameter used with

the elastic net penalty for the screening stage models was set

so that the number of nonzero coefficients in the estimated

model, 𝑞, was 5. Standard screening-testing methods were

also configured to retain five SNPs after the first stage. Sta-

tistical power for all SPUR variations and benchmark meth-

ods was computed as the proportion of the 𝑞 SNPs with G×E

interactions that were identified as significant according to an

FDR q-value of 0.1.

3.2.3 Disease-based simulation design

To understand the relative performance of the SPUR method

in a more realistic scenario, we also assessed type I error

control and power on data sets simulated according to the

genetic architectures of breast cancer, type 2 diabetes, and

rheumatoid arthritis. This disease-based simulation design

was based on the approach of Aschard et al. (2012a) for evalu-

ating the impact of gene-gene and gene-environment interac-

tions on disease risk predication. Specifically, we customized

Aschard’s original simulation code to support disease-based

simulation scenarios for the comparative evaluation of G×E

detection methods. For each of the three disease architectures,

type I error control and power were assessed using separate

simulation designs. In both cases, 1,000 data sets were gener-

ated for each disease with each data set containing 1,000 sub-

jects with measurements for the set of known risk SNPs and

known environmental risk factors, as detailed for each disease

in the supplementary material for Aschard et al. (2012a), and a

set of additional SNPs with a MAF drawn from 𝑈 (0.05, 0.95)
and no association with the outcome. No correlation was

simulated between markers, between exposures, or between

markers and exposures. The binary outcome variable, reflect-

ing disease case-control status, was simulated according to the

model represented by equation (2) in Aschard et al. (2012a).

To perform G×E detection in the context of a case-control

study, we simulated a large number of subjects and then sam-

pled cases and controls from this collection to achieve 500

cases and 500 controls in each data set (this is similar to the

approach used by GCTA tool (Yang, Lee, Goddard, & Viss-

cher, 2011)). For type I error control simulation, the num-

ber of additional SNPs was set to 2,000, no G×E interactions

were simulated, SPUR prescreening was set to remove 1,950

SNPs, and a total of 20 SNPs were retained in the final test

stage models. For power simulation, 2,000 additional SNPs

were created, G×E interactions were simulated for the five

known risk SNPs with the largest relative risk for each dis-

ease with the interaction effect 𝛾𝑙,𝑚 in the Aschard model

set to ±log(1.5) (Aschard originally simulated the interaction

effect so that 𝑃 𝑟𝑜𝑏(𝛾𝑙,𝑚 < log(2)) = 0.95), SPUR prescreen-

ing was set to remove 1,900 SNPs and a total of five SNPs

were retained in the final test stage models. All five interac-

tions were generated using a fixed environmental exposure for

each disease. For breast cancer this was the number of previ-

ous biopsies, physical activity was used for type 2 diabetes,

and breast feeding was used for rheumatoid arthritis.

3.2.4 ADNI evaluation design

The ADNI (Weiner et al., 2013) is public-private partnership

started in 2003 with the goal of identifying biomarkers for use

in AD clinical trials. During the three phases of the study con-

ducted to date, a range of imaging, genetic, and clinical mea-

surements have been made on study subjects with different

levels of cognitive impairment (normal, early mild cognitive

impairment, mild cognitive impairment, late mild cognitive

impairment, and early AD). For up-to-date information, see

www.adni-info.org. For the evaluation of the extended SPUR

method, we used clinical and genotyping data from the first

phase of ADNI. For this analysis, subjects with either mild

cognitive impairment or AD were considered cases and con-

trols were cognitively normal subjects. QC and preprocess-

ing was carried out using PLINK 1.9 (Chang et al., 2015) and

involved retaining just non-Hispanic Caucasian subjects (to
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eliminate population stratification issues), removing subjects

missing more than 5% of the SNPs, removing all nonauto-

somal SNPs, removing all SNPs with a Hardy-Weinberg test

of equilibrium P-value < 1 × 10−4, removing all SNPs with

MAF of less than 0.01, and removing all SNPs with any miss-

ing measurements. This last QC step was quite conservative

but enabled the analysis to proceed without the potential bias

of an imputation method; a trade-off we considered appropri-

ate because the goal of this analysis was not to maximize the

number of findings but rather comparative analysis of G×E

detection methods. After all of these preprocessing and QC

steps, 572 subjects (412 cases and 160 controls) and 398,230

SNPs, specified using additive coding, remained in the data

set.

Analysis of the ADNI data focused on interactions between

the number of minor allele copies for each SNP and years

of educational attainment relative to case/control status. The

decision to focus on SNP-education interactions was based

on prior research demonstrating a strong association between

educational attainment and AD risk, progression, and severity

(Amieva et al., 2014; Shpanskaya et al., 2014) and the fact that

the only significant SNP-education interactions found to date

involve the APoE locus (Cook & Fletcher, 2015). Because

the environmental exposure, years of educational attainment,

is a continuous variable, model (12) was used to compute

the gene-environment correlation filter statistic for both stan-

dard screening testing and SPUR. Other covariates included

in the regression models were age, gender, and APOE 𝜖4 sta-

tus. The three benchmark methods were implemented using

PLINK logistic and linear regression functionality. The SPUR

score statistic-based prescreening step, implemented using a

PLINK R (R Core Team, 2014) plug-in, was configured to

retain 20,000 of the 398,230 SNPs remaining after QC. For all

two-stage models (i.e., standard screening testing and SPUR),

the number of SNPs included in the test stage model to set

to 36 based on the Vittinghoff and McCulloch (2007) guide-

line of a 7-to-1 observation-to-predicator ratio for multiple

logistic regression.

4 RESULTS

4.1 Simple simulation results

As shown in Table 1, type I error control for the simula-

tion study detailed in Section 3.2.2 was very good for all of

the benchmark methods and acceptable for SPUR using both

filter statistics. As expected, the one step method had very

poor statistical power for both models relative to the other

benchmark and SPUR approaches. For the simulation model

designed to work best with the marginal association filter,

i.e., model 1, the methods that used the gene-environment

correlation filter were unable to identify any G×E interac-

tions. Although both standard screening testing and SPUR

worked well using the marginal association filter for model 1,

the power of SPUR (0.697) was clearly superior to standard

screening testing (0.381). For the simulation model designed

to work well with the gene-environment correlation filter, i.e.,

model 2, the gene-environment correlation filter provided the

best power. Although the power for the marginal associa-

tion filter was lower in this case, the difference was less dra-

matic than with model 1. For model 2, the SPUR method had

superior power over standard screening testing for both filter

types (0.312 vs. 0.244 for the marginal association filter and

0.665 vs. 0.590 for the gene-environment correlation filter).

Although the type I error rate for the SPUR method is

slightly inflated, the significantly improved power provides a

strong motivation to use SPUR vs. existing screening-testing

approaches for hypothesis generation. Given the dramatic dif-

ference in performance between the two filters for these sim-

ulation models, it is important to note that SPUR using the

hierarchical FDR approach had power superior to the best

screening-testing configuration and only slightly lower than

SPUR using the optimal filter. This is a key benefit of the

extended SPUR approach: a specific filter does not need to

be selected and the penalty to power is minimal. Although

not strictly comparable to the other methods, the power of

SPUR using a global test for interactions for the test stage

models for both filters had the best power of all approaches.

The fact that SPUR supports a global test makes it useful in

contexts where there is insufficient power to detect individual

interactions, even after aggressive screening.

4.2 Disease-based simulation results

As seen in Table 2, all methods provided acceptable type I

error control for the three disease-based simulation studies

detailed in Section 3.2.3 with the type I error rate for SPUR

very slightly inflated relative to the benchmark methods. As

expected, statistical power was uniformly lower for these

disease-based simulations than for the simple simulation

models. Although the decrease in power was largely due to

lower marginal and interaction effect sizes, the performance

of the gene-environment correlation filter was impacted by

the lack of SNP-exposure correlation and the lack of linkage

disequilibrium (LD) limited the benefit to SPUR from using a

single penalized regression model during screening. Similar

to the simple simulation results, the one step method had poor

power relative to the two-stage methods, SPUR was superior

to standard screening testing and the global SPUR test pro-

vided the best power of all methods. It is again important

to note the impressive relative power of the extended SPUR

using hierarchical FDR.

4.3 ADNI results

Table 3 contains the 10 most significant education-SNP inter-

actions computed using each of the benchmark methods for

the ADNI data detailed in Section 3.2.4. As seen in the

table, neither the one step method nor screening testing
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T A B L E 1 Estimated type I error rates at 𝛼 = 0.05 and 𝛼 = 0.01 and power at 𝑞 = 0.1 for the simulation study detailed in Section 3.2.2

Type I Error Rate Power (q=0.1)

Method 𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟎𝟏 Model 1 Model 2

One step 0.051 0.010 0.019 0.061

Screening testing, marginal assoc. filter 0.052 0.011 0.381 0.244

Screening testing, gene-env. correl. filter 0.051 0.010 0.000 0.590

SPUR, marginal assoc. filter 0.062 0.013 0.697 0.312

SPUR, gene-env. correl. filter 0.057 0.012 0.000 0.665

SPUR, hierarchical FDR NAa NAa 0.659 0.636

SPUR, global NAa NAa 0.903 0.828

aThese SPUR variants reflect the results from FDR or hierarchical FDR control so lack comparable type I error control values.

T A B L E 2 Estimated type I error rates at 𝛼 = 0.05 and power at 𝑞 = 0.1 for the disease-based simulation studies detailed in Section 3.2.3

Type I Error Rate Power

Disease Method 𝜶 = 𝟎.𝟎𝟓 𝜶 = 𝟎.𝟎𝟏 𝒒 = 𝟎.𝟏

Breast cancer One step 0.051 0.010 0.033

Screening testing, marginal assoc. filter 0.0528 0.012 0.020

Screening testing, gene-env. correl. filter 0.0525 0.011 0.021

SPUR, marginal assoc. filter 0.055 0.012 0.161

SPUR, gene-env. correl. filter 0.052 0.012 0.134

SPUR, hierarchical FDR NA NA 0.187

SPUR, global NA NA 0.280

Type 2 diabetes One step 0.052 0.011 0.019

Screening testing, marginal assoc. filter 0.052 0.010 0.100

Screening testing, gene-env. correl. filter 0.051 0.010 0.015

SPUR, marginal assoc. filter 0.056 0.012 0.081

SPUR, gene-env. correl. filter 0.055 0.011 0.015

SPUR, hierarchical FDR NA NA 0.074

SPUR, global NA NA 0.084

Rheumatoid arthritis One step 0.051 0.010 0.012

Screening testing, marginal assoc. filter 0.51 0.010 0.157

Screening testing, gene-env. correl. filter 0.050 0.010 0.042

SPUR, marginal assoc. filter 0.055 0.011 0.144

SPUR, gene-env. correl. filter 0.055 0.011 0.034

SPUR, hierarchical FDR NA NA 0.126

SPUR, global NA NA 0.207

using the marginal association filter identified any signifi-

cant interactions after MHC. Screening testing using the gene-

environment correlation filter found only a single significant

interaction at the q=0.1 level (rs580539, located in the intron

region of uncharacterized gene KIAA1211).

Table 4 contains the 20 most significant education-SNP

interactions computed using the extended SPUR method. The

omnibus test q-values are computed via the FDR adjustment

of the two LR tests comparing the unpenalized test stage

logistic regression models without interaction terms to the

models with interaction terms. The SNP-specific interaction

FDR values are computed according to the hierarchical FDR

procedure outlined in Section 3.1.2. Although the omnibus

test results were significant for the test stage models associ-

ated with both the marginal association filter and the gene-

environment correlation filter, only the marginal association

filter had individual interactions that were significant at a q-

value of 0.1 after hierarchical FDR adjustment. If identified in

dbSNP (Sherry et al., 2001), the genes associated with the 20

most significant education-SNP interactions for the marginal

association model are listed in the table. Importantly, six of

the 10 genes associated with interactions significant at 𝑞 ≤ 0.1
have a known or biologically plausible association with AD;

these genes (TOMM40, TXNL1, GRIA1, SULF1, SPATA13,

MIR633) are marked in bold in the table. TOMM40 is located

near the APOE locus and has a well-known association with
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T A B L E 3 Ten most significant education-SNP interactions computed for the ADNI data using the one step and standard screening-testing methods

Method dbSNP ID 𝜷𝑮𝑬 P-value FDR

One step rs4600636_T 4.006 6.166 × 10−5 0.9999452

rs513136_A −3.816 1.356 × 10−4 0.9999452

rs4412_T 3.812 1.378 × 10−4 0.9999452

rs4709612_C 3.801 1.444 × 10−4 0.9999452

rs9360610_C 3.757 1.720 × 10−4 0.9999452

rs1554261_C −3.753 1.744 × 10−4 0.9999452

rs10083119_A 3.749 1.777 × 10−4 0.9999452

rs1400826_G −3.737 1.864 × 10−4 0.9999452

rs3763159_A 3.727 1.937 × 10−4 0.9999452

rs9351951_A 3.727 1.937 × 10−4 0.9999452

Screening testing (marginal assoc. filter) rs4678623_T −2.3760 0.01748 0.4372200

rs4771568_A −2.2520 0.02429 0.4372200

rs11856891_C −1.7700 0.07667 0.7074000

rs2298540_G −1.7260 0.08438 0.7074000

rs10892831_T 1.5490 0.12150 0.7074000

rs6801268_T 1.5040 0.13260 0.7074000

rs793291_A −1.4400 0.14980 0.7074000

rs3849196_G 1.4140 0.15720 0.7074000

rs727735_A −1.3290 0.18390 0.7164000

rs10506854_G −1.2840 0.19900 0.7164000

Screening testing (gene-env. correl. filter) rs580539_A 3.163 0.001563 0.0562680

rs7532749_T 2.611 0.009021 0.1141560

rs2785821_A 2.593 0.009513 0.1141560

rs9316649_A 2.391 0.016800 0.1399200

rs2976189_A −2.268 0.023320 0.1399200

rs2954347_G −2.268 0.023320 0.1399200

rs2423360_G 2.125 0.033560 0.1725943

rs3807530_A −2.027 0.042630 0.1836831

rs4309408_G 1.946 0.051640 0.1836831

rs11244744_A 1.921 0.054700 0.1836831

both AD and Parkinson’s disease (Gottschalk et al., 2014)

(SNP rs2075650-G also has a known association with AD;

Middelberg et al., 2011). A biologically plausible link exists

between TXNL1 and AD because of TXNL1’s role in glu-

cose metabolism and the cellular response to sugar starva-

tion stress (Jiménez, Pelto-Huikko, Gustafsson, & Miranda-

Vizuete, 2006) and the close association between AD and

glucose metabolism dysfunction (Chen & Zhong, 2013; Liang

et al., 2008). GRIA1 is associated with AD due to its role in

synaptic plasticity (Falsafi et al., 2014). SULF1 is related to

heparin sulfate, which is linked to the amyloid beta plaques

characteristic of AD (Hosono-Fukao et al., 2012). SPATA13

has a plausible association with AD because of its enriched

expression within the central extended amygdala (Becker

et al., 2008) and the link between atrophy of the amygdala

and early AD onset and severity of symptoms (Poulin et al.,

2011). MicroRNA MIR633 was found to be deregulated in

the prefrontal cortex of late onset AD patients (Lau et al.,

2013).

5 DISCUSSION

Biologically meaningful gene-environment interactions exist

for many common human diseases and other clinically rel-

evant phenotypes (Buil et al., 2015; Hunter, 2005; Murcray

et al., 2009). If correctly identified and characterized, these

interactions offer important insights into disease etiology, the

design of predictive models, and effective treatment and pre-

vention approaches. Unfortunately, poor statistical power for

interaction detection has limited G×E interaction findings

based on GWAS data (Aschard et al., 2012b).

In an attempt to improve G×E interaction detection power,

researchers developed a number of two-stage or screening-

testing approaches (Dai et al., 2012; Hsu et al., 2012;
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T A B L E 4 Twenty most significant education-SNP interactions computed via the extended SPUR method

Marginal Correlation

LR q-value: 0.000232 LR q-value: 0.03673

dbSNP ID Associated gene 𝜷𝑮𝑬 P-value FDR dbSNP ID 𝜷𝑮𝑬 P-value FDR

rs2346567_G LOC105373456 2.13 0.000731 0.0323 rs17586724_C 0.381 0.00705 0.239

rs7805350_T FAM188B 2.35 0.00115 0.0323 rs1052242_T 0.315 0.0105 0.239

rs2075650_G TOMM40 −1.33 0.00403 0.0705 rs4349644_G −0.267 0.0147 0.239

rs573399_A TXNL1 −1.26 0.00949 0.0771 rs4869558_T −0.259 0.0227 0.266

rs11726692_G RNF150 1.48 0.0102 0.0771 rs4779674_A −0.336 0.0345 0.29

rs10070086_G GRIA1 1.4 0.0118 0.0771 rs1229658_A −0.33 0.039 0.29

rs1530241_A SULF1 −0.791 0.0127 0.0771 rs10924293_G −0.274 0.0602 0.377

rs2861545_G SPATA13 −0.976 0.0132 0.0771 rs12822144_A 0.203 0.089 0.432

rs917924_T Intergenic −0.9 0.0187 0.0934 rs12679472_C 0.228 0.0907 0.432

(LOC100288868, RPL21P46)

rs7216013_A Intergenic 1.62 0.0204 0.0934 rs9394169_A −0.18 0.117 0.497

(LOC100128712, MIR633)

rs17027976_G - −1.14 0.0269 0.106 rs2055407_A 0.207 0.138 0.524

rs12046563_G PPIH −0.851 0.0292 0.106 rs9294723_A 0.159 0.15 0.524

rs7330772_T LOC101927437 0.839 0.0305 0.106 rs1929820_T 0.154 0.165 0.529

rs2249508_C - 0.643 0.0363 0.116 rs10513055_C −0.17 0.198 0.532

rs9979680_G - 0.989 0.0418 0.124 rs6041429_T 0.154 0.205 0.532

rs2254595_G FAM3C −0.535 0.0545 0.149 rs1424976_T −0.202 0.206 0.532

rs7574256_G - 0.758 0.0573 0.149 rs2119380_C −0.14 0.234 0.562

rs10494515_A AXDND1 0.497 0.093 0.219 rs2305252_A −0.148 0.256 0.562

rs9595108_A - 0.746 0.0966 0.219 rs10177104_A −0.137 0.261 0.562

rs4747019_A LRRC20 0.58 0.0996 0.219 rs9681094_T −0.123 0.321 0.63

SNPs with published associations in NHGRI-EBI GWAS Catalog (Welter et al., 2014) are marked in bold. Genes associated with significant education-SNP

interactions, at 𝑞 ≤ 0.1, that have a plausible AD association are marked in bold.

Kooperberg & Leblanc, 2008; Murcray et al., 2009, 2011; Wu

et al., 2009). These methods divide the analysis into a screen-

ing stage, in which the set of potential markers is filtered, and

a test stage, in which the markers that pass screening are eval-

uated for G×E interactions. Although a major improvement

over approaches that test each potential interaction using a

separate model, the first generation of screening-testing meth-

ods have an important drawback, namely that separate models

are used for each marker during both screening and testing.

This is problematic in the presence of marker LD and also

necessitates some level of MHC during the testing stage.

To address the shortcomings of early screening-testing

methods, we recently created a new screening-testing

approach for G×E interaction detection ( SPUR, reviewed in

Section 2.4) that uses a single penalized model in the screen-

ing stage and a single unpenalized model in the testing stage to

enable an omnibus test for G×E interactions and the parallel

evaluation of multiple filter statistics. Despite promising eval-

uation results in Frost et al. (2015), the original SPUR method

has two serious limitations: it cannot be applied to truly

genome-wide data sets and it cannot formally assess the sig-

nificance of individual G×E interactions. Furthermore, statis-

tical properties of the method (i.e., type I error rate and power)

were not characterized in Frost et al. (2015) and real data eval-

uation was based on just a small bladder cancer data set.

In this paper, we have described an extended and general-

ized version of our SPUR method that corrects the method-

ological limitations of the original technique. To support the

analysis of data sets with hundreds of thousands to millions of

genetic markers, we added a score statistic-based prescreen-

ing step, detailed in Section 3.1.1, that can reduce the ini-

tial set of markers to a size practical for penalized multi-

ple logistic regression. As demonstrated by the simulation

results in Sections 4.1 and 4.2, this prescreening technique

does not adversely impact type I error control or the supe-

rior statistical power of SPUR relative to benchmark methods.

For analysis of the ADNI GWAS data set, this prescreening

method was used to reduce the number of SNPs from approx-

imately 400,000 to just 20,000, illustrating the practical util-

ity and computational efficiency of the approach. To support

the formal statistical assessment of individual G×E interac-

tions in the test stage models, we incorporated a hierarchical

FDR approach, detailed in Section 3.1.2. This approach has

the important benefit of enabling the parallel assessment of
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multiple filter statistics. In this scenario, the omnibus test

results for the test stage logistic regression models associ-

ated with each filter form the top level in the hierarchy and

the Wald or LR tests for individual G×E interaction terms in

the test stage model form the bottom level. As shown by the

simulation results, the hierarchical FDR method incurs only a

small loss in power relative to SPUR using just the most opti-

mal filter statistic. Finally, to support analysis of a broader

class of experimental data, we generalized SPUR to handle

both continuous and dichotomous environmental exposures.

This generalized support was specifically leveraged to enable

analysis of the ADNI GWAS data for interactions between

years of education and SNPs relative to case/control status.

This paper also contains a much more thorough evalua-

tion of the SPUR method using simulation studies to assess

type I error control and power and a large GWAS data set to

assess practical utility. Both the simple simulation design and

the simulations based on the genetic architectures of breast

cancer, type 2 diabetes, and rheumatoid arthritis demonstrate

that the extended SPUR method has acceptable type I error

control and superior power to detect known G×E interactions

relative to competing approaches. The two models used with

the simple simulation design also highlighted the dramatic

impact that the filter statistic can have on overall performance

of screening-testing methods. This fact makes the hierarchical

FDR support in the extended SPUR method especially useful

because it allows both filters to be evaluated in parallel with

only a small loss in power. Analysis of the ADNI GWAS data

shows that the extended SPUR method can be used to ana-

lyze truly genome-scale data sets. Importantly, the extended

SPUR method was able to identify statistically significant,

biologically plausible, and previously unreported education-

SNP interactions despite the relatively small sample size of

the ADNI data.

In future work, we plan to use the SPUR method to search

for G×E interactions in a wider range of GWAS data sets

and explore methodological enhancements such as support

for higher order interactions and the concurrent evaluation of

different marker codings and interaction scales.
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