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In recent years, a set of immune receptors that interact with members of the nectin/nectin-
like (necl) family has garnered significant attention as possible points of manipulation in
cancer. Central to this axis, CD226, TIGIT, and CD96 represent ligand (CD155)-
competitive co-stimulatory/inhibitory receptors, analogous to the CTLA-4/B7/CD28
tripartite. The identification of PVRIG (CD112R) and CD112 has introduced complexity
and enabled additional nodes of therapeutic intervention. By virtue of the clinical
progression of TIGIT antagonists and emergence of novel CD96- and PVRIG-based
approaches, our overall understanding of the ‘CD226 axis’ in cancer immunotherapy is
starting to take shape. However, several questions remain regarding the unique
characteristics of, and mechanistic interplay between, each receptor-ligand pair. This
review provides an overview of the CD226 axis in the context of cancer, with a focus on
the status of immunotherapeutic strategies (TIGIT, CD96, and PVRIG) and their underlying
biology (i.e., cis/trans interactions). We also integrate our emerging knowledge of the
immune populations involved, key considerations for Fc gamma (g) receptor biology in
therapeutic activity, and a snapshot of the rapidly evolving clinical landscape.
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INTRODUCTION

With the widespread clinical application of the ‘first generation’ of immune checkpoint inhibitors
(ICI), namely antibody-mediated blockade of cytotoxic T lymphocyte-associated protein-4 (CTLA-
4) and programmed cell death protein/ligand-1 (PD-[L]1), immunotherapy has become a mainstay
approach for the treatment of cancer (1). However, despite a wealth of evidence supporting the use
of anti-CTLA-4 and anti-PD-1/L1, many patients fail to derive meaningful benefit – highlighting
the need for alternative and complementary immunotherapeutic interventions (2). In this regard,
engagement of novel pathways, cell types, and combinations may provide therapeutic options for
patients wherein the pre-existing host and tumor microenvironment factors do not favor current
immunotherapeutic agents or where adaptive resistance has occurred (3).

For more than a decade, the CD226 axis have been characterized in the context of natural killer
(NK) and T cell biology (4). At the core of this family, T cell immunoreceptor with Ig and ITIM
domains (TIGIT) and CD96 (TACTILE) effectively compete with CD226 (DNAX Accessory
Molecule-1 [DNAM-1] for binding to the necl protein CD155 (poliovirus receptor [PVR). This
regulatory network is reminiscent of the interplay between cytotoxic T-lymphocyte-associated
protein-4 (CTLA-4)/CD28 and B7 (CD80/CD86), where a common ligand (CD155) is shared
org June 2022 | Volume 13 | Article 9144061
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between costimulatory (CD226) and co-inhibitory receptors
(CD96 and TIGIT) (Figure 1) (5). While a parallel with the
CTLA-4 axis could provide some mechanistic insight to the
CD226 axis, there are some important differences in cellular
expression, potential for direct inhibitory receptor signaling, and
the potential impact of soluble ligand (6, 7). Adding to this
complexity, the recently described PVRIG has been shown to
compete with CD226 binding to CD112, another ligand in this
axis (Figure 1) (8–10).

The contiguous nature of the CD226 axis begs several
questions. For example, are the family members redundant
such that concurrent antagonism of multiple receptors is
necessary to reveal their full functional potential, or are
individual receptors dominant under distinct contexts? A
thorough understanding of the dynamics of each ligand-
receptor pair will be critical for the mechanistic deconvolution
of a seemingly redundant family. These relationships may also
inform the best approaches for successful therapeutic
intervention (i.e., best indications to target individual or
multiple receptors, mono- or bi-specific strategies, etc.). To
help address this, we explore the structural characteristics,
reported interactions, and expression patterns for each
Frontiers in Immunology | www.frontiersin.org 2
immune receptor in the CD226 axis (Table 1). We also discuss
the potential for cell-intrinsic activity and present the available
evidence supporting combinations with antibodies targeting the
CD226 axis. In addition, given the importance of Fc-Fc gamma
(g) receptor co-engagement to CTLA-4 antibody function, and
inherent similarities with the CTLA-4/B7/CD28 family, we
briefly discuss the potential role of FcgRs in promoting the
functional activity of antibodies targeting the immune
receptors in the CD226 axis (14–16). Finally, we provide a
snapshot view of the current therapeutic landscape for the
CD226 axis, surveying the available clinical data for each target
and highlighting current indications, safety considerations, and
combination strategies for each target.
THE CORE OF THE AXIS: CD226

Discovery, Structure, and Interactions
By virtue of its role in cytotoxic T cell maturation and platelet
activation, CD226 was initially identified as T lineage-specific
antigen (TLiSA1) and platelet and T cell antigen 1 (PTA1)
shortly thereafter (17, 18). CD226, or DNAX accessory
FIGURE 1 | Interactions between members of the CD226 axis. Dashed red lines indicate the potential for cis interactions/inhibition. The weight of each line is
representative of the relative strength of interaction. Alternative interactions not shown (e.g., CD96 with CD111; TIGIT with CD113 or PVRL4). Human silhouettes
signify that a motif or isoform is not present in rodents. APC, antigen presenting cell; V, variable-like domain; C, constant-like domain; I/C, I/C-like folding pattern
present in isoform 2 of human CD96; P, tyrosine phosphorylation site; SHP2, Src homology 2-containing phosphotyrosine phosphatase; ITIM, immunoreceptor
tyrosine-based inhibition motif; SHIP1, Src homology 2-containing-inositol-phosphatase-1.
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molecule 1 (DNAM-1), has since been thoroughly characterized
as a T and NK cell co-stimulatory receptor responsible for
orchestrating the signaling of shared ligands CD155 and
CD112 (8, 19–22). Analogous to CD28 in the B7/CTLA-4 axis,
CD226 has a reduced affinity for shared ligands CD155 and
CD112 relative to the inhibitory receptors TIGIT, CD96, and
PVRIG, thus creating a layer of immune regulation via
competitive inhibition (9, 19, 23–26). Exemplifying its
important role in immune homeostasis, CD226 genetic
polymorphisms are associated with various immune
Frontiers in Immunology | www.frontiersin.org 3
pathologies (27–29). Similar correlations are lacking for TIGIT,
CD96, and PVRIG, highlighting the central nature of CD226 in
controlling immune activity within the family.

The extracellular region of CD226 forms a unique structure
whereby its two IgV domains (domain [D]1 and D2) are linked
in a side-by-side arrangement (Figure 2). As a result, while
interactions are primarily mediated by a conserved ‘lock-and-
key’ motif in D1, the second extracellular domain (D2) can also
contribute to ligand binding (25, 26). The intracellular region of
CD226 harbors a conserved tyrosine (Y)/asparagine (N) motif
FIGURE 2 | Predicted structures for the CD226 axis receptors CD96, CD226, TIGIT, and PVRIG. The weight of each line is representative of the relative strength of
interaction. Human silhouettes signify that a motif is not present in rodents. N-gly, n-linked glycosylation; Y, tyrosine residue; ITT, immunoglobulin tail tyrosine motif;
ITIM, immunoreceptor tyrosine-based inhibition motif.
TABLE 1 | Expression of CD226 axis members on human immune populations.

TIGIT CD96 PVRIG CD226

CD4+ T cells: Naïvea +/- +/- +/-* ++
CD4+ T cells: EMa ++ +++ +/-* +++
CD4+ T cells: CMa + ++ +/-* +++
CD4+ T cells: TEMRAa +/- +/- ND ++
CD4+ T cells: Trega ++++ +/- +/-* ++
CD4+ T cells: Tfhc ++ ND ND ND
CD8+ T cells: Naïvea,b +/- + +/- ++
CD8+ T cells: EMa,b ++ +++ +++ +++
CD8+ T cells: CMa,b +/- ++ + +++
CD8+ T cells: TEMRAa,b +++ + +++ ++
MAIT cellsa - ++ +* +++
gdT cellsa +++ +/- +* +++
B cellsa + +/- -* -
NK cellsa,b ++ ++ ++ +++
NKT cells (CD56+ T cells)a ++ ++ ND +++
Myeloida - - -* ++
June 2022 | Volume 13 | Articl
Analysis based on human PBMCs. Expression may vary depending on tissue type and indication (e.g., cancer). Symbols (+ and -) represent relative and qualitative expression of each receptor,
wherein + is positive expression and – or -/+ is negative or minimal/variegated expression, respectively. ND, not determined. a (11); b (12); c (13); *RNA analysis only (Human Cell Atlas).
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(D/EIYV/MNY), which engages with multiple proteins,
including growth factor receptor bound protein 2 (Grb2) (30).
Site-directed mutagenesis of Y319 abrogates CD226-induced
cellular cytotoxicity (30) (Table 2). This residue (Y319) has
also been associated with regulation of CD226 expression via
Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b)-
dependent ubiquitination/degradation following CD155
engagement (37). Additionally, although it appears to be
contextual, co-localization with lymphocyte function-associated
antigen 1 (LFA-1) during immune synapse formation has also
been described (Figure 1) (30, 32).

Expression and Regulation
CD226 is broadly expressed on innate and adaptive immune
populations and, like the associated inhibitory receptors within
the axis, can be induced on peripheral human T cells following T
cell receptor (TCR) activation (Table 1) (11, 38). Notably, the
expression of CD226 on activated human T and intratumoral
NK cells tracks closely to that of CD96 (11, 39). While co-
expression could suggest some level of reactive regulation within
the axis, it remains unclear if it is simply correlative or if it is
biologically meaningful.

Another mechanism to temper immune activation could be
the direct regulation of CD226 expression (i.e., by ligand-
induced internalization/endocytosis or cleavage), as evidenced
by its modulation in various disease settings including chronic
viral infection and cancer (37, 40, 41). For example, in non-small
cell lung cancer (NSCLC), CD226 expression is reduced on
tumor-infiltrating NK cells relative to cells from normal
adjacent tissues (NAT) and peripheral blood (42, 43).
Moreover, CD226 has been shown to be sensitive to changes
elicited by various therapeutics, such as chemotherapy (44).

While ligand-based interactions have primarily been
implicated in driving the loss of cell surface CD226, recent
work by Sun et al. also suggests that this effect could be
mediated by soluble factors like transforming growth factor
beta (TGF-b1) (37, 39, 45, 46). It is unclear if this is a direct or
indirect effect, however, TGF-b-dependent modulation of
CD226 has the potential to skew axis signaling in the tumor
microenvironment (TME), enhancing the potential for immune
evasion. Additionally, increased soluble CD226, and related loss
of cell-surface expression, has been observed in the sera of cancer
patients, suggesting some level of protease-dependent biology
(47). Regardless of mechanism, the reduction of CD226 on
immune cells in tumor-bearing hosts and prevalence of other
axis members, raises several questions. Most notably, how much
CD226 expression is necessary to drive functional responses
following blockade of inhibitory receptors in the axis, and is this
something that needs to be monitored to predict responses? As
clinical efforts progress, it will be of interest to interrogate the
relevance of CD226 dynamics in therapeutic responses.

Functional and Therapeutic Implications
The importance of CD226 in shaping the overall immune
response has been thoroughly described in the context of
autoimmunity, cancer, and viral infections (48). CD226
Frontiers in Immunology | www.frontiersin.org 4
orchestrates the net activity of innate (NK cells) and adaptive
(T cells) immunity via interplay with CD155 and CD112 (8, 49).
For example, high expression of cell-surface CD155 coupled with
low human leukocyte antigen (HLA) expression increases the
susceptibility of immature DCs to CD226-mediated killing by
NK cells. This process bridges both innate and adaptive
immunity by removing Th2-polarizing iDCs, thus skewing T
helper cell polarization (50–52). CD226 has been shown to play a
critical role in promoting broad T cell expansion, CD8+ T cell
antitumor activity, and “adaptive”NK cell responses (37, 53–55).

A significant amount of information regarding the
contribution of CD226 to immune responses has been gleaned
from genetic- and biologics-based approaches in mice. In
contrast to delayed tumor progression in TIGIT-/- and CD96-/-,
CD226-deficient mice exhibit increased susceptibility to MCA-
induced fibrosarcomas as well as metastatic lung colonization
(e.g., LLC lung and RM-1 prostate tumors) (19, 20, 56–58).
Moreover, genetic ablation or antibody-mediated blockade of
CD226 has been shown to abrogate the antitumor activity
observed in CD96-deficient mice and in mice treated with
anti-TIGIT, anti-PD-(L)1, and/or GITR (19, 20, 59, 60).
Tumors propagated in CD226-deficient mice also exhibit
increased expression of CD155 and CD112, further
highlighting the dynamics within the CD226 axis (54, 57).

Given its critical immunostimulatory role, agonist approaches
for CD226 seem attractive as a means to generate antitumor
responses. However, CD226 is also expressed on platelets and
has been associated with their adhesion/activation, potentially
complicating the desired pharmacology profile (18, 61). Thus far,
only one agent for CD226, LY3435151 (anti-CD226 agonist
antibody, Eli Lilly), has progressed to clinical testing
(NCT04099277, Table 3). Nevertheless, shortly after initiation,
the phase 1 study for LY3435151 was terminated. Although one
can speculate as to the reason(s) for study termination, given the
critical position of CD226 in CD155 and CD112 axes, it will be of
great interest to understand the limitations surrounding CD226
as a target for cancer immunotherapy.
KEY LIGANDS IN THE AXIS: CD155
AND CD112

Discovery, Structure, and Interactions
Identified several decades before an association with relevant
immune receptors, CD155 (poliovirus receptor [PVR], necl-5)
and CD112 (PVRL2, nectin-2) represent structurally similar
immunoglobulin superfamily (IgSF) adhesion glycoproteins
(62–64). There are several isoforms of CD155 (a, b, g, d) and
CD112 (short, CD112a; long, CD112d), each with slightly
different structural characteristics and tissue distribution (8, 65,
66). While the a and d isoforms of CD155 code for cell-surface
expressed CD155, the b and g isoforms lack transmembrane
(TM) domains, resulting in a soluble/secreted proteins that are
not present in rodents (7, 65, 67). The extracellular region of
CD155 and CD112 is comprised of an N-terminal variable (V)
June 2022 | Volume 13 | Article 914406
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domain and constant (C1-C2) domains (24, 68–70). Like CD226,
the V domain contains conserved ‘lock’ (AX6G) and ‘key’ (T[F/
Y]P) motifs that are critical for mediating homo- and
heterophilic interactions (24, 25, 68). Appropriately, CD155
and CD112 are capable of trans interactions, which can
facilitate sustained cell-to-cell contact and immunoregulation
(71, 72). Contrary to many nectin proteins, CD155 fails to exhibit
strong homophilic interactions (71, 73). Similar evidence
suggests that CD112 functions as a monomer, but also exhibits
proclivity for homodimerization (74).

Outside of their conserved binding motifs, CD155 and CD112
exhibit nuances in binding orientation depending on the partner.
For example, both CD155 and CD112 have been suggested to
form heterotetrameric structures with TIGIT, where TIGIT
dimers are sandwiched between CD155 or CD112 monomers;
while other CD155 (e.g., CD226 and CD96) and CD112
complexes (e.g., CD226) are thought to be more conventional
monomeric interactions (Figure 1) (25, 68–70). Differential
structural attributes of TIGIT, CD96, and CD226 provide a
partial explanation for their relative affinity to cell surface
CD155 (26, 75). However, this is likely more complex given
the variegated glycosylation patterns of the axis proteins. As
mentioned previously, this affinity gradient, which favors
inhibitory receptor binding (i.e., TIGIT and CD96), is
reminiscent of the archetype CTLA-4 axis, whereby CTLA-4
effectively outcompetes costimulatory receptor CD28 from
binding to B7 (CD80/86) (5). In a similar fashion, the
inhibitory receptor PVRIG demonstrates a greater affinity for
CD112 relative to CD226 (9).

Expression and Regulation
Despite detectable levels on multiple cell types (e.g., myeloid and
epithelial cells) under physiological conditions, CD155 and
CD112 are often elevated in various solid and hematological
malignancies, correlating with a worse overall survival (12, 76–
83). These correlations are not ubiquitous, however, as lack of
expression in hepatocellular carcinoma (HCC) has been shown
to be prognostically unfavorable (84, 85). Indeed, akin to PD-L1,
CD155 expression has also been shown to be predictive of
response to ICI (e.g., anti-PD-1 and anti-PD-1/CTLA-4) (86).
This underscores the need for a clear etiological understanding
and cancer-immune interplay in each indication. Moreover,
treatment status must be considered, as CD155 and CD112
can be induced downstream of a range of cellular insults or
stimuli known to activate the DNA damage response (DDR)
pathway (87–92).

In addition to relatively broad expression by human tumor
tissue and stromal populations, CD155 and CD112 are
expressed on myeloid cells, such as monocytes and various
subsets of dendritic cells (DCs) (50, 93). Given the reported
expression of CD155 on follicular DCs, a key component of B
cell follicles/germinal centers (GC), the involvement of the
CD226 axis in tertiary lymphoid structure (TLS) biology may
warrant further exploration (93, 94). This is particularly
attractive in light of recent correlations between TLS
generation/presence and response to cancer immunotherapy
Frontiers in Immunology | www.frontiersin.org 5
(95–97). One area where CD155 and CD112 appear to diverge
is in lymphocyte expression, whereby CD155 can be induced on
highly activated T cells (87, 98, 99). While the functional
consequences of CD155 on activated T cells remains to be
determined, CD155 has been associated with thymic selection
via lymphocyte retention, underscoring its adhesion properties
and potential impact on T cells (100). The expression of CD155
on T cells may also introduce complexity into the mechanistic
interpretation and be derivative of certain experimental models.
For example, CD155 induction on T cells may complicate our
understanding of how anti-CD96 antibodies mediate functional
activity even under conditions of T cell isolation (i.e., agonist
ac t i v i ty or b lockade o f CD96 :CD155 T ce l l - to -T
cell interactions).

As the name suggests, CD155 or poliovirus receptor (PVR)
serves as a point of cellular entry for poliovirus and, similar to the
described role for soluble intercellular adhesion molecule-1
(ICAM-1) in response to rhinovirus infection, soluble CD155
has been proposed to be a partial serum-based sink for poliovirus
(65, 101). Interestingly, soluble CD155 and CD112, have also
been described in the serum of cancer patients and are often
correlated with disease stage (7, 66, 102, 103). However, the
specific contribution of soluble CD155 and CD112 to disease
progression remains to be determined. Despite the longstanding
awareness of CD155 and CD112 expression in cancer, an
understanding of their contribution to the regulation of
immune function and migration was lacking until a connection
with the CD226 was established (8–10, 70, 104, 105). Functional
characteristics and therapeutic implications for each interaction
will be discussed in the following sections.
TIGIT

Discovery, Interactions and Structure
Several years after the description of CD226 and its association
with CD155, T cell immunoglobulin and ITIM domain (TIGIT;
V-set and transmembrane domain-containing 3 [Vstm3]; V-set
and Ig domain-containing 9 [Vsig9]; Washington University Cell
Adhesion Molecule [WUCAM]) emerged as an important
member of the CD226 axis (10, 23, 93). The discovery of
TIGIT was aided by searching for predicted structural
similarities with cell-surface immune receptors, like PD-1.
After its initial identification as a receptor for CD155, an
additional ligand (CD112) and a role for TIGIT in NK cell
modulation was described (10).

The extracellular region of TIGIT is comprised of a single
IgV, and, consistent with other receptor-ligand pairs in the axis,
trans interactions are facilitated by a lock-and-key motif in the
N-terminal domain (68) (Figure 2). The majority of TIGIT
function is tied to CD155, with binding to CD112 representing
a lower affinity interaction (~30-fold via surface plasmon
resonance [SPR]) (106). TIGIT has also been shown to interact
with CD113 (PVRL3) and nectin-4 (PVRL4); however, clear
functional implications remain to be seen (23, 107). Primarily
June 2022 | Volume 13 | Article 914406

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Conner et al. CD226 Axis in Cancer Immunotherapy
facilitated by isoleucine (Ile) 42 (human; an analogous residue
exists in mice) and the associated parallel interface, TIGIT
exhibits a propensity for dimerization on the surface of cells
(68). Accordingly, cis multimeric interactions with CD226 have
also been reported, providing an additional means of CD226
regulation (36, 60).

The intrace l lu lar domain of TIGIT harbors an
immunoreceptor tyrosine tail (ITT)-like phosphorylation motif
and a conserved ITIM (LSYRSL) (106). While the role of each
motif has been evaluated in mice and man, the relative
contribution of ITT/ITIM to cell intrinsic TIGIT activity
appears to be more contextual in humans (Table 2). Using a
modified cytotoxicity system (YTS and 721.221 cells), Stanietsky
et al. demonstrated that rescue of murine CD155-mediated NK
cell suppression required mutation of both ITT and ITIM
tyrosine residues (108). The same authors demonstrated that
site-directed mutagenesis of only the ITIM (Y221) in human
cells was able to abrogate CD155- and CD112-induced
suppression of NK cell cytolytic activity (10). Further, a
separate set of studies ascribed the ITT as the critical moiety
for TIGIT-mediated inhibition of human NK cell IFNg
production, granule polarization, cellular cytotoxicity (34, 35).
Recently, Banta and colleagues demonstrated that the
intracellular domain of TIGIT was largely dispensable for
impairment of CD226 phosphorylation (36). Rather, as
previously mentioned, cis multimeric interactions with CD226
and/or ligand competition were found to drive TIGIT inhibition
of CD226 co-stimulation. While this work brings into question
the relative contribution of intrinsic signaling to TIGIT function
(Table 2), it will be necessary to understand if it is selective to the
experimental system, specific to TIGIT/CD226, or a more
ubiquitous phenomenon.

Apart from ligand sequestration, TIGIT has been credited
with additional mechanisms of action, which may be extrinsic or
intrinsic depending on cell type. For instance, Yu et al. utilized
human T cell and monocyte-derived DC co-cultures to
demonstrate that unabated TIGIT : CD155 ligation alters
antigen presenting cell (APC) cytokine profiles, indirectly
impairing T cell responses (23). While multiple studies have
revealed similar cell-extrinsic function of TIGIT, T and NK cell-
intrinsic TIGIT signaling has also been described in both mice
and man (22, 58, 108–112). For example, Joller et al. utilized an
anti-mouse agonistic TIGIT antibody, in concert with TIGIT-/-

mice, to characterize intrinsic TIGIT signaling in CD4+ T cells
(111). The authors found that components of the T cell receptor
complex (e.g., TCRa and CD3e) were directly modulated
following TIGIT engagement, adding another layer of
immunoregulation to the mechanistic story of TIGIT.

Expression and Regulation
In the peripheral compartment, TIGIT is broadly represented on T
and NK cell subsets, with noteworthy representation on regulatory
T (Treg) cells, NKT cells, T follicular helper (Tfh) cells, and gd T
cells (Table 1) (11, 13). Apart from prominent expression of
TIGIT on Treg cells, expression patterns for CD226 axis members
ostensibly diverge when it comes to memory T cell populations
Frontiers in Immunology | www.frontiersin.org 6
(12). TIGIT and PVRIG are elevated on human terminally
differentiated CD45RA+ TEMRA cells, whereas CD96
expression is mainly restricted to central memory (CM)/effector
memory (EM) T cells (113, 114). It is intriguing to speculate about
the functional effects that blockade of each immune receptor may
have on peripheral or tumor/tissue-resident memory T cells.
However, additional characterization, particularly on tumor-
infiltrating immune populations, is required to determine if
these expression patterns are indicative of any meaningful
functional differentiation.

Consistent with its relatively high level of expression, TIGIT
has been ascribed a role in the homeostasis and function of Treg
cells. Indeed, TIGIT+ Treg cells have been shown to be highly
immunosuppressive relative to their TIGIT- counterparts,
inhibiting T helper (Th)1 and Th17 responses via induction of
fibrinogen-like 2 (Fgl2) (59, 113, 115). This observation may be
particularly relevant in cancer due to the elevated expression of
TIGIT on intratumoral Treg cells (58, 116). As such, cellular
depletion represents a plausible therapeutic mechanism for Fc-
enabled TIGIT antibodies in cancer patients (discussed later).

In addition to readily detectable baseline expression, TIGIT is
also upregulated on T and NK cells following activation. As
exhausted T cells (TEX) are largely a product of tonic TCR
stimulation, TIGIT has become a mainstay in several T cell
‘exhaustion signatures’ and has been implicated as a potential
node for functional reversion of TEX (117, 118). However,
because T cell exhaustion is a complicated process that is
encumbered by progressive stages of epigenetic modification,
TIGIT blockade alone is likely insufficient for meaningful
functional rescue of fully exhausted T cells (119). Perhaps one
way to determine a functional role for TIGIT in this process is to
longitudinally characterize the impact of TIGIT inhibition on the
arc of T cell activation to terminal exhaustion. Adapting these
observations to the TME may inform whether TIGIT blockade
could effectively prevent exhaustion or simply accelerate it.
Alternatively, one could consider TIGIT blockade in concert
with epigenetic modulators as a potential strategy to unmask and
concomitantly enhance the activity of TEX (120). Regardless of
potential functional implications, robust expression on TEX is
consistent with progressive TIGIT induction following
immune activation.

TIGIT expression is detectable in a wide range of human
cancers and is often tightly correlated with T cell transcripts
(CD4 and CD8A) (11). While its expression profile is largely
consistent between the periphery and TME, TIGIT is
upregulated on various TIL populations and is often
accompanied by the expression of other activation-induce
immune receptors, such as CD244 (2B4), TIM-3, and PD-1
(121, 122). Similar to the expression of TIGIT on TEMRA cells in
the periphery, terminally differentiated intratumoral CD8+ T
cells also express elevated levels of TIGIT. One could hypothesize
that these cells are derivative of TIGITlow stem-like T cells
residing within defined TME niches or in the periphery.
Alternately, these could be newly infiltrating cytotoxic T cells
that progressively acquire TIGIT during in situ differentiation or
repeated TCR activation (123, 124).
June 2022 | Volume 13 | Article 914406
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Functional and Therapeutic Implications
No baseline developmental or immunological defects have been
described in TIGIT (VSTM3)-deficient mice (C57BL/6
background) (125). However, the severity of induced
autoimmune manifestations, such as myelin oligodendrocyte
glycoprotein (MOG)-dependent encephalomyelitis (EAE) or
graft-vs-host disease (GVHD) is increased relative to wildtype
mice. In the context of cancer, TIGIT deficiency, or prophylactic
antibody blockade, yields a modest level of protection against
primary tumor growth in mice (19, 126–128). By contrast, TIGIT
monotherapy is often ineffective in mice with established lesions
(60). Therefore, combination with other ICI, such as anti-PD-(L)1,
has been utilized to achieve more pronounced antitumor
responses in a range of tumor models (60, 129, 130). In
addition, the antitumor activity of murine anti-TIGIT antibodies
has been tied to Fc-Fcg receptor co-engagement (15, 131). This
dependency is noteworthy given the myriad of anti-TIGIT
isotypes currently under clinical evaluation (discussed later).

While the focus has largely been on solid tumors, a role for
TIGIT in hematological malignancies has also been described.
TIGIT is most notably upregulated on CD8+ T cells in multiple
myeloma (MM), in both mice and man (128, 132, 133). Akin to
what has been suggested in solid tumors, repeat antigen exposure
and associated progressive exhaustion have been implicated in
the upregulation of TIGIT in this setting and is of particular
interest in the context of relapsed/refractory (R/R) disease.
Accordingly, inhibition of TIGIT (genetic- or antibody-based)
results in T cell-dependent antitumor responses in several
syngeneic models of MM and is currently being evaluated in
clinical studies (e.g., NCT04045028 and NCT04150965) (128).
TIGIT has also been implicated in other heme cancers, such as
follicular lymphoma (FL) and acute myeloid leukemia (AML)
(134–136).
CD96

Discovery, Interactions and Structure
CD96 (T-cell activation, increased late expression [TACTILE])
was first identified as an orphan receptor on AML and T-cell acute
lymphoblastic leukemia (T-ALL) cell lines (137). A functional role
for CD96 wasn’t identified until half a decade later when the
interaction between CD96 on NK cells and CD155 on tumor cells
was described (105). Interestingly, this finding was influenced by
observations involving NK cell expressed CD226 (8): The authors
noted that, while the human NK cell line NK92 bound to the
extracellular domain of CD155, the cells lacked detectable
expression of CD226, thereby implicating a similarly structured
receptor, CD96. This finding introduced a possible functional role
for CD96 on immune cells and, with CD226, provided a
framework for a novel immunoregulatory axis.

CD96 is comprised of three Ig-like extracellular domains and a
flexible membrane-proximal stalk region containing multiple O-
linked glycosylation sites (138) (Figure 2). Only the N-terminal
domain (D1) contains a lock-and-key motif critical for binding
Frontiers in Immunology | www.frontiersin.org 7
CD155. In addition to CD155 binding, CD96 has also recently been
shown to interact with human CD111; however, a functional role
for this interaction remains to be elucidated (70, 75). While much of
the biophysical data generated suggest that CD96 functions as a
monomer, the possibility of CD96 oligomerization (i.e., cis
interactions) needs to be evaluated in more complex systems to
better understand how CD96 behaves on cells. As an example, the
anti-mouse CD96 clone 8B10 (D2 binder) exhibits partial tumor
control in an experimental model of metastases, yet is not entirely
dependent on the presence of CD155 (139). This leads one to
question if cis interference has a contextual biological role for CD96,
if there are other important trans interactions, or whether this is the
result of technical limitations.

Three isoforms of CD96 have been identified in humans, with
two membrane-tethered isoforms (a longer variant [1] and a
shorter variant [2]) and a less studied soluble isoform (variant 3)
(75, 138, 140). Due to a truncated exon 4, the V2 isoform lacks a
stretch of amino acids (~18) in the second Ig domain, resulting in
an abbreviated loop structure. While less is known about the
soluble form (V3), the V2 isoform is reported to be the most
widely expressed and exhibits the highest affinity for CD155. The
first domain of CD96 is reported to contain the epitope(s)
required for CD155 binding while the second domain supports
the magnitude/strength of binding (138). The intracellular
domain of CD96 contains multiple tyrosine residues, with a
prototypical inhibitory motif (ITIM, IXYXXI) that is conserved
across species (138). The presence of an ITIM, coupled with the
capacity for direct cross-competition with CD226/CD155
binding, suggests that CD96 functions as an inhibitory
receptor. However, the categorization of CD96 as an inhibitory
receptor has been mired due to (i) limited knowledge of CD96
signaling, (ii) conflicting functional data (particularly with NK
cells), and (iii) the existence of a YXXM motif (YHEM) in
primate CD96 (Figure 1) (105). Recently, Chiang et al.
ascribed costimulatory properties to both mouse and human
CD96 (141). While certainly not the only description of CD96 as
a costimulatory receptor, caution should be taken regarding the
interpretation of data in certain experimental systems. Because
CD155 can be induced on TCR-activated T cells and the
primordial involvement of nectin/necl proteins in cell
adhesion, it is important to understand if the functional effects
elicited by anti-CD96 are simply the result of blocking CD155-
CD96 trans interactions (87, 98, 99). In addition, while several
costimulatory receptors (e.g., inducible T-cell co-stimulator
[ICOS]) harbor a YXXM motif, defining anti-CD96 functional
directionality based on its presence may be shortsighted, as
CD96 lacks a YxxM in mice and inhibitory receptors like
CTLA-4 also contain similar sequences without a clearly
defined functional role (142, 143).

Expression and Regulation
CD96 is expressed at baseline by several T cell populations (ab
and gd), NK/NKT cells, and select B cell subsets in both mice and
man (Table 1). The expression of CD96 on primary human
immune cells is most evident on CD56+ NK cells and CD8+ T
cells, with prominent representation on central and effector
June 2022 | Volume 13 | Article 914406
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memory T cells (11, 113). Interestingly, human bone marrow-
resident lymphoid tissue (lt) NK cells, which exhibit an
overlapping transcriptional profile with tissue-resident memory
CD8+ T cells, express both CD96 and TIGIT (144). Consistent
with its alias (T-cell activation, increased late expression or
‘TACTILE’), CD96 expression also increases following TCR- or
cytokine-based activation (e.g., interleukin [IL]-18 for T cells and
TGF-b for NK cells) (39, 145, 146). In a recent study, Lepletier
et al. described a near-homogenous level of CD96 and CD226 co-
expression on TCR-activated peripheral human CD8+ T
cells (11).

CD96 is also highly represented on rodent and human T cells
and NK cells within the TME. A marked correlation between
CD96/TIGIT messenger(m) RNA levels and CD3E/CD8a/CD4,
with similar observations at the protein level (i.e., T cells), can be
seen across multiple tumor types (11). Relative to T cells, the
correlation between CD96 and NK cell-related genes is more
infrequent despite being strong for specific indications such as
HCC, head and neck squamous cell carcinoma (HNSCC),
stomach adenocarcinoma, and melanoma (11, 147). Relative
expression of CD96 and TIGIT on HCC-derived NK cells was
shown to be dependent on tissue sub-localization, with TIGIT
evenly represented across NK cells in the normal liver and intra/
peritumoral space and CD96 more restricted to intratumoral NK
cells (39, 148). CD96 expression in HCC is inversely correlated
with several functional markers of NK cells, including T-bet
(TBX21), perforin (PRF1), and granzyme B (GZMB) (39).
Interestingly, TGF-b1 has been implicated in the induction of
CD96 and associated CD226 downregulation in HCC,
establishing a connection between two immunosuppressive
pathways (39). More recently, CD96 was found to be co-
expressed with PD-1 on TCF1+ exhausted precursor T cells in
cervical tumors, a characteristic that the authors tied to
therapeutic insensitivity (149). CD96 expression has also been
noted in various hematological malignancies, such as T-ALL,
myelodysplastic syndrome (MDS), and leukemic stem cells
(LSCs) in AML (137, 150, 151). However, the biological
relevance of CD96 in heme malignancies and its potential as a
therapeutic target remains to be determined.

Functional and Therapeutic Implications
Similar to TIGIT, CD96-deficient mice (C57BL/6 background)
do not exhibit overt baseline immunological defects (19, 152).
However, challenge of CD96-/- mice with lipopolysaccharide
(LPS) results in hyperinflammation characterized by enhanced
IFNg production by NK cells. Augmented NK cell function in
CD96-/- mice is best exemplified by improved antimetastatic
activity in B16F10 melanoma, RM-1 prostate cancer, and EO771
breast cancer models (127). Similar CD8+ T cell-dependent
effects have been observed in CD96-defificent mice, albeit in
the context of concomitant PD-1 (Pdcd1) knockout (114, 152).
Notably, inflammatory responses and related antitumor activity
in CD96-/- mice are abrogated following genetic ablation of
CD226, underscoring the level of axis interplay (19, 152).
Similar improvements in antitumor responses have been
observed in mice following therapeutic inhibition of CD96,
alone or in combination with other immune checkpoint
Frontiers in Immunology | www.frontiersin.org 8
inhibitors (114, 149). As an example, following neoadjuvant
anti-PD-1 and gemcitabine, adjuvant therapy with anti-CD96
resulted in a significant survival benefit in pancreatic ductal
adenocarcinoma (PDAC) tumor-bearing mice (153).
Improvement in overall survival in this model was not solely
driven by attenuation of primary tumor growth, but also by NK
cell-dependent control of metastatic spread (153). Combination
benefit of CD96 and PD-1 blockade has also been shown in other
immunotherapy-insensitive models, such as the TC-1 (HPV+)
tumor model (149).

Despite the wealth of information supporting an inhibitory
role for CD96 in mice, functional data in humans is largely
absent. Therefore, the progression of clinical-stage anti-CD96
antibodies, such as GSK6097608 will add important data to
better understand mechanism of CD226 axis dynamics.
PVRIG

Discovery, Interactions and Structure
PVR-related Ig domain-containing (PVRIG) is the most recently
discovered CD226 axis member (9). While much less is known
about PVRIG, the sequestration of CD112 away from CD226
represents a regulatory mechanism similar to that utilized by
TIGIT and CD96 co-inhibitory receptors (Figure 1) (9, 12).
Alongside this potential for ligand competition, PVRIG has the
capacity for intrinsic inhibitory signaling – which is likely
facilitated by an ITIM-like motif found in the intracellular
domain of PVRIG (9) (Table 2). Interestingly, this inhibitory
domain is lacking in mice, suggesting that PVRIG function in
mice is more dependent on ligand competition or is tied to an
alternative mechanism that has yet to be described (Figure 2).

Expression and Regulation
Like TIGIT and CD96, PVRIG is expressed on various T and NK
cell subsets and is upregulated on T cells following TCR
stimulation (9). Elevated PVRIG expression has been described
on exhausted T cells in human tumors, with noteworthy
expression on TILs from ovarian, kidney, lung, endometrial,
and breast cancers (12, 154). Similarly, antigen specific CD8+ T
cells from virally infected mice exhibit similar upregulation of
PVRIG as cells transition from activation to exhaustion (155).
Despite lack of induction on in vitro-activated NK cells,
increased PVRIG expression is observed on tumor-infiltrating
NK cells (12). To date, little is known about regulation of PVRIG
expression on different immune cell subsets.

Functional and Therapeutic Implications
Genetic- or biologics-based inhibition of PVRIG has been shown
to impair tumor growth, particularly when combined with anti-
PD-L1 (76, 155, 156). Notably, tumor-infiltrating CD8+ T cells
and NK cells from PVRIG-deficient mice exhibit increased
proinflammatory cytokine production, suggesting that PVRIG
is involved in direct or indirect modulation of tumor-infiltrating
T/NK cells (155, 156). In humans, in vitro blockade of PVRIG :
CD112 binding results in enhanced TCR signaling and, when
June 2022 | Volume 13 | Article 914406

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Conner et al. CD226 Axis in Cancer Immunotherapy
combined with trastuzumab (anti-HER2) and anti-TIGIT,
potentiates ADCC activity and IFNg production by NK cells
(9, 157).
CLINICAL LANDSCAPE

Overview
This current clinical landscape for the CD226 axis is heavily
represented by TIGIT antibodies, with an increasing number of
agents at various stages of clinical evaluation (158, 159). Two
PVRIG antagonist antibodies (COM-701, Compugen;
GSK4381562, GlaxoSmithKline [GSK]), a single CD96
antibody (GSK6097608; GSK/23andMe), and a recently
discontinued CD226 agonist antibody (LY-3435151, Eli Lilly &
Co) round out the rest of the agents under clinical
testing (Table 3).

TIGIT
As peculiar as it may sound, given that several agents have
progressed into late-stage studies, the clinical landscape for
TIGIT is just starting to take shape. Recent positive signs from
CITYSCAPE (NCT03563716), a first-line NSCLC (1L) phase 2
Frontiers in Immunology | www.frontiersin.org 9
clinical trial exploring atezolizumab (anti-PD-L1)/tiragolumab
(anti-TIGIT) versus atezolizumab/placebo, were on display at
American Society of Clinical Oncology (ASCO) 2020 (160). The
most striking observation was the large jump in overall response
rate (ORR) in PD-L1high patients (PD-L1 TPS > 50%; N=29
patients in each group) from 24% in the control arm
(atezolizumab + placebo) to 66% with the combination. At first
glance, this ORR compares favorably to similar ICI combinations
(e.g., anti-PD-1/CTLA-4, Checkmate-227/NCT02477826) and is
comparable to anti-PD-1 + chemotherapy (Keynote-189/
NCT02578680) in a similar NSCLC patient subset (N=202
patients) (161). These data have recently enabled a
breakthrough therapy designation by the FDA for 1L PD-
L1high NSCLC. However, given the relatively small number of
patients in CITYSCAPE, phase 3 studies from Roche and others
will be critical for determining the robustness of the
combination. Moreover, despite these promising results, both
atezolizumab (18% [N=39 patients]) and the combination (16%
[N=38 patients]) failed to elicit meaningful responses in PD-
L1low patients (TPS 1-49%) relative to historical use of anti-PD-1
or anti-PD-L1 + chemotherapy (e.g. , Keynote-407/
NCT02775435 and Impower150/NCT02366143) (162, 163).
This lack of overt activity across NSCLC patients may not be
TABLE 2 | CD226 axis receptor ICD mutational studies and associated functional effects.

Receptor System (cell type) Modifications Finding(s) Ref.

CD226
(human)

BW5147 (T cell line, mouse),
human CD226 ectopic

S329F mutation; various
truncations of intracellular
domain

Prevention of protein kinase C (PKC) phosphorylation and subsequent cellular
adhesion

(31)

CD226
(human)

Jurkat and NKL (T and NK cell
lines, human)

WT in NKL cells. Mutation of
S329F in Jurkat cells

S329F mutant failed to associate with LFA-1 (32)

CD226
(human)

Jurkat (T cell line, human) and
COS-7 (fibroblast line, monkey)

Y322F Fyn induced phosphorylation at Y322, abrogated by Y322F mutation. (32)

CD226
(mouse)

Primary murine NK cells and
YTS (human NK cell line)

Ectopic expression of mouse
CD226 in YTS cells

Increased phosphorylation of Erk and Akt, as well as calcium flux and target cell
lysis following CD226 engagement

(30)

CD226
(mouse)

YTS (NK cell line, human) and
transgenic mice

Y319F, S326A Y319F modification in CD226 attenuated mouse NK cell cytotoxicity and IFNg
production

(30)

CD226
(mouse)

Synthetic peptide corresponding
to 315-333 of mouse CD226

Synthesized with
phosphorylation at Y319,
D321Q

Phosphorylation of the amino acid corresponding to Y319 led to capture of Grb2.
Mutation of the asparagine at +2 position led to loss of Grb2 binding

(30)

CD226
(human)

Jurkat (T cell line, human) or
primary (T cells, human)

Y322A, S329A Y322A modification, but not S329A, reduced downstream CD226 signaling after
incubation with CHO-OKT3-PVR cells

(33)

TIGIT
(human)

Jurkat (T cell line, human) Y225A, Y231A Y225A/Y231A dual mutation rescued CD69 expression on Jurkat cells following
exposure to superantigen and CD155

(33)

TIGIT
(human)

YTS (NK cell line, human) Truncation (Y231stop);
Y231A

Rescue of CD155-TIGIT induced inhibition of YTS (NK) mediated cytotoxicity
following truncation or Y231A mutation in TIGIT

(10)

TIGIT
(human)

YTS (NK cell line, human) Y225A, Y231A CD155 induced TIGIT phosphorylation. Pervanadate treatment-induced
phosphorylation of TIGIT was prevented with Y225A or Y225A/Y231A, but not
Y231A alone

(34)

TIGIT
(human)

YTS (NK cell line, human) Y225A, Y231A TIGIT Y225 associates with Grb2, leading to downstream inhibitory function.
Nominal rescue of cytotoxicity with Y231A mutation

(34)

TIGIT
(human)

YTS (NK cell line, human) Y225A, Y231A Reduced association with b-arrestin 2 following mutation Y225A or Y225A/Y231A,
but not Y231A alone

(35)

TIGIT
(human)

Jurkat (T cell line, human) ICD truncation, Y225F,
Y231F

TIGIT intracellular domain is not required to prevent PVR-induced CD226
phosphorylation

(36)

TIGIT
(human)

Cell-free liposome ICD expressed on cell-free
liposome

Lack of Shp2, Shp1, Zap70, Grb2, SHIP-1, or P50a recruitment following
phosphorylation of TIGIT ICD by Fyn

(36)

CD96 Undescribed Undescribed Undescribed None
PVRIG
(human)

HEK293T (kidney cell line,
human) and MOLT4 (T cell line,
human)

Y233F, Y293F Y233F mutation reduced phosphorylation after pervanadate treatment. PVRIG
associates with SHIP and Shp1/2 following pervanadate treatment

(9)
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TABLE 3 | Ongoing or discontinued (terminated) clinical trials evaluating CD226 axis-related antibody-based therapies in cancer patients.

Target Agent Isotype Phase Indication Study Details

TIGIT Tiragolumab (Roche) hIgG1 3 NSCLC NCT04294810
(SKYSCRAPER-01)

• PD-L1-selected
• + atezolizumab

… … … 3 ES-SCLC NCT04256421 NCT04665856
(SKYSCRAPER-02/C)

• + atezolizumab and chemo

… … … 3 NSCLC NCT04513925
(SKYSCRAPER-03)

• + atezolizumab
• + durvalumab
• No progression on CRT

… … … 3 LA Esophageal NCT04543617
(SKYSCRAPER-07)

• + atezolizumab

… … … 3 1L LA Esophageal NCT04540211
(SKYSCRAPER-08)

• + atezolizumab and chemo

… … … 2 Cervical NCT04300647
(SKYSCRAPER-04)

• PD-L1+ patients
• + atezolizumab

… … … 2 NSCLC NCT03563716 (CITYSCAPE) • Chemo-naïve
• + atezolizumab

… … … 2 NSCLC NCT05034055
(SKYROCKET)

• SBRT
• + atezolizumab

… … … 2 HNSCC NCT04665843
(SKYSCRAPER-09)

• 1L PD-L1+
• + atezolizumab

… … … 2 Non-squam. NSCLC NCT04958811 • + bevacizumab
• + atezolizumab

… … … 2 SCLC NCT04308785 • + atezolizumab
• No progression on CRT

… … … 2 Melanoma NCT05060003 • ctDNA+ following resection
• + atezolizumab

… … … 2 Non-squam. NSCLC NCT04619797
(SKYSCRAPER-06)

• + atezolizumab and chemo

… … … 2 Rectal NCT05009069 • + atezolizumab following
neoadjuvant chemo

… … … 2 HER2-G/GEJ NCT04933227 • + atezolizumab and chemo
… … … 2 NSCLC NCT04832854 • + atezolizumab

• +/- neoadjuvant chemo
… … … 2 Melanoma

(stage III)
NCT03554083
(NeoACTIVE)

• + atezolizumab and chemo

… … … 2 HNSCC NCT03708224 • + neoadjuvant atezolizumab
• + tocilizumab

… … … 2 Mixed NCT04632992
(MyTACTIC)

• Platform study

… … … 1b/2 GEJC NCT05251948 (Morpheus-C-
Gastric)

• Platform study

… … … 1b/2 HCC NCT04524871
(Morpheus-Liver)

• Platform study

… … … 1b/2 mUC NCT03869190 (Morpheus-UC) • Platform study
• Post-platinum fail

… … … 1b/2 mPDAC NCT03193190 (Morpheus-
Pancreatic)

• Platform study
• 1L/2L cohorts

… … … 1b/2 G/GEJ NCT03281369
(Morpheus)

• Platform study
• 1L/2L cohorts

… … … 1b TNBC NCT04584112 • + atezolizumab and chemo
… … … 1 MM/NHL NCT04045028 • R/R setting

• + daratumumab and rituximab
… … … 1 Mixed NCT02794571 • Dose-escalation

• + atezolizumab and chemo
TIGIT Vibostolimab (Merck US) hIgG1 3 NSCLC NCT04738487 • PD-L1+

• + pembrolizumab and chemo
… … … 2 NSCLC NCT04165070

(Keynote-01A)
• Treatment-naïve
• + pembrolizumab and chemo

… … … 2 R/R heme
malignancies

NCT05005442 • pembrolizumab co-formulation

… … … 2 NSCLC NCT04725188 • Progression post-chemo/PD-1
• pembrolizumab co-formulation +
chemo

(Continued)
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TABLE 3 | Continued

Target Agent Isotype Phase Indication Study Details

… … … 2 Mixed NCT05007106 • pembrolizumab co-formulation
+/chemo

… … … 2 NSCLC NCT04165070
(KEYMAKER-U01)

• + pembrolizumab and chemo

… … … 1/2 Melanoma NCT04305041
(KEYMAKER-U02A)

• Platform study
• PD-1 refractory
• + pembrolizumab

… … … 1/2 Castration-resistant
prostate

NCT02861573
(KEYNOTE-365)

• pembrolizumab co-formulation

… … … 1/2 Melanoma NCT04305054
(KEYMAKER-U02B)

• Platform study
• 1L patients
• + pembrolizumab

… … … 1/2 Melanoma NCT04303169
(KEYMAKER-U02C)

• Platform study
• Neoadjuvant Tx
• + pembrolizumab

… … … 1 Mixed NCT02964013
(KEYNOTE-01A)

• Dose-escalation
• + pembrolizumab and chemo

TIGIT Ociperlimab
(Beigene)

hIgG1 3 NSCLC NCT04746924 • + tislelizumab

… … … 3 LA NSCLC NCT04866017 • + tislelizumab vs durvalumab
• + CRT

… … … 2 HCC NCT04948697 • + tislelizumab and BAT1706
… … … 2 NSCLC NCT05014815 • + tislelizumab and chemo
… … … 2 NSCLC NCT04952597 • + tislelizumab and CRT
… … … 2 Esophageal NCT04732494 • + tislelizumab
… … … 2 BTC NCT05019677 • 1L

• + tislelizumab and chemo
… … … 2 Cervical NCT04693234 • + tislelizumab
… … … 2 BTC NCT05023109 • Unresectable

• + tislelizumab and chemo
… … … 1 Mixed NCT04047862 • + tislelizumab
TIGIT Domvanalimab

AB154 (Arcus)
hgG1,
FcgR-null*

3 NSCLC NCT04736173 • PD-L1+ patients
• 1L setting
• + zimberelimab and etrumadenant

… … … 2 NSCLC NCT04791839 • Prior checkpoint blockade
• + zimberelimab and AB928

… … … 2 NSCLC NCT04262856
(ARC-7)

• PD-L1+ patients
• 1L setting
• + zimberelimab and AB928

… … … 2 R/R melanoma NCT05130177 • + zimberelimab
… … … 1 Mixed NCT03628677 • Dose-escalation

• + zimberelimab
TIGIT BMS-986207 (BMS) hgG1,

FcgR-null*
2 NSCLC (stage IV) NCT05005273 • + nivolumab and ipilimumab

… … … 1/2 Mixed NCT04570839 • Dose-escalation
• + nivolumab and COM701

… … … 1/2 Mixed NCT02913313 • Dose-escalation
• + nivolumab
• + nivolumab and ipilimumab

… … … 1/2 MM NCT04150965 • R/R setting
• + chemotherapy

TIGIT IBI939
(Innovent)

hIgG1* 1 Advanced lung cancer NCT04672356 • Dose-escalation
• + sintilimab

… … … 1 NSCLC NCT04672369 • Dose-escalation
• + sintilimab

… … … 1 Mixed NCT04353830 • Dose-escalation
• + sintilimab

TIGIT Etigilimab
(Oncomed)

hIgG1 2 Ovarian/
fallopian

NCT05026606 • + nivolumab

… … … 1/2 Mixed NCT04761198 • + nivolumab
… … … Term. Mixed NCT03119428

(terminated)
• Dose-escalation
• + nivolumab

(Continued)
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all that surprising given the nature of TIGIT antibodies (i.e.,
activated T cell-orientation and combination dependence),
however as clinical studies progress, it will be important to
establish a mechanistic understanding for the reduced activity
of the combination in these patients.

The safety profi le of tiragolumab combined with
atezolizumab was similar to that of atezolizumab alone.
Immune-related adverse events (IRAEs) were more frequent
with the combination (69% versus 47%) but these were
primarily manageable grade 1 and 2 immune-mediated AEs.
There were also a similar number of grade 3+ AEs in the two
groups (48% versus 44%) suggesting that this ICI combination
will be better tolerated than ICI/chemo combinations (Keynote-
189/NCT02578680, pembrolizumab + chemo [67.2%]) (161).
With respect to AEs that demonstrated a >5% difference between
arms, infusion-related reactions (IRR), pruritus, rash, were more
frequent with the combination whereas dyspnea, productive
Frontiers in Immunology | www.frontiersin.org 12
cough, and hypercalcemia were more frequent with
atezolizumab monotherapy.

Tiragolumab/atezolizumab combinations have since expanded
into a suite of late-stage clinical trials dubbed the SKYSCRAPER
trials. These trails are spread across indications, with SKYSCRAPER-
01, -02, -03 and -06 in lung cancers, SKYSCRAPER-04 in PD-L1+

cervical cancer, and SKYSCRAPER-07, -08 and -09 in the ENT
(esophageal or head and neck) sphere. Other indications including
urothelial carcinoma, pancreatic cancer, and esophageal cancer are
being explored via MORPHEUS umbrella studies (Table 3).

Other TIGIT molecules, including vibostolimab (MK-7684,
Merck US) and ociperlimab (BGB-A1217, Beigene) are close
behind with similar studies in NSCLC and a wave of studies in
alternative indications (Table 3). Merck is also progressing
vibostolimab and pembrolizumab as a co-formulation through
phase 2 studies. This effort underscores the marriage between
PD-1 or PD-L1 and TIGIT intervention strategies, however, time
TABLE 3 | Continued

Target Agent Isotype Phase Indication Study Details

TIGIT ASP8374& (Astellas) hIgG4 1b Mixed NCT03260322 • Dose-escalation
• + pembrolizumab

… … … 1 Mixed NCT03945253 • Japanese patients
… … … 1 Glioma NCT04826393 • + cemiplimab
TIGIT EOS884448

(GSK/iTeos)
hIgG1 1/2 Mixed NCT04335253

(IO-002)
• Dose-escalation

… … … 1/2 Mixed NCT05060432
(TIG-006)

• + pembrolizumab
• + inupadenant

TIGIT SGN-TGT
(Seattle Genetics)

hIgG1 FcgR-
enhanced

1 Mixed NCT04254107 • Dose-escalation
• Solid tumors and lymphomas
+ sasanlimab

TIGIT COM902
(Compugen)

hIgG4* 1 Mixed NCT04354246 • Dose-escalation

TIGIT M6223
(Merck KGaA)

hIgG1* 1 Mixed NCT04457778 • Dose-escalation
• + bintrafusp alfa

TIGIT AB308
(Arcus)

hIgG1 1 Mixed NCT04772989 • Dose-escalation
• + zimberelimab

TIGIT BAT6021
(Bio-Thera)

hIgG1 FcgR-
enhanced*

1 Mixed NCT05073484 • Dose-escalation
• + BAT1308

TIGIT JS006
(Junshi Bio)

hIgG4 1 Mixed NCT05061628 • Dose-escalation
• + toripalimab

TIGIT AK127
(Akesobio)

? 1 Mixed NCT05021120 • Dose-escalation
• + AK104

TIGIT x
PD-1

AZD2936
(AstraZeneca)

? 1/2 NSCLC NCT04995523
(ARTEMIDE-01)

• Bi-specific based on COM902

TIGIT x
?

AGEN1777
(Agenus/BMS)

? 1 Mixed NCT05025085 • Bi-specific
• Dose-escalation
• + PD-1

PVRIG COM701 (Compugen) hIgG4 1/2 Mixed NCT04570839 • + nivolumab and BMS-986207
… … … 1 Mixed NCT03667716 • Dose-escalation

• + nivolumab
… … … 1 Mixed NCT04354246 • Dose-escalation

• + COM902
PVRIG GSK4381562

(Compugen)
hIgG1 1 Mixed NCT05277051 • + Dose-escalation

• + dostarlimab
CD226 LY-3435151

(Eli Lilly)
Unknown Term. Mixed NCT04099277

(terminated)
• Dose-escalation
• + pembrolizumab

CD96 GSK6097608 (GSK/
23andMe)

hIgG1 1 Mixed NCT04446351 • Dose-escalation
• + dostarlimab
J

*to be confirmed; &discontinued; LA, locally advanced; ES-SCLC, extensive-stage small cell lung cancer; mUC, metastatic urothelial carcinoma; mPDAC, metastatic pancreatic ductal
adenocarcinoma; G/GEJ, gastric or gastroesophageal junction adenocarcinoma; GEJC, gastroesophageal junction carcinoma, TNBC, triple-negative breast cancer; R/R, relapsed/
refractory; MM/NHL, multiple myeloma/non-Hodgkin lymphoma; BTC, biliary tract carcinoma; FTIH, first time in human study; CRT, chemoradiotherapy. The “?” symbol in Table 3
symbolizes “undetermined”.
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will tell if concurrent administration is sufficient or if dosing
flexibility is required to enable optimal responses. Other agents,
including Arcus (domvanalimab) and BMS (BMS-986207) are
entering phase 2 and 3 studies. As opposed to the number of Fc-
enabled TIGIT antibodies like tiragolumab and vibostolimab,
agents like domvanalimab and BMS-986207 have attenuated Fc
regions. Adding to this diversity, Fc-enhanced (SGN-TGT and
BAT6021) as well as bi-specific (AZD2936 and AGEN1777)
TIGIT antibodies have recently entered clinical development
(Table 3). Given the non-clinical data suggesting the importance
of Fc-FcgR co-engagement for anti-TIGIT function, the
divergence in Fc biology between clinical molecules will be
something to consider as studies read out.

Outside of solid tumor indications, TIGIT is also being
evaluated in heme malignancies, such as MM and non-
Hodgkin lymphoma (B-NHL) (Table 3). As discussed
previously, TIGIT has been mechanistically linked to T cell
exhaustion in MM and has shown promise as a therapeutic
target in non-clinical models (128, 164). It will be interesting to
see how well these findings translate to the clinical space, and if
this is unique to TIGIT or if the therapeutic potential extends to
other CD226 axis members.

PVRIG and CD96
As of Q2 2022, COM701 (IgG4) and GSK4381562 (IgG1) are the
only two PVRIG molecules under clinical evaluation. Notably,
COM701 demonstrated some early signs of activity, with a
preliminary single-agent disease control rate (DCR) of 69%
(165). Compugen also initiated a phase 1/2 study evaluating
the triple combination of COM701, anti-PD-1 (nivolumab), and
BMS-96820 (anti-TIGIT) in ovarian, endometrial, and select
PVRL2high cancers. Clinical studies for CD96 are even more
nascent, with a single molecule (GSK6097608, IgG1) in dose
escalation as a monotherapy and in combination with anti-
PD-1 (Table 3).
CONSIDERATIONS FOR THE CD226 AXIS

Stronger Together? Targeting Multiple
CD226 Axis Members
Given the nuances in expression profiles and potential for
promiscuity within the CD226 axis, it is intriguing to consider
the possibility for compensatory regulation between different
axis members, particularly under therapeutic pressure (Figure 1
and Table 1). These characteristics also highlight the potential of
therapeutic collaboration in order to prevent inhibitory
exigencies and/or increase coverage of various immune subsets
and regulatory nodes within the axis (12). Several lines of non-
clinical evidence directly or indirectly support co-inhibition of
CD226 axis members. For example, antibody-mediated blockade
of PVRIG has been shown to both induce rapid receptor
internalization and increase TIGIT expression on antigen-
specific CD8+ T cells (12). Similar dynamics have been
observed with the ligands in the axis (83, 166). Moreover,
genetic- or biologics-based co-blockade of TIGIT and CD96
Frontiers in Immunology | www.frontiersin.org 13
has been shown to improve tumor control while co-blockade of
TIGIT and PVRIG has also been shown to promote NK cell
function (152, 157).

A PD-(L)1 Partnership
Although difficult to accurately assess due to the potential
concomitant impact on TCR and CD28 activity, PD-1
signaling has been described to attenuate CD226 activity via
SHP2-mediated dephosphorylation (20, 167) (Figure 1). This
suggests that any CD226 signaling mediated by anti-TIGIT-,
CD96- or PVRIG-based ligand redirection has the potential to be
undercut by PD-(L)1 activity. Therefore, it is logical that CD226
axis therapeutics may need to be considered in the context of
PD-(L)1 pathway blockade in order to reveal their full functional
potential. Thus far, the available non-clinical data are consistent
with this hypothesis. However, it will be interesting to see how
the clinical space evolves, and whether or not PD-(L)1 blockade
will become a prerequisite for the efficacy of all of the CD226
axis-based strategies.

Potential Utility of Fc-FcgR
Co-Engagement
Given the relative breadth of non-clinical studies, it is not
surprising that much of the data describing a potential role for
Fc biology in the efficacy of antibodies targeting CD226 axis
members has been restricted to TIGIT (15, 16, 114). An
underlying point of contention has been the potential for
antibody-mediated cellular depletion, and whether this is
beneficial or detrimental, either due to safety concerns or
impairment of efficacy (60, 130, 168–170). TIGIT is highly
expressed on both peripheral and tumor infiltrating Treg cells.
While selective depletion of Treg cells in the TME could relieve a
suppressive barrier and promote antitumor responses, depletion of
Treg cells in other tissues could impair peripheral tolerance and
result in autoimmune manifestations, as seen in patients treated
with mogamulizumab, an afucosylated antibody targeting CCR4-
expressingTreg cells (11, 58, 171, 172). One could postulate that
TIGIT+ effector/cytotoxic T cells would also be a target for
depletion, which may attenuate the desired therapeutic effect.
Thus, if these concerns were overwhelming, pursuing an Fc-
attenuated TIGIT antibody would appear logical. However,
given that TIGIT expression is elevated on terminally exhausted
T cells, one could also posit that depleting these cells in the TME
would permit the establishment of more functional T cell
populations, leading to a net beneficial effect. Multiple factors,
including differential cellular thresholds for target opsonization,
antibody affinity, presence of effector cells mediating depletion,
and FcgR polymorphisms need to be considered (14, 173, 174).
Moreover, while safety concerns have been allayed with the clinical
progression of Fc-competent antibodies, various non-clinical
studies have demonstrated a benefit and, in some cases, a
requirement for intact Fc biology to facilitate anti-TIGIT
function (15, 60, 114, 169). Although the exact mechanism(s)
responsible for improved anti-TIGIT activity remains to be
determined, it has been suggested that Fc-FcgR co-engagement
drives myeloid activation and/or T cell-APC immune synapse
June 2022 | Volume 13 | Article 914406
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quality (15, 131, 169). Clinical efficacy and safety data for recently
developed Fc-enhanced TIGIT antibodies should also provide
visibility on potential advantages or disadvantages associated
with this format. Ultimately, the clinic will be the proving
ground for the seemingly disparate Fc variants under evaluation;
that is, to determine if pure antagonism, effector biology, or a
mixture of mechanisms are required for optimal patient responses.

Limited Fc-based characterization has been conducted for
rodent/human PVRIG or human CD96 antibodies (139).
However, it is important to consider that the optimal
therapeutic potential for each target must integrate a thorough
understanding of Fc biology. Finally, given the breadth of TIGIT
antibodies with distinct Fc regions currently under clinical
evaluation (Table 3), broader mechanistic insights into anti-
TIGIT biology and whether these characteristics extend to other
members of the CD226 axis, may begin to surface in the
coming years.
CLOSING REMARKS

In an effort to provide a framework for our evolving
understanding of the CD226 axis in cancer, we discuss

available non-clinical data and give an overview of the
current clinical landscape. However, despite an understanding
of the differential functional characteristics and expression
profiles of each axis member, many questions remain
regarding the mechanistic dynamics and contextual roles for
Frontiers in Immunology | www.frontiersin.org 14
each receptor. Some examples include (i) the functional
implicat ions of the variegated receptor expression
(particularly with memory or stem-like memory T cell
populations and regulatory T cells), (ii) the cell-intrinsic
impact of individual receptor signaling, (iii) the functional
consequence of ligand/receptor dynamics in different tissues
(e.g., TME versus peripheral blood), (iv) the trans/cis
interactions critical for activity, and (v) the contribution of
FcgR biology to the function of antibodies for each receptor. As
clinical programs advance and interest expands, some of these
questions may begin to be addressed. Overall, it will be
intriguing to see how therapeutic strategies for each receptor
evolves and what mechanistic learnings precipitate from an
increased amount of activity around the targets.
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