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The Hong-Ou-Mandel (HOM) experiment was a benchmark in quantum optics, evidencing the non–
classical nature of photon pairs, later generalized to quantum systems with either bosonic or fermionic
statistics. We show that a simple modification in the well-known and widely used HOM experiment provides
the direct measurement of the Wigner function. We apply our results to one of the most reliable quantum
systems, consisting of biphotons generated by parametric down conversion. A consequence of our results is
that a negative value of the Wigner function is a sufficient condition for non-gaussian entanglement between
two photons. In the general case, the Wigner function provides all the required information to infer
entanglement using well known necessary and sufficient criteria. The present work offers a new vision of the
HOM experiment that further develops its possibilities to realize fundamental tests of quantum mechanics
using simple optical set-ups.

E
ntangled photon pairs play undoubtedly a central role in quantum information processing and quantum
communication. Photons are the most efficient quantum information carriers, not only for their intrinsic
propagation speed, but also for the variety of degrees of freedom they possess, both discrete and continuous.

Some examples of quantum information protocols that have been realized with photons are teleportation1,
quantum key distribution2, one–way quantum computing3 and quantum repeaters4. Moreover, entangled photon
pairs enable the realization of fundamental tests of quantum mechanics, as Bell type inequalities5,6, since the no–
signalling condition is relatively easily fulfilled.

Spontaneous parametric down conversion (SPDC) is the most widely used process to generate entanglement in
different (independent) degrees of freedom of a photon pair. Detecting, characterizing and manipulating this
entanglement is a key issue for quantum information applications. This problem is fundamentally different if one
is dealing with discrete degrees of freedom (e.g. polarization), or with continuous ones (e.g. spatial or spectral).
While for two qubit states in the discrete case and for gaussian states in the continuous one, necessary and
sufficient conditions exist for entanglement detection7,8, for higher dimensions or more general configurations,
solutions are subspace dependent9. However, using high dimensional systems and non Gaussian states leads to a
number of important and interesting applications, such as entanglement distillation10, quantum computation11

and high precision measurement12. For these reasons, understanding and classifying such states is a matter of
importance and fundamental interest.

Photons produced by SPDC can be highly non-separable because the characteristics of the pump beam and of
the nonlinear medium are transferred to global degrees of freedom of the photon pair. This transfer also occurs in
the strong field regime where the quadratures of the down converted fields are entangled and could present non
Gaussian behaviour for sufficiently high nonlinear coupling13. In the photon pair regime, we often speak of
biphoton states. For instance, using a continuous wave (cw) pump and considering degenerate, monochromatic
and polarized fields, the two-photon state can be written as14,15

yj i~
ðð

Fz p1zp2ð ÞF{ p1{p2ð Þ p1,p2j idp1dp2, ð1Þ

where F1 is the normalized momentum distribution of the pump beam, F2 is the phase matching function and pi

the Transverse Momentum (TM) vector of the i-th photon15. Eq. (1) can indeed be obtained for several types of
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continuous variables (namely spatial or frequency coordinates) and
in a wide range of experimental setups, as we will show below. We
denote p6 5 p1 6 p2 and q6 5 q1 6 q2 (the sum and differences of
position coordinates). The correlations of the biphoton are deter-
mined by the functions F6(p6) and their Fourier transforms
F+ q+

� �
, which describe the photons in the transverse position

coordinate. To gain information about the entanglement in state
(1), measurement of the coincidence distributions in at least
Fourier conjugate planes is required. Furthermore, to gain total
information about the quantum state through tomography requires
measurement of correlations along additional directions in the phase
space of the transverse spatial variables16. This could be done, in
principle, by generalizing the method demonstrated in17 where the
Wigner function18 of a single photon was directly measured using a
Sagnac interferometer. This method can, in principle, lead to the
measurement of the Wigner function for photons prepared in an
arbitrary state, but it demands the stabilization of independent inter-
ferometers. The method to measure the biphoton’s Wigner function
presented here, as will be seen in the following has a much higher
stability in spite of the symmetry conditions required for the wave-
function. Moreover, it is based on a currently used technique to probe
the quantum statistical properties of bosons and fermions. It is obvi-
ous from Eq. (1) that all of the information about correlations
between photons 1 and 2 can be obtained through measurements
on the sum and difference variables, p6.

In the present paper, we show that the biphoton Wigner function
can be measured directly using an adaptation of the Hong-Ou-
Mandel (HOM) interferometer19. In the following, we detail how
to detect the biphoton Wigner distribution in the whole phase space
and consequently, obtain a full characterization of the two-photon
quantum state, by using readily available linear optics elements.
Furthermore, we show that HOM interference can be used as an
entanglement witness for non-Gaussian entanglement. Negative
values of the biphoton Wigner function is a sufficient condition to
prove the presence of non-Gaussian entanglement in the system.

Let us first recall the principles of the HOM interferometer, shown
in Fig. 1. Each photon of a pair created from SPDC is sent through
one of the two arms of an interferometer. They are then recombined
in a 50/50 beam splitter (BS) and detected by detectors A and/or B.
When the photons are indistinguishable and reach the BS simulta-
neously, they bunch and follow the same path. Coincidence detec-
tions in detectors in A and B are thus less likely, and the so-called
‘‘Hong-Ou-Mandel dip’’ is observed19.

For notational simplicity, we write the state of a continuous vari-
able degree of freedom of the photons as jYæ 5 # # F(p1, p2)jp1,
p2ædp1dp2, where pi are variables associated to the i-th photon (i 5

1, 2) that propagates in the i-th arm of the interferometer. We impose
that all other degrees of freedom are separable from the considered
one, which can be guaranteed using filters to make local projections.
In order to better illustrate the main idea, we will first take pi as being
the TM of the i-th photon produced in the SPDC process, and con-
sider only one spatial dimension15. This direction will be such that it
is not modified by mirror reflection. It will be called y later on.
Examples of applications to other continuous degrees of freedom
and extension to two dimensions will be given below.

Results
In the present version of the HOM experiment, we suppose the
interferometer is calibrated and both photons reach the BS simulta-
neously. We then add a position translation 2d to photon labeled 2
and a momentum translation m to photon labeled 1. These operations
are currently done using linear optical elements20 (see also Supple-
mental Material). After both position and momentum displace-
ments, the biphoton state, impinging in the BS is:

Yj i? Ym,d

�� �
~

ðð
F p1,p2ð Þe{2ip2d p1{m,p2j idp1dp2: ð2Þ

After the BS, the two-photon state is given by

YBSj i~1=2
ðð

dp1dp2F p1,p2ð Þe{2ip2d

p1{mj iA p2j iB{ p1{mj iB p2j iAz p1{mj iB p2j iB{ p1{mj iA p2j iA
� �

:

ð3Þ

We will now focus on the coincidence detections only, i.e., consider
only states corresponding to two photons exiting in different paths, A
and B. The coincidence probability I(m, d) thus reads

I m,dð Þ~ 1
2
{

1
2

Re
ðð

F p2,p1ð ÞF� p1zm,p2{mð Þe{2i p1{p2ð Þddp1dp2

� �
:

ð4Þ

Let us already note that separability of the biphoton wavefunction
F(p1, p2) 5 f1(p1)f2(p2) implies I(m, d) # 1/2. This applies to two-
photon mixed states as well, since they can be constructed as a convex
sum of separable pure states (see Supplemental Material). Thus I(m,
d) # 1/2 is an entanglement witness for general two-photon state of
the TM. A similar result was obtained for other degrees of freedom in
Refs. 21–24.

Let us now turn to the main result of our paper. For the sake of
simplicity, we will independently discuss each transverse axis: y was
previously defined and x is orthogonal to y. This is necessary since
there is a fundamental difference between x and y axes under
reflection upon a vertical mirror since px R 2px and py R py. As a
matter of fact, because of this reflection asymmetry, Eq. (4) corre-
sponds to the coincidence counts when coordinate y is considered.
As will be seen below, taking into account the reflection asymmetry
of coordinate x slightly modifies the expression of the coincidence
counts.

We start by assuming, as in Eq. (1), F(p1,i, p2,i) 5 F2(p2,i)F1(p1,i),
where i 5 x, y. This assumption is verified in most experiments with
SPDC and is commonly used when studying entanglement in this
process15,25. From now on, in order to simplify the notation, we will
index functions instead of variables so that F1(p1,i) ; Fi1(p1), for
instance.

The integral in Eq. (4) reads differently for x or y coordinates due
to the aforementioned reflection asymmetry. For the y axis, we have

ð
Fyz mzpzð Þ
�� ��2dpz|

ð
Fy{ mzp{ð ÞF�y{ m{p{ð Þe{2ip{ddp{,

ð5Þ

while for the x axis we haveð
Fx{ mzp{ð Þj j2dp{|

ð
Fxz mzpzð ÞF�xz m{pzð Þe{2ipzddpz:

ð6Þ

First, let us notice that normalization can be chosen so that the first
integrals in Eqs. (5) and (6) are unity (integrals in p1 and p2, respect-
ively). Eq. (5) becomes

Figure 1 | Scheme of the HOM-type interferometer. Devices represented

by boxes in each arm displace the continuous variable degree of freedom in

conjugate spaces, so that the Wigner function can be measured in all the

points of phase space.
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ð
Fy{ mzp{ð ÞF�y{ m{p{ð Þe2ip{ddp{~pWy{ m,dð Þ, ð7Þ

while Eq. (6) becomes:ð
Fxz mzpzð ÞF�xz m{pzð Þe2ipzddpz~pWxz m,dð Þ: ð8Þ

where Wy2(m, d) and Wx1(m, d) are, by definition, the Wigner func-
tions at point (m, d)18 associated to wave functions Fy2 or Fx1,
respectively.

Thus, the coincidence probability in this adapted version of the
HOM experiment reveals the Wigner function at phase space point
(m, d):

I m,dð Þ~ 1
2
{

p

2
Wj m,dð Þ, ð9Þ

where j 5 x1 or j 5 y2. We stress that, in the case where space
components are not separable and/or the wavefunction is not sepa-
rable in the ‘‘1’’ and ‘‘2’’ coordinates, our main result still holds: the
proposed adaptation of the HOM experiment leads to the Wigner
function of the biphoton. Except that in this case, we experimentally
access specific regions of the phase space. Also, it is a straightforward
calculation to show that the Wigner function of a non-pure state can
also be directly measured using the HOM set-up described above (see
Supplemental Material).

From the Wigner function one can infer all the necessary informa-
tion about the state, and in particular, entanglement for Gaussian
and non-Gaussian states. The witness defined by I(m, d) # 1/2 allows
to detect non-Gaussian states since they may have negative values of
the Wigner function. Though the witness itself does not detect gaus-
sian entanglement, we can nevertheless use the Wigner function to
test Gaussian entanglement using other criteria7,8. These facts, added
to the one that no assumption is being made on the width of the
distribution, are clear advantages of the present method over discre-
tization based techniques for detecting entanglement in continuous
variable systems25.

We note that the Wigner function appearing in (7) is a single-party
Wigner function referring to the sum or difference coordinates of the
biphoton. This is a direct consequence of the form of state (1) and
momentum conservation. The four dimensional phase space assoc-
iated to a two particle system is mapped to a product of two dimen-
sional spaces, each corresponding to collective variables p6 and q6.

We have shown that the reflexion asymmetry of the TM correlates
the measurement of the entanglement properties of F1 or F2 to
orthogonal traverse directions (Eqs. (7) and (8)). However, one can
measure these functions in either axis, since they can be controllably
interchanged, for instance by adding a Dove prism orientated at 45u
in both arms of the HOM interferometer that rotates the fields by 90u.

Up to now, we have independently considered each degree of
freedom of the biphoton, but the spatial variables are inherently
two-dimensional (2D), as exemplified by Eq. (1). This leads to a
four-dimensional Wigner function, instead of a two-dimensional
one. Using the obtained results and considering the reflection prop-
erties of the BS, it is straightforward to show that the four-dimen-
sional Wigner function returns information about F1 in the x
direction, and about F2 in the y direction. If we consider, for
instance, a two-photon state of the form (1), in the approximation
where both transverse coordinates are separable, the application of
our results to the two dimensions simultaneously, gives

I mx,dx; my,dy

� 	
~

1
2
{

p2

2
Wxz mx,dxð ÞWy{ my,dy

� 	
: ð10Þ

Using Dove prisms can lead to similar expressions as (10) involving
orthogonal coordinates, as mentioned above. It is also worth men-
tioning that even if transverse coordinates are not separable, I(mx, dx;
my, dy) reveals the Wigner function of each transverse coordinate. In

this case, we are measuring the Wigner function of non pure states, as
detailed in the Supplemental Material.

We now illustrate our results by studying in more details some
examples. Let us first consider entanglement in TM naturally pro-
duced in cw SPDC using a gaussian pump. In this case, we have, in

(5), that Fz pz

� �
~

1ffiffiffiffiffi
2p
p

wp
e

{ pzj j2
w2

p and F{ p{ð Þ~
ffiffiffi
L
k

r
sinc

p{j j2L
k

� �
,

where wp is the width of the pumping beam momentum distribution,
k is the wave number of the pumping beam and L is the non linear
medium’s length. For simplifying reasons, we will only study coord-
inate y. This can be done by fixing mx and dx in x and scanning only
the y phase space, i.e., varying my and dy only. Thus, pWx1(mx, dx) is a
multiplicative constant. In the studied example, since the pump is
gaussian, this constant is necessarily positive, and can be set to 1 by a
proper choice of mx, dx and the width of the pump. Thus, Eq. (10)
directly provides Wy2(my, dy). Supposing, for simplicity, that spatial
coordinates are separable, we can apply Eq. (5) to compute it, with

Fy{ m+p{ð Þ~
ffiffiffi
L
k

r
sinc

m+p{ð Þ2L
k

� �
. Corresponding results are

shown in Fig. (2a) and (2b), showing Wy2(my, dy) and I(my, dy).
Using realistic parameters, we can have I(my, dy) 5 0.56 for dy <
0.1 mm, which fits well in the width of the transverse position dis-
tribution of the photon pairs. The relative violation of the separability
threshold is of over 10%. Usually, this function is approximated by a
Gaussian, and the relatively high violation of the entanglement wit-
ness shows the limitations of this approximation.

Discussion
Our results can be further exploited by modifying the pumping con-
figurations and measuring the biphoton Wigner function that
depends on the pump profile, i.e., Wx1(mx, dx). We can, for instance,
create Schrödinger cats26 in the TM space and directly probe their
Wigner function. This can be done by coherently splitting the pump-
ing beam in two and displacing one with respect to the other in
momentum space, for instance with the help of Spatial Light
Modulators (SLM). As a consequence, the TM distribution will be
centered in two different points, which distance we denote by Dpp.
The biphoton Wigner function in his case is as in Fig. (2c), where we
considered Dpp~5

ffiffiffiffiffiffiffiffi
k=L

p
. The entangled biphoton is highly non-

Gaussian and violates the proposed witness by over 80% (see
Fig. (2d)). This configuration can also be useful to study the deco-
herence of entangled non-Gaussian states through the Wigner
function27.

Let us remark that previous results, as in14 can now be re-inter-
preted with the present formulation. We see that in14, as in the usual
HOM experiment, the Wigner function at point I(0, 0; 0, 0) was
measured (see Supplemental Material for a revision of these results
using the present formulation).

We provide now a second example of an experimental set-up
where our results can be applied. It consists in SPDC generated
from a pulsed pump in semi conductor waveguides28,29. In this
case, pairs of photons entangled in frequency are created, so the space
of CV is one dimensional only. The output wave function is

such that Fz vzð Þ~ 1ffiffiffiffiffi
2p
p

wp
e

{
v2

z

w2
p and F{v{ð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1{n2ð ÞL

2
ffiffiffi
2
p

c

s

sinc
n1{n2ð ÞLv{

2
ffiffiffi
2
p

c

� �
where ni are the refractive index of the medium

for the i-th photon, L is the medium’s length, v6 5 v1 6 v2 where
vi is the i-th photon frequency. There is a complete analogy between
these functions and the one dimensional TM case, and the same
reasoning can be applied leading to the measurement of the
Wigner function. However, scanning the whole phase space in this
case demands using optical elements leading to frequency displace-
ments mv and frequency proportional dephasing dt. Frequency

www.nature.com/scientificreports
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displacements can be realized using techniques as the one demon-
strated in30, while dt displacements can be done either by time-delay-
ing one arm of the interferometer or by using linear optics elements.
Expected results with the considered functions are depicted in
Figs. (2e), (2f)). In21, a state analogous to the Schrödinger cat in
Fig. (2c), was created by pumping the medium with a Gaussian beam
in a regime where two different phase matching conditions apply. A
violation of less than 4% was observable using displacements in the dt

axis only by time delaying one photon(equivalent to displacements in
dx in Figs. (2c), (2d)). Negative points were observed which we can
now interpret as interference fringes of the Wigner function of a
biphoton Schrödinger cat state (see Supplemental Material for fur-
ther discussion).

In conclusion, we have provided a new interpretation of the coin-
cidence probability in the HOM experiment in terms of a biphoton
Wigner function. We adapted the HOM set-up so as all the points of
the Wigner function can be detected by using available linear optics
elements. Negative points of the Wigner function are associated to
non-Gaussian entanglement, that can be directly detected in this
type of experiment. For Gaussian entanglement, the information

provided by the Wigner function can also be used applying other
entanglement criteria. We analyze previous experimental results using
the new perspective provided by our formulation, that can be general-
ized to an arbitrary number of photons (see Supplemental Material)
or to other quantum particles with either bosonic or fermionic stat-
istics satisfying the conditions established in the present work31,32. Our
results open the path to realizing new fundamental tests of quantum
mechanics in a simple and currently used optical setup.

Methods
Calculation of the coincidence probability. In deriving equation 4, we used the
following equality:ðð

dp1dp2F p1,p2ð Þe{2ip2 d p1j iA p2j iB{ p1j iB p2j iA
� �

~

ðð
dp1dp2 F p1,p2ð Þe{2ip2d{F p2,p1ð Þe{2ip1 d

� �
p1j iA p2j iB

ð11Þ

and performed straightforward changes of variables. The coincidence probability is
thus simply the squared modulus of this integral.

Four dimensional Wigner function. The most general (pure) two–photon, two–
dimensional wave function can be expressed as:

Figure 2 | Wigner function (normalized to p) and region I(mi, di) . 1/2 in some chosen variable (i 5 x, y, v, t) for three output wave functions of the bi-

photon in the SPDC process. Variables in all the plots are in units of the relevant physical parameters: mx

ffiffiffiffiffiffiffiffiffiffiffi
kL{1
ph i

, dx

ffiffiffiffiffiffiffiffiffiffiffi
k{1L
ph i

, mv [cL21(n1 2 n2)21]

and dt [c21L(n1 2 n2)]. (a) Output of a cw pumping creating entanglement in the transverse momentum (TM) distribution. Violation of about 12% can

be obtained with displacements in the TM axis, as shown in (b). (c) and (d) Schrödinger cat state in the TM with Dpp~5
ffiffiffiffiffiffiffiffi
k=L

p
. We see that a

violation of over 0.9 is obtained. (e) and (f): Frequency entangled states produced in the SPDC process through pulsed pumping.

www.nature.com/scientificreports
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yj i~
ðð

F px,z,px,{,py,z,py,{

� �
p1,x ,p1,y ,p2,x ,p2,y

�� �
dp1,xdp1,ydp2,xdp2,y : ð12Þ

where pi6 5 p1,i 6 p2,i with i 5 x, y. By repeating the same calculations developed in
the main text and in (20), we have that the coincidences probability is:

I mx ,dx ; my ,dy

� 	
~

1
2
{

p2

2

ðð
F mxzpx,z,mxzpx,{,myzpy,z,myzpy,{

� 	
|

F� mx{px,z,mx{px,{,myzpy,z,my{py,{

� 	
e{2ipy,{dy e{2ipx,zdx dpy,{dpy,zdpx,{dpx,z:

ð13Þ

Thus, in the general case,

I mx ,dx; my ,dy

� 	
~

1
2
{

p2

2
W mx ,dx ,my ,dy

� 	
: ð14Þ

The first pair of coordinates in the equation above refer to the part of the Wigner
function that depends on the x, 1 variables and the second pair to the part of the
Wigner function associated to the y, 2 coordinates. Notice that, by using Dove
prisms, as suggested in the main text, one can change the significance of these
variables: the first pair will be associated to the x, 2 function and the second one to the
y, 1 one.

Interpretation of Eq. (14). State (16) can be completely non–separable. In this case,
we see from (5) that the Wigner function appearing in (14) reads:

Wr+,r\+ mr ,dr ,mr\ ,dr\

� �
~

ð
dpr+pr\+

mrzpr+,mr\zpr\+ %r+,r\+j mrzpr+,mr\zpr\+
�� �

e2idr pr+ e2idr\ pr\+ ,

ð15Þ

where %r+,r\+ is the reduced density matrix after the trace over variables r+ and
rH6, with r and rH being two spacial orthogonal coordinates depending on the
chosen reflection plane, that can be modified by using a Dove prism.

Separable cases. State (16) can be (partially) separable in several ways. We first
discuss the case where sum and difference coordinates can be separated but spatial
coordinates canont (as in (1) of the main text). The two photon two dimensional wave
function is given by:

yj i~
ðð

Fz p1,xzp2,x ; p1,yzp2,y
� �

F{ p1,x{p2,x ; p1,y{p2,y
� �

p1,x,p1,y ,p2,x ,p2,y

�� �
dp1,xdp1,ydp2,xdp2,y ,

ð16Þ

In this case, in Eq. (14), we have that

Wr+,r\+ mr,dr ,mr\ ,dr\

� �
~Wr+ mr ,drð ÞWr\+ mr\ ,dr\

� �
ð17Þ

with

Wr+ mr ,drð Þ~
ð

pr\+ mrzpr+ %r+ mrzpr+jjh ie2idr pr+ , ð18Þ

and analogously for the r\+ coordinate. The density matrix %r+ (%r\+) is the trace
over the rH6 (r+) coordinate. We see that in the case discussed in the main text, we
obtained the same expression as (17). However, when the state is separable in the
spatial coordinates as well, we obtain pure states in (18) instead of mixed ones. In this
case, the quantum state can be written as

yj i~
ðð

Fxz pxzð ÞFyz pyz
� �

Fx{ px{ð ÞFy{ py{
� �

p1,x ,p1,y ,p2,x ,p2,y

�� �
dp1,xdp1,ydp2,xdp2,y ,

ð19Þ

Finally, let’s discuss the case where states are separable in the spatial coordinate but
not in the 1 and 2 coordinates, i.e., they can be written in the form:

yj i~
ðð

Fx p1,xzp2,x ; p1,x{p2,xð ÞFy p1,yzp2,y ; p1,y{p2,y
� �

p1,x,p1,y ,p2,x ,p2,y

�� �
dp1,xdp1,ydp2,xdp2,y ,

ð20Þ

A particular case of this state is the one dimensional distribution, as for example, the
frequency states considered in the example discussed in the main text. In this case, Eq.
(17) still holds. However, its interpretation is different, since the density matrices %r+
(%r\+) are the trace over the r+ (rH6) coordinates.

In conclusion, we the modification proposed in the HOM experiment leads to the
Wigner function of biphoton state in different coordinates. These coordinates depend
on the properties and correlations existing between 1 and 2 coordinates of the
biphoton, as well as its spatial coordinates.
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