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Abstract

Background: African trypanosomes constrain livestock and human health in Sub-Saharan Africa, and aggravate poverty and
hunger of these otherwise largely livestock-keeping communities. To solve this, there is need to develop and use effective
and cheap tsetse control methods. To this end, we aimed at determining the smallest proportion of a cattle herd that needs
to be sprayed on the legs, bellies and ears (RAP) for effective Human and Animal African Trypanosomiasis (HAT/AAT)
control.

Methodology/Principal finding: Cattle in 20 villages were ear-tagged and injected with two doses of diminazene
diaceturate (DA) forty days apart, and randomly allocated to one of five treatment regimens namely; no treatment, 25%,
50%, 75% monthly RAP and every 3 month Albendazole drench. Cattle trypanosome re-infection rate was determined by
molecular techniques. ArcMap V10.3 was used to map apparent tsetse density (FTD) from trap catches. The effect of graded
RAP on incidence risk ratios and trypanosome prevalence was determined using Poisson and logistic random effect models
in R and STATA V12.1 respectively. Incidence was estimated at 9.8/100 years in RAP regimens, significantly lower compared
to 25.7/100 years in the non-RAP regimens (incidence rate ratio: 0.37; 95% CI: 0.22–0.65; P,0.001). Likewise, trypanosome
prevalence after one year of follow up was significantly lower in RAP animals than in non-RAP animals (4% vs 15%, OR: 0.20,
95% CI: 0.08–0.44; P,0.001). Contrary to our expectation, level of protection did not increase with increasing proportion of
animals treated.

Conclusions/significance: Reduction in RAP coverage did not significantly affect efficacy of treatment. This is envisaged to
improve RAP adaptability to low income livestock keepers but needs further evaluation in different tsetse challenge, HAT/
AAT transmission rates and management systems before adopting it for routine tsetse control programs.
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Introduction

African trypanosomes transmitted by tsetse flies (Diptera:

Glossinidae) pose one of the biggest constraints to animal and

human health and livestock-crop integration in Sub-Saharan

Africa [1,2]. They cause a debilitating disease in domestic animals

(nagana) and humans (sleeping sickness) [3–5]. In the south-

eastern part of Uganda, cattle are the main reservoir of

Trypanosoma brucei rhodesiense the causative agent of the acute

form of African human trypanosomiasis (HAT) [6–9]. The chronic

form of the disease caused by T. b. gambiense, whose main

reservoir is yet unknown, exists in West Nile Districts of Uganda

extending to most parts of South–Sudan [10,11]. However, active

case detection and management have been shown to be effective in

T.b. gambiense control indicating that humans are very important

in maintaining disease transmission [12–14].

The distance between the two forms of HAT has been

decreasing threatening a merger as a result of massive cattle

restocking in south-eastern Uganda following 20 years of unrest in

this region [10,15,16]. This merger has recently been temporarily

halted by the Stamp-out sleeping sickness (SOS) program-led

preventive chemotherapy and pyrethroid insecticide spraying of
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about 0.5 million cattle [17,18]. However, this halt remains

temporary unless control efforts are sustained [18,19].

The above notwithstanding, The World Bank estimates that

about 25% of the population in Sub-Saharan Africa and Uganda

in particular, subsists on less than US $ 1.25 per day. This poverty

level is compounded by food insecurity that affects over 34% of the

population [20,21] and ill-health caused by HAT in addition to

other endemic human diseases in this region. However, the

majority of the poor people in Ugandan communities afflicted by

HAT own cattle [22,23] whose production is also constrained by

AAT. This implies that improving livestock production has

potential to reduce poverty and improve food security

[1,2,20,24]. Before this can be achieved, there is need to put in

place effective and sustainable HAT/AAT control methods. Such

control methods to be effective and sustainable in small holder

crop-livestock production systems need to be commensurate to

inelastic budgets of small holder livestock keepers. In addition,

they need to be environmentally benign and target more than one

of the endemic diseases that are known to occur in these areas.

Previously, restricting pyrethroid insecticides to the belly and

legs had proved cheap, environmentally benign and unequivocally

effective on tsetse and trypanosomiasis control compared to other

control methods [25–27]. It has also been suggested that RAP is

unlikely to disrupt endemic stability to tick-borne diseases (TBDs);

an epidemiological equilibrium that is known to maintain a large

population of cattle protected against TBDs [27]. However, it had

been suggested that RAP needs to be optimized in the field setup

so as to further reduce its cost and make it commensurate to

inelastic budgets of small holder livestock keepers [27]. To this

end, a cluster randomized trial was carried out to determine the

smallest proportion of a village herd that needs to be sprayed by

restricting pyrethroid insecticides to the bellies, legs and ears of

cattle and effectively control HAT/AAT. To achieve this, bovine

trypanosome prevalences were determined by molecular tech-

niques before and after spraying (by RAP) 0%, 25%, 50%, 75% of

village cattle herds in 20 villages in Tororo, district; eastern

Uganda. RAP was initially developed basing on a body of research

that indicated that tsetse land and feed mostly on legs, bellies and

ears of the larger compared to smaller/younger cattle [27–29].

Restricting insecticides to the legs, bellies and ears reduces the

amount of the insecticide by 5 fold; reducing on the cost of

application and environmental effects to the dung fauna that break

down dung into manure [25,30]. It is upon this background that

we sought to further optimize RAP.

Materials and Methods

Study area; study village selection and allocation to
treatment regimens

This study was carried out in Tororo district, south-eastern

Uganda for 18 months between June 2012–December 2013.

Glossina fuscipes fuscipes and Glossina pallidipes are the main

tsetse fly vectors of trypanosomiasis in this area [9,31]. The

location, livestock production systems, climate and vegetation of

Tororo district have been described elsewhere [32,33]. The 20

intervention villages were selected from 57 villages of a larger

survey of trypanosome (D Muhanguzi; unpublished) and T.parva
[33] prevalence in Tororo district by molecular techniques. Fifty

seven villages were screened for eligibility and data collected on

basic socio-demographics and trypanosome prevalence by molec-

ular techniques. Twenty-seven villages fulfilled the eligibility

criteria of i) a cattle population of . = 50 and ii) a trypanosome

prevalence of . = 15%. A village cattle population of 50 was used

so as to make sure that cattle population is large enough not to be

depleted in 18 months of follow-up. Baseline trypanosome

prevalence of 15% was used for village inclusion in order to

provide a wide enough range to be able to measure the effect of

graded RAP on trypanosome prevalence. In order to select 20

villages, 100 unique allocation sequences were generated which

fulfilled the condition of a minimum distance of 2 km between

neighbouring villages. This was to minimize contamination effects

from different intervention arms. Finally, one allocation sequence

was selected randomly.

Description of field cattle treatments
Each of the 20 study villages was randomized to one of five

different treatments. All cattle in 20 study villages were ear tagged

for ease of identification at follow-up. They were then treated with

a short acting diminazene diaceturate (DA) containing cyanoco-

balamin (vitamin B12) and hydroxocobalamin (Vitamin B12a)

(Veriben B12; Ceva santé animale, France) at the beginning of the

trial. Another DA dose was administered 40 days later to all cattle

in the 20 study villages to clean them of residual trypanosome

infections and be able to monitor the rate at which re-infection

took place. Diminazene diaceturate was administered at a dose of

0.01 g/kg live body weight (bwt) by deep intramuscular injection.

In order to assess, herd structure (age, sex, breed, exits/entries) at

each sampling time, livestock-keepers, their household particulars

(village, parish, county) and cattle demographics were entered on a

herd structure register at the time of introduction into the

intervention. This register was updated once three monthly for 15

months. In regimens 2–4; different proportions (25%, 50% and

75%) of the village herd were sprayed once every 28 days in what

is referred to here as graded RAP. This was to determine the effect

of spraying different proportions of a village cattle herd on the rate

of transmission of different trypanosomes. An emulsifiable

deltamethrin concentrate (Vectocid, Ceva Interchem, Tunis) spray

was applied in the recommended concentration of 1; 1000

(Vectocid to water parts) on legs, belly and ears as previously

described [27]. The first 25%, 50% and 75% of all the registered

cattle to be presented in the respective RAP regimens were spayed

at each of the monthly spraying. Cattle in regimen 5 were in

Author Summary

Poverty, hunger and human ill-health aggravated by
trypanosomiasis in Sub-Saharan Africa can only be reduced
by developing and using cheap and effective tsetse
control methods. To further reduce the cost of tsetse
control by restricting insecticides to the legs, belly and ears
(RAP) we set out to determine the lowest RAP coverage
that can effectively control tsetse. Cattle in 20 south-
eastern Uganda villages were randomly allocated to 5
treatment groups, ear-tagged for ease of follow-up and
treated twice forty days apart with a trypanocide at the
beginning of the trial. Cattle in regimens 2–4 received
monthly graded RAP (25%, 50% and 75% of village herd
respectively), while those in regimens 1 and 5 received no
more treatment and deworming once every three months
respectively. Molecular techniques were used to check for
trypanosome infections, while tsetse apparent density was
determined by traps at 161 locations in the district. About
25% RAP coverage was effective at controlling T. brucei s.l.
while 50–75% RAP coverage would need to be used for
effective T.vivax and T.congolense nagana control. Use of
RAP at lower herd coverage is envisaged to reduce its cost,
damage to the environment and improve its uptake in
resource poor communities.
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addition given an Albendazole 10% drench at a dose rate of 0.008 g/

kg bwt once after three months. This was to create a replica non-RAP

regimen where a non tsetse and-trypanosomiasis effective treatment

was administered as an incentive for farmers to present cattle for

trypanosome testing for 18 months. This was introduced in the design

of this study in order to reduce the risk of excessive losses to follow-up in

Regimen 1. As such, regimens 1 and 5 were planned control regimens

for RAP regimens 2–4. Blood samples were taken 14 days post the last

Veriben B12 injection and repeated once three monthly for 18 months

of the trial in order to monitor the rate of re-infection with different

trypanosomes. For ethical reasons, all cattle in the non-RAP villages

were administered with Veriben B12 injections at the end of the trial

since they were at a higher risk of infection during the trial.

Cattle blood sample collection
About 125 ml of blood were collected from the middle ear vein

and applied onto designated sample area of the classic Whatman

FTA cards (Whatman Bioscience, Cambridge, UK) avoiding cross

contamination [34,35]. Blood samples were then allowed to air-

dry, labelled with cattle ear tag numbers, treatment regimen,

sampling number, village name, parish, sub County, County and

date of collection. They were packed in foil pouches with a silica

gel desiccant (Sigma Aldrich, Co., Life sciences, USA) prior to

shipping to the University of Edinburgh, UK for analysis.

DNA extraction
DNA was extracted and eluted in Chelex-100 resin (Sigma

Aldrich, Co., Life sciences, USA) from five 3 mm FTA sample

discs according to a previously described protocol [35,36]. Eluted

DNA samples were kept at 220uC for long-term PCR analyses or

4uC if they were to be analysed within a few days after extraction.

Trypanosome detection
Eluted DNA samples were screened for different trypanosome

species using a single pair of primers (CR and BR) and thermo

cycling conditions as previously described [37]. The ITS1- PCR

was done in 25 ml reaction volume; 20 ml of which were the PCR

master-mix and either 5 ml of the test sample or negative control

eluate or positive control DNA. The master-mix was made of

106-reaction buffer (670 mM Tris-HCl pH 8.8, 166 mM

(NH4)2SO4, 4.5% Triton X-100, 2 mg/ml gelatin) (Fisher

Biotech), 1.0 mM MgCl2, 200 mM of each dNTP, 5 mM each of

the CF and BR primers, 0.5 U of Taq DNA polymerase (Fisher

Biotech) and 15.2 ml RNase-free (molecular grade) water.

To determine which samples were infected with either T. brucei
or T. b. rhodesiense, multiplex PCR [38] was carried out on each

of the samples from which a 450 bp fragment was detected on

ITS1-PCR. Multiplex PCR was done in 25 ml reactions using

primers and conditions as previously described [38].

In order to determine the commonest T.congolense genotype

circulating in Tororo district, all samples from which a $600 bp

fragment was amplified on ITS1-PCR were initially tested for

T.congolense savannah using a single pair of primers (TCS1 &

TCS2) and thermo cycling conditions as previously described [39].

All samples that were positive for T.congolense DNA on ITS1-

PCR were positive for T.congolense savannah. For this reason, no

more T.congolense genotype-specific (Kilifi, Tsavo, forest) PCRs

were performed although a few co-infections with different

T.congolense genotypes could have been possible. The PCR was

done in 25 ml reaction volume; 20 ml of which were the PCR

master-mix and either 5 ml of the test sample or negative control

eluate or positive control DNA. The master-mix was made of 106
-reaction buffer (670 mM Tris-HCl pH 8.8, 166 mM(NH4)2SO4,

4.5% Triton X-100, 2 mg/ml gelatin) (Fisher Biotech),, 4.5%

Triton X-100, 2 mg/ml gelatin) (Fisher Biotech), 0.75 mM MgCl2,

200 mM of each dNTP, 12.5 mM each of the TCS1 & TCS2

primers, 1 U of Taq DNA polymerase (Fisher Biotech) and 13.05 ml

of RNase-free water.

PCR products for the three sets of PCRs were electrophoresed

in 1.5% agarose (Bio Tolls Inc. Japan), stained in GelRed

(Biotium, Inc., USA) and visualised on a UV transilluminator for

fragment size determination.

Figure 1. Study flow. Regimen 1: Diminazene diaceturate injections (DA); (0.01 g/kg body weight) forty days apart at the beginning of the trial.
Regimen 2: DA and 25% RAP. Regimen 3: DA and 50% RAP. Regimen 4: DA and 75% RAP. Regimen 5: DA and Albendazole 10% drench (8 mg/kg
body weight)-3 monthly for 18 months. Median time of follow up-FU (time difference between first and last sampling of individual animals) was 12
months in each of the 5 treatment groups.
doi:10.1371/journal.pntd.0003284.g001
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Determination of apparent tsetse density (FTD)
Pyramidal traps [40] were set in 161 locations by Tororo

District Entomology Department between June and September

2012. Individual tsetse trap catches were used to determine pre-

intervention FTD. About 12 traps were set per Km2 to cover at

least a square km (km2) of each sub county. Tsetse fly catches were

monitored, emptied and species and sex determined after every

24 hours. Apparent tsetse density was determined as the number

of tsetse flies per trap per day.

Statistical analysis
The primary analysis investigated the impact of RAP on the

incidence risk ratios of any trypanosome infection using general-

ized linear mixed models with a Poisson distribution and a

logarithmic link function. To account for correlation within

clusters, villages were included as gamma distributed random

effects. The logarithm of the time under observation, i.e. the time

period between the first and last time an individual animal was

sampled, was included as offset variable. To assess the intervention

effect over time, prevalences after 12 and 18 months of follow up

were compared using mixed models with binary outcome and logit

link function. Additional analyses at other sampling points are

provided in supporting information S1. The original idea of

modelling the proportion of animals treated with RAP as a dose

response relationship was abandoned because incidence did not

decrease with increasing proportion of treated animals. Therefore,

the results for the different treatment regimens compared to the

control regimens are presented.

Apparent tsetse density was determined as the number of tsetse

captured per trap per day. To determine the spatial distribution of tsetse

flies (G.pallidipes and G.fuscipes) in Tororo district an FTD map was

generated using the Inverse Weighing Distance Extension (IDW) [41]

of ArcMap 10.3 of 161 individual trap catches. Interpolation was done

at two spatial resolutions (grid cell sizes of 1 km2 and 25 km2) and raster

values were extracted for each village at each spatial resolution. A

default exponent value of 2 was chosen. Although there was little

evidence of spatial autocorrelation (Moran’s I = 20.11, 20.08, 20.10;

all P .0.2, for baseline trypanosome prevalence and FTDs at 1 km2

and 25 km2 resolution, respectively. The association between FTD and

trypanosome prevalence was adjusted for potential spatial dependence.

We used a generalized least squares model with a Gaussian spatial

correlation structure to quantify the effect. Statistical analyses were

performed using R v 3.0.2 (packages ‘lme4’, ‘nlme’ and ‘ape’) except

Poisson random effect models which were performed in STATA v 12.1.

Ethical clearance
This study was reviewed and approved by the Makerere

University College of Veterinary Medicine Animal Resources and

Biosecurity (COVAB) research and ethics committee for consis-

tency to animal use and care. Upon approval (number VAB/

REC/10/105) the COVAB research and ethics committee

forwarded it to the Uganda National Council for Science and

Figure 2. Trypanosome prevalence by time in different regimens. Small symbols represent the prevalence in the investigated villages. The
large symbols represent the mean value of the 4 prevalence estimates in each regime. Animals infected with either T.vivax. T.b.brucei, T.b. rhodesiense,
T.c.savannah are considered infected. The data left to the dotted vertical line denote the baseline estimates determined about 9 months before
treatment.
doi:10.1371/journal.pntd.0003284.g002
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Technology (UNCST) and it was further approved and registered

under registration number HS1336.

Results

Study flow
Over all seven time points, eleven thousand blood samples

(11,087) were collected from 3,677 cattle. One thousand nine

hundred eighty one cattle (54%) were sampled 14 days post the

second Veriben B12 injections and examined to determine

trypanosome residual infections. Almost half the investigated

animals (46%) were newly introduced into the herd during the 18

months of follow up (Figure 1).

Demographic characteristics 2 weeks after the initial
treatments

Pre-intervention trypanosome prevalence ranged from 20–27% in

different regimens. The Boran and African short horn zebu hybrid was

the most predominant cattle breed (98%) and well balanced among the

five treatment groups (range 93%–100%). Treatment groups were

slightly imbalanced with respect to age and sex composition. Roughly

half of the animals were above 3 years of age (Table 1).

Prevalence of different trypanosome species by regimen
and time

Fourteen days post the second dose of diminazene diaceturate

(denoted as time 0), trypanosome prevalences generally increased

in all regimens up to month 6 when they started decreasing

(Regimen 2, 3 and 4) over time. In regimens 1 and 5 trypanosome

prevalences increased up to about 12 and 15 months respectively

and started decreasing thereafter. The slope of curves representing

trypanosome prevalences over time in different regimens is in

increasing order of Regimen 2,3,4,1,5 (Figures 2& 3).

T.vivax was the most predominant species detected in any

regimen while T. brucei s.l. was the least predominant species

detected over the study period (Table 2).

Incidences and point prevalence of different
trypanosomes in RAP and Non-RAP regimens

At the end of follow-up, we observed an incidence of 9.8 per 100

animal years in the RAP regimens which was significantly lower

compared to the 25.7 in the non RAP regimens (incidence rate

ratio: 0.37; 95% CI: 0.22–0.65; P,0.001). Likewise, trypanosome

prevalence after one year of follow up was 15% in the non-RAP

regimens compared to 4% in the RAP animals (OR: 0.20, 95%

CI: 0.08–0.44; P,0.001). The effect was lower but statistically

significant after 18 months of follow up (9% vs 4%; OR: 0.38; 95%

CI: 0.14–0.93; P = 0.03). Adjustment for sex, age category, FTD at

1 km2 spatial aggregation (FTD-1000 m) and for animal treatment

at baseline did not noteworthy change the estimates (Table 3).

There was some indication that FTD-1000 m had an impact on

the treatment effect, but the association was only statistically

significant in one of the 3 models. Newly introduced animals had

slightly lower risk but it was only marginally significant. Of note,

Figure 3. Relative Change in trypanosome prevalence by Regimen 1–5. Lines represent the relative changes from the baseline prevalences,
presented are the means from the 4 village estimates. The dotted lines represent average prevalence in RAP (2–9; brown) and non- RAP (1&5; black)
regimens respectively.
doi:10.1371/journal.pntd.0003284.g003
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Table 3. Incidence and prevalence of different bovine trypanosomes during 18 months follow-up period in RAP and non RAP
regimens.

a) Incidence

Descriptive statistics

Sampled (n) Follow-up years Positive (n) Incidence per 100 years

No RAP 1205 1246 320 25.7

RAP 2250 2164 211 9.8

Inferential statistics

Model variable IRR 95% CI P

unadjusted RAP 0.37 0.22–0.65 ,0.001

adjusted RAP 0.36 0.21–0.62 ,0.001

age 1–3 vs .3 yrs 1.16 0.97–1.4 0.11

age ,1 vs .3 yrs 0.97 0.73–1.28 0.82

sex male 0.93 0.85–1.02 0.14

FTD-1000 m 1.12 0.92–1.38 0.26

new animal 0.86 0.69–1.06 0.16

b) Prevalence at month 12

Descriptive statistics

Sampled (n) Positive (n) Positive (%)

no RAP 743 110 15

RAP 1064 43 4

Inferential statistics

Model variable OR 95% CI P

unadjusted RAP 0.20 0.08–0.44 ,0.001

adjusted RAP 0.22 0.10–0.48 0.0001

age 1–3 vs .3 yrs 0.41 0.05–3.15 0.39

age ,1 vs .3 yrs 0.95 0.66–1.36 0.79

sex male 0.99 0.72–1.35 0.97

FTD-1000 m 1.58 1.11–2.26 0.01

new animal 0.65 0.41–1.02 0.06

c) Prevalence at month 18

Descriptive statistics

Sampled (n) Positive (n) Positive (%)

no RAP 391 37 9

RAP 698 29 4

Inferential statistics

Model variable OR 95% CI P

unadjusted RAP 0.38 0.14–0.93 0.03

adjusted RAP 0.38 0.16–1.00 ,0.001

age 1–3 vs .3 yrs Na Na Na

age ,1 vs .3 yrs 1.28 0.72–2.24 0.14

sex male 1.16 0.69–1.96 0.11

FTD-1000 m 1.18 0.85–1.65 0.82

new animal 0.74 0.4–1.35 0.16

Incidence rate ratios (a) were estimated by Poisson random effect models using individual animal follow up period as offset variable. Odds ratios (b, c) were estimated
by logistic random effect models. All models include village as random effect to adjust for correlation within villages. Follow up years; sum of all animals (last month
sampled - first month sampled), incidence per 100 years = (Number positive/Follow-up years)*100. CI; confidence interval, OR; Odds ratio.
doi:10.1371/journal.pntd.0003284.t003

Improved Restricted Application Protocol for Trypanosomiasis Control

PLOS Neglected Tropical Diseases | www.plosntds.org 8 October 2014 | Volume 8 | Issue 10 | e3284



newly introduced cattle were generally younger (median age 2.3

years compared to 4.0 years). As such, trypanosome infections

were persistently higher in isolated villages in central, northern

and western parts of Tororo District especially in Kirewa,

Nagongera and Paya sub counties (Figure 4). Details of the

models on the other sampling dates as well as time6treatment

interaction are provided in supporting information S1.

Risk of infection with trypanosomes in different regimens
The relative risk of infection with any trypanosome species

measured here by the incidence risk ratios was highest in regimen

5 over the 18 months of the study. Cattle in regimen 2 presented

with incidence of 5.1 per 100 animal years which was significantly

lower compared to the 20.9/100 years observed in the control

group (regime 1) (IRR: 0.24; 95% CI: 0.11–0.52; P,0.001)

(Table 4). The risk of infection with different trypanosome species

was in order of regimen 5.4.3.2 (Table 5). Contrary to our

expectation there was no evidence that protection increases with

increasing proportion of animals treated.

Apparent tsetse densities in Tororo District;
June–September 2012

The number of tsetse flies caught per trap per day were

summarised into FTD which was highly variable between traps

(Figure 5). About 88% of all tsetse caught during the period were

of G. f. fuscipes while 12% were G.pallidipes from Paya and

Mulanda sub counties. G. pallidipes was localised at one site in

Lwala Parish, Mulanda Sub County but fairly distributed in each

of the 4 selected parishes of Paya Sub County (Table 6).

Association between FTD and baseline trypanosome
prevalence

We observed a 2.7%-points increase in the baseline trypano-

some prevalence with each 1 unit increase of FTD (95% CI: 0.6–

4.7%-points, P = 0.02) using the prediction of the 1 km2 spatial

aggregation. On a higher spatial aggregation level (25 km2 grid

cell size) the observed effect was with 1.7%-points smaller and

statistically not significant (95% CI: 21.2–4.7%-points, P = 0.26).

In Table 7 the baseline prevalences and the corresponding FTD

are presented for all villages.

Discussion

In order to determine the smallest proportion of a village herd

that needs to be covered by RAP and effectively control African

trypanosomiasis (HAT/AAT), about two thousand cattle in 20

villages of Tororo district were initially introduced into the 18

months RAP optimisation trial. Over the period, about 1700 cattle

were introduced into the trial. Cattle in all the 20 study villages

were predominantly hybrids of the African short horn Zebu

(Nkedi) and Boran breed. The Nkedi cattle and their hybrids with

Boran are the most predominant cattle breeds in this region

[33,42]. At the beginning of the trial, 46% of the cattle were above

3 years of age with 45.6% of all cattle being either whole or

Figure 4. Herd (village) level effects on trypanosome prevalences with time and regimen. Spatial distribution (any trypanosome) over an
18 months period. Comparison ‘‘original cohort’’ (upper circle: animals which got initial DA treatment) and new animals (lower circle: tagged first time
during follow up). The colours represent the prevalences. The circle area is proportional to the number of sampled animals.
doi:10.1371/journal.pntd.0003284.g004
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neutered males. This population structure of retaining more old

cattle with a female to male (whole and neutered males) ratio of

nearly 1 is geared towards creating a mass of draught power

animals [33,42]. Cattle above three years of age have recently

been seen to be associated with higher risk of infection with and

spread of human infective T.b rhodesiense [43].These production

systems that retain a very high proportion of cattle above 3 years

of age pose a higher risk of acute HAT transmission. This implies

that improving livestock health by controlling tsetse and trypano-

somiasis will ultimately block zoonotic trypanosomiasis transmis-

sion. In addition, this will pave way to integrating livestock and

crop production by way of using draught power and cattle manure

in crop production. This is in line with previous recommendations

that controlling trypanosomiasis in small holder crop-livestock

production systems where farmers heavily depend on draught

power and cattle manure in their crop production will help reduce

poverty and hunger [1,2,20,24].

As with previous studies [20–22] this study shows that restricting

pyrethroid insecticides to the legs, bellies and ears of cattle

significantly reduces trypanosome infections in sprayed cattle

compared to unsprayed cattle. RAP was particularly effective at

preventing re-infection with T. brucei s.l. indicating that it could

be effective at controlling acute HAT since cattle are known

reservoirs for T. brucei rhodesiense [6–9].

Despite the fact that RAP was generally effective at preventing

re-infections with different trypanosome species, increase in village

RAP herd coverage was not significantly associated with a

proportionate decrease in the trypanosome prevalence. On the

contrary, there was an inverse relationship between dose (increase

in RAP coverage; 25%RAP.50%RAP.75%RAP) and response

(reduction in trypanosome prevalence). Inter-village distances and

drop-in effect (cattle introductions) were not significant predictors

of infection with trypanosome infections. However, herd (village)

level trypanosome prevalence varied greatly in different parts of

Tororo district with the highest in central and north-western parts

of the district during intervention (Figure 4). This indicates that

there were village level effects (p; 0.02) that caused this

observation.

As previously reported, the majority (88%) of the tsetse caught

were G. f. fuscipes [9] while the rest were G. pallidipes distributed

in rather patchy areas in Mulanda and Paya sub counties.

G.pallidipes has previously [31] been linked to re-introductions

from Busia District, Kenya further confirming its patchy

distribution and small numbers in this study. There was some

indication that FTD-1000 m had an impact on the treatment

effect, but the association was only statistically significant in one of

the 3 models. Consistent with literature [44], FTD alone did not

sufficiently explain trypanosome infection rates at the beginning of

the trial. This would imply that the observed village level effect in

trypanosome prevalence during the trial (Figures 4 and 5) that

caused the rather unexpected distortion in dose-response relation-

ship was multifactorial. Such factors that could explain this include

a product of FTD and mean tsetse fly infection rate described

elsewhere as level of challenge [44]. Other factors include

differences in individual tsetse-trypanosome transmission rates

and cattle management practices between villages.

The observations above are important in re-focusing the way

insecticide treated cattle (ITC); RAP in particular, is used in the

control of African trypanosomiasis. Recent mathematical models,

for example, predict that just as low as 20–27% RAP coverage is

sufficient in controlling T. brucei s.l. [45,46]. The current study is

consistent with this prediction. In fact T. brucei s.l. was detected in

negligible proportions at all sampling points after DA treatments

in all the RAP villages compared to the non-RAP villages.
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The last outbreak of sleeping sickness in Tororo was between

1988–1990 [47]. This was followed by government, livestock and

donor-led control programs that resulted in the control of the

disease in humans and probably a significant reduction in the

animal reservoir [48]. For the last 20 years T. brucei s.l cattle

reservoir seems to have remained low (3–7%) a reason as to why

there have not been recent outbreaks of sleeping sickness in

Tororo district [6,49]. It is particularly for this reason that we

chose to optimise RAP in this region where trypanosome

(especially T. brucei s.l group) transmission dynamics are quite

in a stable state. As well, there have not been massive cattle

restocking in Tororo district like there have been in the Teso sub

region. Cattle restocking has been reported as the major reason

why T. brucei s.l particularly T. b. rhodesiense has been on the

increase in this region resulting into the recent sleeping sickness

outbreak in the region and its northerly spread towards the

chronic HAT focus [15,18,50]. This implies that treatment of 25%

of a village herd in a stable disease transmission state where cattle

are the main reservoir for T. brucei s.l is sufficient for the control of

this group of trypanosomes with likely long lasting effects on the

control of acute sleeping sickness.

On the other hand T. vivax and T. c. savannah were detected

in much higher proportions in both RAP and non-RAP villages at

all sampling points after treatment with DA. Consistent with

literature [45], T. vivax was the most persistent trypanosome

species detected in both RAP and non-RAP villages during the 18

months trial. This could have been caused by mechanical

transmission by several populations of biting flies whose homing

and feeding sites might not be those preferred by tsetse (legs,

bellies) [51,52]. Similarly, it could have been as a result of higher

challenge of T.vivax and T.congolense since these trypanosome

species were detected in much higher proportions 9 months before

intervention. This implies that control of nagana (T.vivax and

T.congolense) in areas where tsetse mainly feed on cattle would

require increasing village RAP herd coverage up to 50–75% as

previously suggested [45]. In the current situation where dose

response is distorted probably due to the differences in village level

challenge, trypanosome transmission rates and management

practices, initial treatment of all cattle in the intervention area

with a curative trypanocide to reduce parasitaemia would leverage

control by denying tsetse of trypanosomes to transmit [46]. This

could be repeated once yearly for the first three or so years in the

Table 5. Odds ratio of bovine trypanosomes infection after 12 months follow-up in different animal treatment regimens (Logistic
mixed effect regression model).

Regimen Number (n) Positive; n (%) OR 95% CI P

1 404 45 (11%) Ref

2 285 6 (2%) 0.15 0.04–0.52 0.003

3 426 19 (4%) 0.29 0.10–0.85 0.03

4 353 18 (5%) 0.44 0.16–1.24 0.12

5 339 65 (20%) 1.94 0.73–5.13 0.19

doi:10.1371/journal.pntd.0003284.t005

Figure 5. Tororo tsetse apparent density (1 km2 grid cell size); June–September 2012.
doi:10.1371/journal.pntd.0003284.g005
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control program in moderate to high tsetse density areas. As such,

the fact that we did not treat all cattle in Tororo district with

Veriben B12 at the beginning of this trial could have contributed

to the observed distortion in the dose-response relationship.

Similarly, if RAP were adopted across all villages, this would have

significantly increased the effectiveness of RAP and further

reduced the distortion in the dose-response relationship. There is

therefore need to do this assessment in future studies.

Conclusion
This study complements the available literature to demonstrate

that RAP is effective in controlling African trypanosomiasis. To

our knowledge, this study provides the first field based longitudinal

study to demonstrate that spraying only as low as 25% of a village

cattle herd in stable African trypanosomiasis transmission area is

sufficient in the control of T. brucei s.l. In high tsetse challenge

areas where tsetse mainly feed on cattle, control of nagana

Table 6. Apparent tsetse density; Tororo District; June–September 2012.

Sub county Parishes (n) Traps (n) G. f. fuscipes G. pallidipes Sum Mean FTD (Range)

M F Total M F Total

Mulanda 3 14 14 13 27 0 1 1 28 0.7 (0–3.3)

Kirewa 5 20 32 28 60 0 0 0 60 1.0 (0–4.0)

Paya 4 15 0 0 0 14 19 33 19 0.6 (0–6.0)

Nagongera 4 14 36 47 83 0 1 1 84 2.0 (0–23.6)

Nabuyoga 4 20 10 5 15 0 1 1 16 0.3 (0–1.6)

Rubongi 5 13 17 21 38 0 0 0 38 1.0 (0–3.6)

Iyolwa 4 18 8 13 21 0 0 0 21 0.4 (0–1.3)

Magola 3 12 15 21 36 0 0 0 36 0.9 (0–1.6)

Osukuru 4 17 59 47 106 0 0 0 106 2.0 (0–6.0)

Kisoko/Petta 5 12 23 20 43 0 0 0 43 1.2 (0–3.3)

Tororo Municipality 2 6 12 4 16 0 0 0 16 1.0 (0–2.6)

Total 43 161 226 219 445 14 22 36 467 1.0 (0–5.2)

doi:10.1371/journal.pntd.0003284.t006

Table 7. Baseline trypanosome prevalence and apparent tsetse density.

Village Trypanosome prevalence FTD at 1000 M FTD at 5000 M

Nyafumba 0.18 1.77 1.33

Rubuleri 0.32 1.89 1.65

Singisi 0.26 0.22 0.27

Alupe 0.37 3.26 3.82

Oriyoyi 0.27 1.49 2.39

Mailombiri 0.20 0.08 0.63

Nyabanja 0.31 0.13 0.66

Kajalau 0.28 0.07 0.00

Dida 0.35 0.81 0.23

Ngeta a 0.19 0.18 0.08

Chawolo 0.15 0.17 0.63

Kirewa 0.23 3.28 2.02

Kasoli 0.20 0.54 0.69

Pamaraka 0.19 0.78 0.93

Kadanya 0.20 0.00 0.00

Munyinyi 0.36 4.64 0.88

Pasaya 0.22 0.82 2.26

Atapara 0.21 0.56 0.36

Mikwana 0.21 0.32 1.47

Pabendo 0.29 0.09 0.02

doi:10.1371/journal.pntd.0003284.t007
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(T.vivax and T.congolense) would probably require increasing

village RAP herd coverage to 50–75% without reducing RAP

efficacy. This is particularly important because T. vivax and T. c.
savannah persist under moderate (,50% RAP) tsetse control over

a long period of time. In such areas, treatment of all cattle with a

curative trypanocide once yearly for the first 1–2 years of the

control program would leverage tsetse control by reducing

parasitaemia. Reducing RAP coverage to 25% (T. brucei s.l
control) or 50–75% (T.vivax/congolense control) would further

reduce the amount of insecticides used compared to that used in

whole body spraying. This will further reduce cost of application of

RAP and improve uptake by small holder farmers in many crop-

livestock production systems. Before these findings are integrated

in routine tsetse control programs we recommend that the

performance of different RAP herd coverage levels is evaluated

in varied tsetse challenge, trypanosome transmission rates and

management systems.

Supporting Information

Supporting Information S1 a) Impact of RAP on trypano-
some prevalence at each follow-up sampling point.
Logistic regression with village level random effect to account

for correlation within herds. In the adjusted models the effect of

RAP is adjusted for the covariates: age category, sex, tsetse density

at baseline (predicted from spatial extrapolation) and if an animal

received treatment at baseline (Veriben B12- vs. drop-in during

follow-up). b) Impact of RAP on trypanosome prevalence.
Logistic regression with village level random effect to account for

correlation within herds and treatment6time interaction as

outcome. Reference time point is 14 days after the Veriben B12

injections at baseline. Presented coefficients are on logit scale.
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