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Abstract 

Background:  For nearly four decades, the N400 has been an important brainwave marker of semantic processing. 
It can be recorded non-invasively from the scalp using electrical and/or magnetic sensors, but largely within the 
restricted domain of research laboratories specialized to run specific N400 experiments. However, there is increas-
ing evidence of significant clinical utility for the N400 in neurological evaluation, particularly at the individual level. 
To enable clinical applications, we recently reported a rapid evaluation framework known as “brain vital signs” that 
successfully incorporated the N400 response as one of the core components for cognitive function evaluation. The 
current study characterized the rapidly evoked N400 response to demonstrate that it shares consistent features with 
traditional N400 responses acquired in research laboratory settings—thereby enabling its translation into brain vital 
signs applications.

Methods:  Data were collected from 17 healthy individuals using magnetoencephalography (MEG) and electroen-
cephalography (EEG), with analysis of sensor-level effects as well as evaluation of brain sources. Individual-level N400 
responses were classified using machine learning to determine the percentage of participants in whom the response 
was successfully detected.

Results:  The N400 response was observed in both M/EEG modalities showing significant differences to incongruent 
versus congruent condition in the expected time range (p < 0.05). Also as expected, N400-related brain activity was 
observed in the temporal and inferior frontal cortical regions, with typical left-hemispheric asymmetry. Classification 
robustly confirmed the N400 effect at the individual level with high accuracy (89%), sensitivity (0.88) and specificity 
(0.90).

Conclusion:  The brain vital sign N400 characteristics were highly consistent with features of the previously reported 
N400 responses acquired using traditional laboratory-based experiments. These results provide important evidence 
supporting clinical translation of the rapidly acquired N400 response as a potential tool for assessments of higher 
cognitive functions.
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Background
Measurements of brainwave activity through event-
related potentials (ERPs) are becoming increasingly use-
ful in providing objective, physiology-based measures of 
brain function [1]. ERPs are derived from electroenceph-
alography (EEG), and can provide information about cor-
tical electrical activity corresponding to different aspects 
of neural processing [2, 3]. In particular, higher order 
cognitive functions like semantic processing indexed by 
the N400 ERP are among the most promising responses 
for emerging clinical applications [4–7]. The N400 
response was first described when Kutas and Hillyard 
presented participants with visual sentences that either 
had a semantically related (i.e. congruent) or semantically 
unrelated (i.e. incongruent) ending [8]. It was observed as 
a negative deflection of the incongruent relative to con-
gruent condition waveforms which peaked at approxi-
mately 400  ms latency following stimulus presentation, 
and the authors suggested that this differential was a neu-
ral marker of semantic language processing.

In the 38  years since its initial report, the N400 
response has been studied extensively using a variety of 
stimulus paradigms in various healthy and clinical pop-
ulations [9–14]. While the initial N400 work utilized 
sentence-based stimuli, subsequent studies showed that 
prime-target word pairs also successfully elicited this 
response [15, 16]. Additionally, non-language-based 
stimuli such as mental arithmetic and action sequences 
have also been shown to produce the N400 response [17], 
and the strength of this response has been found to be 
correlated with various stimulus properties [18]. Oth-
ers have demonstrated overlapping features in the tem-
poral and spatial characteristics of the N400 response 
when elicited using language- as well as non-language-
based stimuli [17], with the spectral content in particu-
lar demonstrating potential in distinguishing between 
different neural processes [19]. In fact, one of the key 
spectral features of the N400 response has been shown 
to be a reduction in beta band oscillations when process-
ing incongruent relative to congruent stimuli in semantic 
language paradigms [20].

The cortical generators of the N400 response have been 
investigated using numerous noninvasive imaging modal-
ities, such as functional magnetic resonance imaging 
(fMRI), electroencephalography (EEG), as well as magne-
toencephalography (MEG). Results have revealed wide-
spread cortical activations across the left temporal lobe, 
along with smaller areas of activity in the right temporal 
as well as bilateral inferior frontal and parietal regions 
[11, 21–23]. Specifically, areas of the bilateral temporal 
cortices (Brodmann Areas [BA] 20/21/22) and left infe-
rior frontal gyrus (BA 45/47) have been shown to be key 
cortical regions within the distributed language network 

likely responsible for N400 [24], and these results are also 
supported by findings from lesion studies [25].

Further to its functional relevance as an indicator 
of neural processing in healthy individuals, the N400 
response has also shown significant potential as a diag-
nostic and prognostic tool in clinical populations [4, 17, 
26–33]. Studies in brain-injured patients with disor-
ders of consciousness showed that the N400 response 
was correlated with functional recovery [4]. Moreo-
ver, changes in N400 response also predicted cognitive 
decline in patients as they progressed from mild cogni-
tive impairment (MCI) to dementia [5, 31]. Yet despite 
these promising findings, the use of the N400 ERP 
beyond the research setting has been hindered by two 
main challenges: First, given that ERPs are produced 
by averaging the neural response signals across a large 
number of trials, traditional N400 studies require pro-
longed testing paradigms [1, 34]. These paradigms are 
particularly problematic in clinical populations due to 
fluctuations in vigilance levels and lack of capability or 
motivation [30, 35]. In addition, rather than measuring 
only a single brain response in clinical populations (e.g. 
sensation, attention, or language), there are now calls for 
concurrent evaluations of a spectrum of brain responses 
which provide a more complete profile of brain function 
[34]. This is particularly crucial in longitudinal monitor-
ing of brain function changes in clinical populations [36]. 
Under these circumstances, the traditional ERP test-
ing paradigms may require hours to evaluate, which is 
impractical within most clinical settings.

To assess the N400 response within a short testing time 
while providing information about other brain function 
indicators, our group has been undertaking systematic 
development of rapid evaluation techniques in recent 
years. We previously demonstrated the successful evalu-
ation of the N400 response in 100 healthy individuals 
using a point-of-care enabled device [34], then employed 
this device to track the progress of rehabilitation therapy 
in a brain-injured patient [6]. More recently, we demon-
strated a rapid evaluation platform known as the ‘brain 
vital sign’ framework [37], which enables the rapid 
assessment of several brain function indicators including 
the N400 (semantic language), N100 (sensory processing) 
[38] and P300 (attention orienting) [39]. The brain vital 
sign framework employs a portable, low-density EEG sys-
tem, with automated, user-friendly software for easy clin-
ical applications. The testing paradigm utilizes a short, 
5-min auditory stimulus sequence in which tone and 
word stimuli are interlaced to maximize the number of 
trials and signal-to-noise ratio. Results in healthy adults 
showed that, not only were the target responses success-
fully elicited at the individual level, but the platform also 
captured expected age-related changes in attention and 
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cognition that were undetected using conventional clini-
cal screening measures [37].

Although the rapid evaluation brain vital sign frame-
work showed initial promise as a potential avenue for 
clinical application of the N400 ERP, the component 
characteristics of this rapidly elicited N400 (rN400) 
response have not yet been described. Given the short, 
complex stimulus paradigm, it is crucial to characterize 
this response with respect to its spatiotemporal, spectral, 
and neuroanatomical features, and compare them with 
known N400 characteristics reported in studies using 
more conventional approaches over the last few decades.

The current study utilized MEG with simultaneous EEG 
to investigate the temporal, spatial, spectral, and neuro-
anatomical characteristics of the rN400 response elicited 
within the brain vital sign framework. We hypothesized 
that the rN400 response will exhibit features consistent 
with known characteristics of the N400 response, includ-
ing: (1) increased ERP negativity and MEG signal power 
for the incongruent relative to congruent condition dur-
ing the 300–500 ms post-stimulus interval; (2) decreased 
beta- band power for the incongruent relative to congru-
ent condition during the same interval; and (3) increased 
activation of temporal and frontal cortices (BA 20, 21, 22, 
45 and 47) for processing of incongruent relative to con-
gruent stimuli.

Methods
Participant details
Seventeen (17) right-handed healthy participants with no 
history of neurological problems or psychoactive medi-
cation were recruited (22.6 ± 2.4  years, 10 males). Par-
ticipants were undergraduate or graduate students, had 
normal hearing, normal or corrected-to-normal vision, 
and were fluent in English. The study was approved by 
ethics boards at Fraser Health Authority and Simon 
Fraser University, and all participants provided written 
informed consent.

Auditory stimuli
As introduced elsewhere [37], the rapid assessment 
framework utilizes a compressed auditory stimulus 
sequence with interlaced tones and words to elicit brain 
responses across four different functional domains—
auditory sensation (N100 ERP), attention (P300 ERP), 
and semantic language (N400 ERP)—in approximately 
5  min (Fig.  1). The sequence comprised 60 blocks, with 
each block containing five tones and two words repre-
senting a prime-target pair. Semantic language process-
ing responses were derived from conditionally averaging 
the trials corresponding to the target word in the pair. 
Semantically linked words (congruent condition, 50%, 
e.g. doctor-nurse) were contrasted with words not 

semantically linked (incongruent condition, 50%, e.g. doc-
tor-egg) to generate the differential processing measures. 
Words in both groups were balanced for characteristics 
such as word frequency and length, and the words in the 
semantically linked group had a minimum Cloze prob-
ability of 0.8 [40]. The stimuli were recorded in a male 
voice and root-mean-square normalized using Audacity 
software. The stimulus sequence contained 30 trials each 
of the congruent and incongruent conditions.

MEG and EEG data acquisition
A 151-channel CTF MEG (MEG International Services 
Limited, Canada) was used with concurrent 3-channel 
EEG, both recorded in a magnetically shielded room with 
the participants in the supine position. Data were sam-
pled at 1200 Hz using axial gradiometers (5-cm baseline) 
with synthetic 3rd order gradients employed for noise 
cancellation. Continuous head position monitoring was 
undertaken by three head position indicator coils located 
at fiducial points (HPI, positioned at nasion, left and right 
pre-auricular points). EEG recordings utilized Ag/AgCl 
scalp electrodes placed at Fz, Cz and Pz locations, with 
impedances kept below 5  kOhms. Four additional elec-
trodes were placed on the head corresponding to refer-
ence (left mastoid), ground (forehead), horizontal (outer 
canthus of left eye) and vertical (supra-orbital ridge of 
left eye) electro-occulogram (EOG). To facilitate the 
alignment of MEG scanner and head coordinate systems, 
the shape of the participants’ head and the 3-dimensional 
position of HPI coils and EEG/EOG electrodes were 
recorded using a Polhemus electromagnetic digitization 
system prior to data collection (Polhemus Incorporated, 
USA). Auditory stimulation was presented binaurally 
using insert earphones, and participants were instructed 
to maintain visual fixation on a crosshair displayed on 

5 sec 

5 min 
Tone Word Color represents type of stimulus 

Fig. 1  Illustration of auditory stimulus sequence of the brain vital 
sign framework. Blocks of five tones and two words repeated 
60 times for a total scan time of about 5 min. Words represent 
prime-target pairs, containing both semantic congruent (pink–
orange) and incongruent (pink–blue) pairs. Tones (standard = green 
and deviant = black) elicit sensory (N100) and attention (P300) 
measures
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the overhead screen (white cross on black background) 
throughout the session.

Data preprocessing
Raw data for both MEG and EEG were first visually 
inspected, and artifactual channels removed from further 
analysis. Data were then down-sampled to 300 Hz, notch 
filtered to remove frequencies corresponding to power 
line (60 Hz) with its harmonics as well as HPI coils, and 
low-pass filtered to 100  Hz. Data from 2 of the 17 par-
ticipants were excluded from subsequent analysis due to 
poor quality.

MEG analysis
Following band-pass filtering (0.5–45  Hz), independent 
component analysis (ICA) was performed with runica 
algorithm in EEGLAB [41] in order to remove artifact 
from ocular, cardiac, and muscular sources.

Temporal effects
Since head position within the MEG helmet can vary 
across participants, global field power (GFP) was uti-
lized to provide a measure of the overall activity across 
all channels [42]. Individual-level GFP was computed for 
the congruent and incongruent conditions using trial-
averaged event-related fields. A bootstrapping approach 
was utilized to determine time intervals of significant dif-
ference between conditions, in which the GFP signals at 
each time point were permuted between the congruent 
and incongruent conditions across all subjects [43]. Using 
this approach, the interval of significance was identified 
to be 300–500 ms and used as the window of interest in 
subsequent analyses, consistent with prior literature [44, 
45]. The mean GFP value in this time interval was then 
calculated for each condition (congruent and incongru-
ent) and participant, and compared using paired t test at 
the group level.

Spectral effects
Sensor level time–frequency analysis was undertaken by 
convolution of the data with Morlet wavelets (6 cycles) 
using the continuous wavelet transform function in 
MATLAB (The Mathworks Inc., USA). The coefficients 
corresponding to 0.5–45  Hz frequency in the − 200 
to 900  ms time window relative to stimulus onset were 
extracted, and log power was computed as the square of 
the absolute value of the coefficients. To better under-
stand the event-related spectral changes, the mean log 
power in the baseline period (− 100 to 0  ms) was sub-
tracted from the log power in the post-stimulus period 
for every trial within the frequency band. Significance 
was assessed using a bootstrapping approach by permut-
ing the trial-averaged wavelet power in the congruent 

and incongruent conditions across participants in each 
frequency [43]. This entailed the calculation of T-statistic 
for each time point and frequency between the congru-
ent and incongruent conditions in the 800 ms following 
stimulus presentation. Thereafter, 1000 permutations 
were undertaken and new T-statistic calculated for every 
permutation leading to a null distribution against which 
the significance of the true T-statistic was assessed (with 
p < 0.05 considered to be significant).

Neuroanatomical effects
Source level analysis was performed using SPM8 (Wel-
come Trust Centre for Neuroimaging, UK) with the for-
ward and inverse modeling steps elaborated in previously 
published work [46]. Source analysis for localizing neural 
generators of the semantic language process was under-
taken using minimum norm estimates (MNE) to main-
tain consistency with prior N400 studies in MEG [24, 44]. 
Group constraints were employed during inversion [47], 
and source reconstruction was based on trial-averaged 
data within the entire frequency range (0.5–45  Hz) and 
active epoch (0–900  ms relative to stimulus presenta-
tion). Source-level contrast images were derived using 
data in the 0.5–45  Hz frequency range and previously 
identified window of 300–500  ms. Statistical modeling 
employed a general linear model (GLM) with T-contrasts 
[48].

EEG analysis
To facilitate future translation into point-of-care enabled 
platforms, concurrently collected EEG data were also 
analyzed to extract ERPs. Contamination from ocular 
sources was removed from the EEG signal using an adap-
tive filtering approach [49]. For this process, the recorded 
EOG signals were used as reference inputs and processed 
using finite impulse response filters (m = 3), followed by 
recursive least squares-based removal from the EEG sig-
nal (λ = 0.9999). Subsequent to artifact removal, standard 
analysis steps including filtering (1–10 Hz), segmentation 
(− 200 to 900 ms) and conditional averaging were under-
taken to generate ERPs [1, 2]. The mean value of the ERP 
waveform at the Cz electrode site in the 300–500 ms time 
interval was calculated for each condition and partici-
pant, and compared using paired t test at the group level.

Individual‑level analysis
To evaluate reliability of the rN400 ERP at the indi-
vidual level, a machine learning-based approach was 
undertaken using a two-category support vector 
machine (SVM) classifier following previously pub-
lished methods [37, 50]. Briefly, an SVM classifier with 
a radial kernel was trained to distinguish between the 
congruent and incongruent condition waveforms using 
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single-run, trial-averaged data from all three electrode 
sites. During each session, 90% of the available data 
were randomly selected to train the classifier, while 
the remaining 10% were used for testing classifica-
tion accuracy. This procedure was repeated 10 times 
under tenfold cross-validation, such that the classifier 
was trained and tested on all available data. Results 
were averaged across all sessions, and measures were 
derived from the confusion matrix corresponding 
to accuracy, sensitivity, and specificity. To further 
assess the reliability of the analysis, results were veri-
fied using non-parametric permutation statistics [34, 
51]. In short, this involved randomly redistributing 
the congruent and incongruent class labels among all 
datasets and performing the same classification proce-
dures. This process was repeated 1000 times, and the 
resulting accuracies were used to create a null distribu-
tion against which the true classification accuracy was 
compared. Probabilities less than 0.05 were deemed to 
be significant for SVM classification outcome.

Results
Temporal and spectral effects in MEG
Sensor-level GFP demonstrated differential processing 
of the target word depending upon whether they were 
semantically related (congruent condition) or semanti-
cally unrelated (incongruent condition) to the first word. 
In particular, in the 300–500  ms post-stimulus interval, 
there was increased power for the incongruent relative to 
congruent condition (p < 0.05, Fig. 2a, b). In addition, the 
processing of incongruent words resulted in a significant 
reduction in beta band power relative to the processing 
of congruent words (p < 0.05, Fig. 2c). This decrease was 
observed in the 335–440 ms time interval, overlapping in 
time with the N400 response. Although there appeared 
to be some differences also present in other frequency 
bands, none of them were statistically significant.

Temporal effects in EEG
ERP waveforms exhibited greater negativity in the incon-
gruent relative to congruent condition occurring within 

Fig. 2  Sensor-level MEG results showing differential processing in incongruent compared to congruent condition. a Grand-averaged GFP 
demonstrating increased power for incongruent relative to congruent condition. Shaded region denotes window of interest (300–500 ms). b Mean 
GFP averaged across the time window specified in part A, calculated for each subject and presented as mean ± SEM across subjects. *p < 0.05. c 
Time–frequency wavelet spectral power averaged over all MEG channels. Colour bar represents log power values
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the 300–500  ms interval, which was maximal at the Pz 
electrode (p < 0.05, Fig. 3a–c). The trained SVM classifier 
successfully distinguished between the congruent and 
incongruent conditions with 88.89% accuracy, 88% sen-
sitivity, and 90% specificity. All classification results were 
verified to be statistically significant through permuta-
tion analysis (p < 0.05).

Neuroanatomical effects in MEG
Differential processing of incongruent words was source-
localized to the inferior frontal, inferior parietal, and tem-
poral regions (incongruent > congruent contrast, p < 0.005, 
k = 20). Key areas included left inferior, middle and supe-
rior temporal gyri (BA 20, 21 and 22) and regions encom-
passing both the anterior and posterior portions of the 
left inferior frontal gyrus (BA 45, 47). Additionally, areas 
of the right temporal and inferior frontal gyri were also 
activated. In comparison, no suprathreshold clusters were 
observed for the reverse contrast of congruent > incongru-
ent (Fig. 4 bottom panel).

Fig. 3  ERP results demonstrating differential processing of semantic congruence and incongruence. a–c Grand-averaged ERP waveforms at the 
Fz, Cz, and Pz electrode sites, respectively. Shaded regions denote windows of interest (300–500 ms). d Mean ERP amplitudes averaged over the 
windows of interest, calculated for each subject and presented as Mean ± SEM across subjects. *p < 0.05

Fig. 4  Source localization results. Top: Incongruent word 
processing activates a left-lateralized distributed region of cortex 
including temporal, inferior frontal and inferior parietal areas 
(incongruent > congruent contrast, p < 0.005unc.). Bottom: No 
suprathreshold clusters were identified for the reverse contrast 
(congruent > incongruent). Color bar represents T-statistic values
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Discussion
Main findings
This study employed MEG with concurrent EEG to inves-
tigate the temporal, spectral, and neuroanatomical char-
acteristics of the rapidly elicited N400 response (rN400) 
generated through the brain vital sign framework. Using 
a compressed auditory stimulus sequence comprising 
both tones and prime-target word pairs, we demon-
strated that the resulting rN400 response exhibited fea-
tures consistent with characteristics previously reported 
for the N400 response in semantic language paradigms 
[17, 18]. In particular, we found that: (1) the sensor-level 
temporal characteristics showed rN400 ERP in the incon-
gruent relative to congruent condition, peaking approxi-
mately 300–500 ms after stimulus presentation and with 
concomitant changes in GFP (Hypothesis 1); (2) a signifi-
cant decrease in beta-band spectral power was observed 
during the same interval in the incongruent relative to 
congruent condition (Hypothesis 2); and (3) source local-
ization analysis showed that rN400 processes activated 
cortical regions spanning the temporal, inferior frontal, 
and parietal regions known to be associated with the 
N400 response (Hypothesis 3). These main findings are 
summarized in Table 1.

Hypothesis 1: temporal effects
The sensor-level temporal effects showed a robust rN400 
ERP for processing the incongruent relative to the con-
gruent words (Fig.  3), consistent with previous findings 
based on sentences and semantic prime-target word pairs 
within auditory and visual modalities [17]. The response 
in the present study was observed to be maximal at the 
parietal (Pz) electrode location, also consistent with prior 
works suggesting a centro-parietal scalp distribution for 
the N400 ERP [9]. Importantly, these findings were also 
supported by our concurrent results using MEG which 
measures the magnetic counterpart of the rN400 ERP. 

Results showed that sensor-level GFP exhibited increased 
activity in the incongruent relative to congruent condi-
tion, peaking at similar latencies relative to rN400 ERP 
(Fig.  2a, b). It is important to note that polarity differ-
ences between the two modalities may be accounted for 
given that GFP is a power measure and is thus always 
non-negative, whereas ERP can be either positive or 
negative.

While the present study targeted the semantic process-
ing effect indexed by the N400 and accordingly focused 
on the 300–500 ms window of interest to be concordant 
with previous literature [18, 44], other temporal differ-
ences between the two conditions were also present at 
earlier latencies within the ERP/ERF traces. These effects 
may be related to processes in support of semantic lan-
guage comprehension such as phonological matching 
[52], letter-string processing [45] or detection of mis-
match based on predicted input [53]. These earlier effects 
may be further explored in future studies.

Hypothesis 2: spectral effects
Time–frequency results demonstrated a significant 
decrease in beta band power in the incongruent condi-
tion relative to the congruent (Fig.  2c). These spectral 
changes occurred over the same time interval as the 
rN400 response, and provide further confirmatory evi-
dence of the processing differences between the two 
conditions. A previous MEG study reported similar beta-
band power reductions, and source-localized this effect 
to the left inferior frontal gyrus and temporal regions, 
with the authors postulating that the observed N400 
effects may have represented a dynamic communica-
tion link between these regions [20]. Additionally, beta 
band power suppression has also previously been associ-
ated with increased level of cortical processing across a 
diverse range of experimental paradigms, such as motor 
movement [54], working memory [55] and information 

Table 1  Comparison of  the  features of  interest between  the  N400 response elicited using traditional approaches 
and the rN400 response elicited under the rapid assessment brain vital sign framework

Effects are based on comparison of the incongruent condition with the congruent condition data. EEG-based features include peak amplitude (V), peak latency 
(ms), and scalp topography. MEG-based features include amplitude difference during the 300–500 ms window (∆300–500ms), spectral effects, and cortical activations. 
Cong.  congruent condition, incong.  incongruent condition, IFG inferior frontal gyrus, TL temporal lobe (superior, middle and inferior temporal gyri), IPL inferior parietal 
lobule. Only statistically significant features are shown
a   Kutas and Federmeier [17], b Lau et al. [9], c Halgren et al. [44], d Maess et al. [24], e Wang et al. [20], f Helenius et al. [23]

Modality Feature of interest Traditional approach N400 Rapid framework (rN400)

EEG Peak amplitude (cong. vs. incong.) ERP: |Vincong| > |Vcong|a ERP: |Vincong| > |Vcong|

Peak latency (ms) ~ 400 msa 420 ms

Scalp topography Centro-parietal maximab Max at parietal (Pz)

MEG Amplitude difference (cong. vs. incong.) ∆c,d
300–500 ms ∆300–500 ms

Spectral effects ⇓ beta-band powere ⇓ beta-band power

Cortical activation ⇑ IFG, TL, IPLc,d,f ⇑ IFG, TL, IPL
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retrieval [56]. In light of these findings, the reduction in 
beta band power observed in the current study may be 
interpreted as a potential reflection of increased process-
ing for the incongruent relative to congruent conditions 
within the relevant brain regions. It should also be noted 
that, although reduced power is visually observed for the 
theta frequency band in the current study, this effect was 
not statistically significant.

Hypothesis 3: neuroanatomical effects
Our results showed left-lateralized activations in the 
temporal cortices (BA 20, 21, 22) as well as inferior fron-
tal gyri (BA 44, 45) (Fig. 4 upper panel). This is in agree-
ment with prior works using fMRI and EEG, confirming 
the left temporal lobe as the largest source of the N400 
effect, with a smaller contribution from the right tempo-
ral areas [21]. In addition, other EEG based works have 
identified contributions from the left perisylvian cortex 
[11], and bilateral inferior frontal gyri [22]. MEG based 
source localization has largely confirmed these findings, 
and suggested contributions from cortical areas includ-
ing the left superior and middle temporal gyri as well as 
the inferior parietal and frontal areas [23, 44]. The con-
verging neuroimaging results and theoretical models [9, 
57, 58] have led to increasing consensus that semantic 
language processing is supported by a left lateralized net-
work of brain regions [9, 24, 44]. Our results are consist-
ent with these previous findings, as more left-lateralized 
activations were observed in both the temporal and infe-
rior frontal regions. In addition to the left hemisphere 
activity, the right hemisphere activations observed in the 
current study were also in line with other studies using 
auditory stimuli [59].

The lack of suprathreshold clusters in the congru-
ent > incongruent contrast (Fig.  4 lower panel) is also 
consistent with previous literature. MEG studies of N400 
have shown largely overlapping areas of activation in 
both congruent and incongruent conditions, with greater 
extent of activations in the incongruent condition due to 
increased demands associated with incongruent stimulus 
[24]. Similarly, fMRI results showed increased hemody-
namic activity for the incongruent condition compared 
to congruent [21]. Together, these hemodynamic and 
electromagnetic results support our findings regarding 
lack of suprathreshold clusters in the congruent > incon-
gruent contrast.

Clinical implications
Beyond the extensive laboratory based evaluations of 
N400, clinical applications are increasingly utilizing 
the N400 response in a variety of patient populations. 
The N400 is being particularly studied in disorders of 
consciousness (DOC) as a potential marker of residual 

functional integrity as well as for tracking rehabilitation 
progress. Beukema and colleagues reported the impor-
tance of including N400 in assessments of DOC patients 
[7], while Steppacher et al. demonstrated the N400 as a 
crucial tool for assessing information processing abilities 
that are predictive of eventual recovery in DOC patients 
[4]. Similarly, the N400 response has also been utilized 
to track rehabilitation progress in traumatic brain injury 
[6] and for assessments of stroke patients [28]. Moreo-
ver, the N400 response has been found to be abnormal in 
Alzheimer’s disease [60], and was identified as a promis-
ing marker in differentially identifying MCI patients who 
may transition to dementia [5]. These demonstrations in 
clinical populations, combined with the excellent reliabil-
ity and stability of N400 effects [61] provide an impetus 
for clinical integration of this promising response. The 
present study makes N400 assessments clinically acces-
sible by balancing the need for rapid assessments in 
clinical settings with the inherent desire for high qual-
ity data while retaining the key known features of the 
N400 response. Our results demonstrated that the rap-
idly elicited N400 response through the brain vital sign 
framework exhibit many of the similar characteristics 
compared to traditional N400 paradigms [9, 17, 62].

Additionally, the robust identification of the N400 
effect at the individual level using automated expert-
independent machine learning approaches provides 
additional support for clinical application of this rapid 
assessment technique. The 89% hit rate in the present 
study is quite comparable to previous reports—with 
prior machine learning based analysis reporting results 
in the 86–92% range [34, 37] and other analytical tech-
niques also reporting observable N400 effects in similar 
proportions of healthy participants [7, 30].

Caveats
Despite the promising findings in this study, two main 
limitations should also be noted. As this is the first study 
characterizing the rapidly elicited rN400 response within 
the brain vital sign framework, the focus was on exam-
ining its spatiotemporal and neuroanatomical effects and 
comparing them with known features of the traditional 
N400 response. However, given the myriad of language- 
and non-language-based experimental paradigms in 
which the N400 response has previously been described, 
it is not feasible to compare the rN400 response to every 
other traditional paradigm in one study. Rather, the cur-
rent study focused on comparisons with language-based 
paradigms, and utilized response features and character-
istics that have been identified as commonalities across 
different studies in order to account for variable modali-
ties and experimental parameters (e.g. experimental 
condition, stimulus duration and type, inter-stimulus 
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interval) [9, 17, 62]. Nonetheless, future studies may 
be conducted to examine more detailed comparisons 
between the brain vital sign rN400 response and tradi-
tional N400 responses. Additionally, as the first study of 
rN400 response, the current study utilized a distributed 
source modeling approach for source localization to be 
consistent with previous MEG studies of N400 [24, 44]. 
However, given the inherent limitations of this approach 
in biasing sources towards the cortical surface, future 
studies are needed to confirm these results using alter-
nate source localization techniques such as spatial filter-
ing using beamformer [63].

Conclusion
In this study, we investigated the spatiotemporal and 
neuroanatomical features of the N400 response as elic-
ited by the rapid assessment brain vital signs framework. 
Using both MEG and EEG, our results showed that the 
rapidly elicited N400 response exhibits characteristics 
consistent with those reported in traditional semantic 
language-based N400 paradigms. These characteristics 
include temporal features showing maximal response 
within 300–500  ms latency; topographic scalp distribu-
tion demonstrating maximal response at the posterior 
Pz electrode; spectral effects showing reduction in beta 
band power; and source localization to left-lateralized 
temporal and inferior frontal areas. With the increas-
ing use of the N400 response in patient assessments for 
neurological conditions such as dementia and traumatic 
brain injury, the convergent M/EEG results of the cur-
rent study provide further support for the possibility of 
translating the N400 response from research to clinical 
settings through a rapid assessment framework for evalu-
ating cognitive functions.
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