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Abstract Compartmentalization is a ubiquitous feature
of cellular function. In the nucleus, early observations
revealed a non-random spatial organization of the
genomewith a large-scale segregation between transcrip-
tionally active—euchromatin—and silenced—hetero-
chromatin—parts of the genome. Recent advances in
genome-wide mapping and imaging techniques have
strikingly improved the resolution at which nuclear
genome folding can be analyzed and have revealed a
multiscale spatial compartmentalization with increas-
ing evidences that such compartment may indeed
result from and participate to genome function.
Understanding the underlying mechanisms of
genome folding and in particular the link to gene
regulation requires a cross-disciplinary approach that
combines the new high-resolution techniques with
computational modeling of chromatin and chromo-
somes. In this perspective article, we first present
how the copolymer theoretical framework can
account for the genome compartmentalization. We
then suggest, in a second part, that compartments

may act as a Bnanoreactor,^ increasing the robustness
of either activation or repression by enhancing the
local concentration of regulators. We conclude with
the need to develop a new framework, namely the
Bliving chromatin^ model that will allow to explicitly
investigate the coupling between spatial compart-
mentalization and gene regulation.
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Abbreviations
GSC Gaussian self-consistent
TAD Topological associating domains

Introduction: a multiscale compartmentalization
of the genome

The compartmentalization of the genome is a clear
hallmark of eukaryotic nuclear organization. In its
pioneering work, almost a century ago, Emil Heitz
introduced the terms of Beuchromatin^ and
Bheterochromatin^ to account for the observed large-
scale spatial density fluctuations of nucleus composition
during interphase: as opposed to euchromatin, heterochro-
matin was referred to the chromosome Bmaterial^ that
remains densely stained during interphase (Brown 1966;
Frenster et al. 1963; Pueschel et al. 2016). Further
progresses in microscopy and immuno-staining/
labeling techniques confirmed that euchromatic and
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heterochromatic compartments correspond actually to
the aggregation of specialized functional chromatin:
euchromatin is gene rich, displays higher expression
level, and is generally more accessible and enriched
for histone marks specific for active genes. In contrast,
heterochromatin is more densely packed and harbors
less genes and more repressive histone marks (Allis
et al. 2007; Grewal and Jia 2007). Heterochromatin is
usually classified into two subtypes: constitutive and
facultative heterochromatin. Constitutive heterochroma-
tin contains highly repetitive DNA sequences such as
those found at (peri)centromeres and (sub)telomeres and
serves to stably silence transposable elements (hence
maintaining genome integrity). Facultative heterochro-
matin is typically associated with developmentally reg-
ulated genes whose chromatin structure may change in
response to cellular differentiation signals. In many
eukaryotes, from yeasts to plants and mammals, statis-
tical analysis of hundreds of chromatin markers have
identified only a small number of main chromatin types
(Filion et al. 2010; Roudier et al. 2011; Julienne et al.
2013; Ho et al. 2014), typically 4 or 5, covering the well-
known H3K9me2,3/HP1-like (SIR in budding yeast)
constitutive heterochromatin or the facultative Polycomb-
like heterochromatin but also a less-characterized ultra-
repressive heterochromatin, the so-called black or null
chromatin, enriched in genes that are expressed in few
tissues (Filion et al. 2010; Julienne et al. 2013; Ho et al.
2014).

Since the early studies of nuclear organization using
standard or electron microscopy, it is clear that hetero-
chromatin and euchromatin occupy different compart-
ments: repressed genes predominantly colocalize at the
nuclear periphery, around the nucleolus and at the
nuclear membrane, while the interior of nucleoplasm
being rather transcriptionally active (Meister et al.
2011). Developmental cell specification is globally
accompanied by a progressive spatial segregation of
chromatin: starting from open and permissive chromatin
organization in pluripotent ES cells to increasingly
repressive, compact, and segregated state in differenti-
ated cells (Meister et al. 2011; Zhu et al. 2013; Ahmed
et al. 2010). Such spatial localization is in part mediated
by interaction of heterochromatin with lamin proteins
that form the nuclear lamina meshwork at the inner
nuclear membrane (Kind and van Steensel 2014).
Deregulation of such interactions during specific differ-
entiation pathways may lead to global modification

of the spatial chromatin organization (Solovei et al.
2013; Chandra et al. 2012, 2015).

The recent application of next-generation sequencing
techniques to map chromatin states (Chip-seq,
RNA-seq, DamID, etc.) and pair-wise contacts (chro-
mosome conformation capture methods) (de Wit and de
Laat 2012) at the genome-wide level, as well as the
development of super-resolution microscopy (Boettiger
et al. 2016; Fabre et al. 2015; Wani et al. 2016), have
essentially provided a more refined view of the link
between genome compartmentalization and activity.
Hi-C and 5C experiments revealed that chromosomes
are segmented into kbp- to Mbp-long contact domains
(Nora et al. 2012; Dixon et al. 2012; Sexton et al. 2012),
the so-called topologically associating domains (TADs)
(Fig. 1a, b). TADs define genomic regions with higher
propensities to self-contact, accompanied with partial
contact insulation with neighboring TADs (Dixon et al.
2012) (Fig. 1b), thereby segmenting the 1D genome into
3D domains. This has been also recently confirmed by
immuno-labeling and super resolution microscopy
(Boettiger et al. 2016; Fabre et al. 2015; Wani et al.
2016; Wang et al. 2016). The presence of TADs or
similar 3D domains has been documented in most
species in which genome-wide 3C has been carried
out ranging from bacteria and yeasts to mammalian
cells and plants (Dekker and Heard 2015). Most
effective promoter-enhancer interactions occur inside
the same TAD (Dixon et al. 2012; Ghavi-Helm et al.
2014), suggesting that the TAD environment promotes
regulatory interactions while sufficiently preventing
putatively deleterious interactions between promoters
and enhancers located in neighboring TADs. Indeed,
deletion of a TAD boundary is sufficient to induce
ectopic new contacts with regulatory sequences in the
neighboring TAD and may lead to aberrant gene expres-
sion (Guo et al. 2015, Lupianez et al. 2015, Lupiáñez
et al. 2016, Franke et al. 2016). The TAD structure of the
genome is remarkably invariant over the course of
development, between different cell types or even
between species in conserved synteny blocks (Dixon
et al. 2015; Lonfat et al. 2014; Jin et al. 2013; Le Dily
et al. 2014). Experimental data revealed that the
epigenomic composition of TADs is rather uniform in
either active or inactive epigenetic marks (Rao et al.
2014; Sexton et al. 2012; Le Dily et al. 2014)
(Fig. 1b) while TAD boundaries are enriched in a
number of chromatin-binding proteins (like CTCF
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or cohesin) or in specific epigenomic states (Rao
et al. 2014; Sexton et al. 2012; Dixon et al. 2012;
Ho et al. 2014; Zhu et al. 2016; Fraser et al. 2015). As
illustrated in Fig. 1b, there is a remarkable match
between the spatial (3D) genomic compartmentaliza-
tion into TADs and the linear (1D) segmentation into
epigenomic domains: in Drosophila (and to a less
extent in human), sequences from the same
epigenomic domains tend to self-associate more fre-
quently. At the megabase pair (Mbp) scale, contact
maps display a cell type-specific checker board pat-
tern (Rao et al. 2014; Lieberman-Aiden et al. 2009;
Sexton et al. 2012) (Fig. 1a–c) enlightening a
multiscale organization with a rather complex pattern
of long-range contacts between TADs of the same
chromatin state (Fig. 1b) (Rao et al . 2014;
Lieberman-Aiden et al. 2009; Wang et al. 2016;
Fraser et al. 2015).

Altogether, these experimental results suggest that
the 1D heterogeneous epigenomic landscape is hier-
archically organized into distinct 3D nuclear compart-
ments. However, the molecular and physical mecha-
nisms responsible for such multiscale organization are
still unclear. In the recent years, polymer modeling of
chromatin folding has emerged as a powerful tool to
validate or suggest putative mechanisms and to get
new insights into the formation of nuclear compart-
ments. In particular, heteropolymer models that
explicitly consider the coupling between chromatin
structure and function have recently started to emerge
(Barbieri et al. 2012; Brackley et al. 2016; Jerabek
and Heermann 2012; Benedetti et al. 2014; Doyle
et al. 2014; Ganai et al. 2014; Jost et al. 2014;
Tark-Dame et al. 2014; Nazarov et al. 2015;
Sanborn et al. 2015; Ulianov et al. 2016; Fudenberg
et al. 2016; Tiana et al. 2016). In this perspective
article, we are going to focus on some recent ideas
(Jost et al. 2014; Olarte-Plata et al. 2016)
concerning the connection between epigenome, poly-
mer physics, and the formation of sub-Mbp domains
(TADs) inside chromosome territories. Then, we will
discuss the possibility that the genome compartmen-
talization might not be only the consequence of the
genome function (the epigenome) but might actually
serve as a Bnanoreactor^ enhancing robustness of
local biochemical reaction involved in gene regula-
tion and in particular in chromatin assembly and
maintenance.

From 1D to 3D: quantitative modeling
of (epi-)genome folding

Homopolymer modeling of Bgeneric^ folding properties

Several models based on polymer physics were suggested
in the last years, providing an interesting starting point to
understand the minimal requirements for the creation of
higher-order chromatin structures. Before the develop-
ment of a more elaborated model, it is instructive to
consider chromatin as a simple homogeneous polymer
(Fig. 2 left). This is obviously not the case, but such null
model may already provide fundamental insights
concerning the generic feature of higher-order chromatin
organization. By Bgeneric,^ we mean the sequence-
averaged conformational properties such as the average
evolution of the contact frequencies Pc (Fig. 3b) or
distance between two loci as a function of their distance
s in base pairs along the linear genome. In such homoge-
neous models, chromatin is described by a chain of
connected identical monomers (modeled by beads of
diameter l) whose dynamics is controlled by thermal
forces and excluded volume interactions (monomers
cannot overlap) and eventually by the rigidity of the
chromatin fiber or by non-specific interactions between
monomers.

More precisely, we consider a chain (a chromosome
or a piece of chromosome) with N monomers, each
monomer representing 10 kbp. Any spatial configura-
tion is fully characterized by the coordinates
X = {Xi = (xi, yi, zi)}i = 1 . . .N of the beads. The energy
associated to any conformation is given by the
Hamiltonian of the system, which can be written in a
very general form as H =Hchain +Hinteraction. The first
term Hchain =Hconnectivity +Hev accounts for chain con-
nectivity and excluded volume: (i) H connectivity ¼ k=2∑r2i;iþ1

with r2ij ¼ X i−X j
� � 2and k = 3kBT/l

2, (ii) the excluded vol-
ume interactions are modeled by Gaussian repulsive po-

tentials: Hve ¼ ∑Uevexp −r2ij=2r2e
� �

, with Uev = 10kBT and

re = 0.3l. The second term Hinteraction accounts for the
non-specific interactions between monomers:

H interaction ¼ ∑Unsexp −r2ij= 2r2o
� �� �

, with ro = 0.5l and Uns a

non-specific short-range interaction term.

There are different ways of investigating such model:
standard molecular dynamics (Rosa and Everaers 2008)
or kinetic Monte-Carlo simulations (Olarte-Plata et al.
2016), Gaussian self-consistent (GSC) approximation
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(Ramalho et al. 2013; Jost et al. 2014), etc. The qualita-
tive behavior of the system is independent of the chosen
method. In the following, we will exclusively present

results based on the GSC approach that has been
described in details by us in Jost et al. (2014). Briefly,
the idea is to approximate at each time-step the Btrue^
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distribution of probability P(X = {Xi}, t) for a given con-
formation X by amultivariate Gaussian distribution. Such
distributions are fully characterized by the covariance
matrix C or equivalently by the squared distance matrix
D with Dij = 1/3〈(Xi − Xj)

2〉 =Cii +Cjj − 2Cij (where •
stands for average over the distribution P). This approx-
imation leads to a self-consistent equation for D at
steady state: 0 = 4kBT − ∑ (Jik − Jjk)(Dik −Djk), where J
is a non-linear function of D and of the model parame-
ters. This equation can be efficiently solved by iterative
methods (Haddad 2016). Then, from every steady-state
distance matrix D, it is possible to derive all the statis-
tical properties of the chain (contact map, radius of
gyration Rg etc.) as well as generate representative 3D
configurations.

As shown in Fig. 3, the GSC approach applied to the
classical homopolymer model faithfully recovers the
basic folding features of a single chain: (1) for non-

specific repulsion (Uns > 0) and weak attraction, the
chain behaves as a self-avoiding walk with Pc ∝ s−2

and extended coil configurations (black in Fig. 3a, c);
(2) when increasing the non-specific attraction Uns (as a
proxy for modeling the effect of a confinement for
example), there is a critical value Uc

ns∼−2:2kBT where
the chain experiments a collapse transition as revealed
by the drop of the radius of gyration (Fig. 3d) toward a
compact globular state for Uns < Uc

ns, characterized by a
constant contact probability above a typical small
distance (green in Fig. 3a, c). At the transition (red in
Fig. 3a, c), the chain is Gaussian and Pc(s) ∝ s−3/2 over a
large range. Such critical regime provides a rather good
description of the generic properties of small genomes
like budding yeast (Wong et al. 2012; Kimura et al.
2013; Avşaroğlu et al. 2014).

In higher organisms such as flies, humans, or mice,
having long chromosomes and large-scale organization

10 -2 10 -1 10 0 10 1

s (Mb)

10 -2 10 -1 10 0

s (Mb)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

P
c

Zoom ÷ 5

s-1

s-1
s-0.6

s-1

s-1.8

s0

s-1

s-1.5

s-1.5

0

50

100

150

(R
g/

l)2

-3 -2
Uns

0

50

(R
g/

l)2

Uns

0 20 40Uc
ns

s=|i-j| (Mb)

-5

0

U
cr

um
pl

in
g(

|i-
j|) Uc

ns

0 1 2

ca

b

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

d

P
c

e

Fig. 3 Homopolymer as a model for generic folding properties. a
Theoretical Pc(s) computed from the GSC approach when considering
a homopolymer (N = 1000) with Uns = − 1.9 kBT (black),Uns ¼ Uc

ns¼ −2:2kBT (red), Uns = − 2.9kBT (green). b Sequence-averaged
experimental contact probability computed from Hi-C experi-
ments performed at late Drosophila embryonic stage (Sexton
et al. 2012) (dark blue); fluctuations are represented by the error
bars (light blue). Theoretical Pc(s) for the homopolymer model

with the «crumpling» non-specific interaction potential
Ucrumpling(i, j) (see text) and Uns = 0 (magenta). c Typical configu-
rations associated to the models reported in a and b, same color

code. d R2
g=l

2vs Uns, where Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2N2

� �q
∑Dij is the radius

of gyration. The vertical dashed line indicates the collapse transi-
tion atUc

ns ¼ −2:2kBT . Inset: zoom around the collapse transition. e
Crumpling potential: Ucrumpling(i, j) =Ucrumpling(s = |j− i|)

Polymer models of formation and function of nuclear compartment 39



is characterized by contact frequencies that evolve as
Pc(s) ∝ s−1(Fig. 3b) for (100kbp < s < 10 Mbp for flies,
500 kbp < s < 5Mbp for mammals) and by the existence
of chromosome territories, i.e., by weak chromosome
intermingling (Lieberman-Aiden et al. 2009; Dixon
et al. 2012; Sexton et al. 2012). It has been shown that
such features are compatible with unknotted self-similar
polymeric conformations, the so-called fractal or crum-
pled globule models (Lieberman-Aiden et al. 2009;
Grosberg et al. 1993; Mirny 2011), which are likely to
result from the out-of-equilibrium folding of long poly-
mers at high volumic density (Rosa and Everaers 2008;
Bohn and Heermann 2010; Halverson et al. 2014; Gürsoy
et al. 2014). Due to chain non-crossability, the relaxation
time to the equilibrium scales as N3 such that long chro-
mosomes retain the partial memory of the initial
postmitotic (putatively knot-free) state for a very long time,
often much longer than a typical cell cycle. For example in
Drosophila, a series of FISH experiments performed at
different developmental stages clearly revealed a long
persistence of the initial Rabl-like postmitotic organization
with a progressive loss after several hours (Dernburg et al.
1996; Csink and Henikoff 1998; Lowenstein et al. 2004;
Harmon and Sedat 2005).

Within the GSC approximation, it is not possible to
account for the crumpling of chromosome with the
simple model introduced above. In order to account
for this generic behavior of long chromosome, we
introduce a non-specific effective pairwise attractive

contribution to H inter ¼ ∑U crumpling i; jð Þexp −r2ij= 2r2o
� �� �

.

Ucrumpling(i, j) only depends on the genomic distance
s = |j − i| (Fig. 3e) and was fitted to exactly provide in
our GSC framework a stationary state with P(s) ∝ s−1 in
the absence of other non-specific contributions (Uns = 0)
(magenta in Fig. 3b, c). Interestingly, for large svalues,
Ucrumpling(s) is very close to the critical strength of the
non-specific interaction (Uc

ns) where the collapse transi-
tion occurs in the previously described homopolymer
model (no crumpling, Fig. 3a, d). This means that the
crumpling potential drives the system close to
the collapse transition and that small perturbations around
the crumpled state (by adding a non-zero Uns term) may
lead to coiled (Uns> 0) or globular (Uns< 0) configurations.

Forming the compartments: the copolymer framework

Homopolymer models give a rather good description of
the general large-scale organization of chromatin.

However, they obviously fail to account for the
multiscale compartmentalization into TADs or into
higher hierarchies that are likely to depend on the local
genomic or epigenomic composition. Here, we discuss
how heteropolymer models accounting for such speci-
ficities may improve the description of chromatin
folding.

Chromatin is now modeled as a block copolymer
where blocks correspond to consecutive monomers with
an identical chromatin state (Fig. 2 right). In addition to the
non-specific monomer-monomer attraction Uns and the
crumpling potential Ucrumpling, we thus introduce a
specific attraction term: H interaction ¼ ∑Us ei; e j

� �
exp −r2ij= 2r2o

� �� �

in Hinter that depends on the chromatin states ei and ei of
monomers i and j. To simplify, we assume that only
monomers of the same state interact with each other and
that the strength of interaction is the same for each state.
As already noticed in Jost et al. (2014), such
epigenomic-driven attractions reflect the ability of some
proteins that compose the chromatin state to oligomerize
and thus potentially bridge two distant genomic sites of
the same chromatin state (Canzio et al. 2013, Isono et al.
2013, Hiragami-Hamada et al. 2016).

As an illustration of the copolymer framework with
the GSC approach, we consider a genomic region of
chromosome 3R whose contact map and epigenomic
segmentation are reported in Fig. 1c. This region is
mainly composed of two types of epigenomic domains:
active (Bred^ chromatin) and inactive (Bblack^ chroma-
tin). By varying the strength of non-specific and specific
interactions, the systems exhibit a variety of different
phases (Fig. 4A) (Jost et al. 2014; Olarte-Plata et al.
2016). For weak interactions, configurations are charac-
teristic of an unstructured, coil phase. For strong attrac-
tive interactions, a microphase separation is observed
and large portions of monomers of the same state occu-
pied separate spatial compartments leading to strong
checkerboard patterns (Fig. 4A, B). In the intermediate
regime, the systems show a continuous crossover
between the coil and the microphase regimes. We
observe the partial internal collapse of blocks into
TAD-like domains, followed by the appearance of weak
long-range stochastic interactions between TADs of the
same chromatin state. The corresponding 3D compart-
ments may contain several TADs but are transient and
only weakly collapsed. As the interactions becomemore
attractive, the blocks experience an internal theta-
collapse transition to an equilibrium globule and
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long-range interactions become more and more impor-
tant, leading to the formation of long-lived larger 3D
compartments. The precise shapes of the phase diagram,
as well as the behavior of individual blocks, are strongly
dependent on the underlying pattern of chromatin states
(size of blocks, number of different states, etc.) (Jost
et al. 2014; Olarte-Plata et al. 2016). For example,
larger blocks will start collapsing at weaker interaction
strength due to stronger collective effects (Olarte-Plata
et al. 2016).

As shown in Fig. 4B, experimental HiC data are
compatible with the intermediate regime where
chromatin blocks have partially collapsed into TADs
and where blocks of the same state transiently merge
together into dynamic 3D compartments resulting in the
characteristic weak checkerboard pattern observed in HiC
maps.This observation is consistentwithFISHmicros-
copyexperimentsofPolycombbodies,spatialcompart-
ments associated with facultative heterochromatin,
showing that such bodies are indeed highly dynamic
inside the fly nucleus (Cheutin and Cavalli 2012) but also
in human (Vieux-Rochas et al. 2015). In this intermediate
regime, prediction of the time-evolution of the contact

maps shows that TADs form quickly first, followed by
the slow formation of long-range interaction (Jost et al.
2014). This is again in agreement with HiC data on
synchronized cells along the cell cycle (Naumova et al.
2013). Another property of systems in this regime is the
internal compaction of TADs that increases with the TAD
size for a given interaction strength. In Drosophila, this
simple prediction agrees nicely with the measurements on
heterochromatic TADs (Olarte-Plata et al. 2016;
Boettiger et al. 2016). Interestingly, for active, euchro-
matic domains, the compaction does not depend on the
size, which again point out that active chromatin only
weakly interacts with itself. This may reflect a distinct
local mode of interaction between chromatin types: active
chromatin rather organizes locally via pairwise short-
range bridging between discrete specific genomic sites
while heterochromatinmay interactmore continuously
via clusteringofmultiple chromatin loci.This is consis-
tent with more homogeneous internal contact patterns
observed for inactive domain and more complex interac-
tome profiles for active domains (Sofueva et al. 2013).

It is interesting to note that the intermediate regime—
compatible with experiments—arises from finite-size
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effect (Care et al. 2015; Cortini et al. 2016) and should
not be observed for long block copolymer at equilibrium.
Is it paradoxical, knowing that chromosomes are actually
very long polymers? Here, we have to remind us one of
the main lessons from Rosa and Everaers (2008): HiC
data at large scales are compatible with the out-
of-equilibrium decondensation of a topologically
constrained long polymer. This suggests that partial equi-
librium or stationary state is only achieved locally and
that at large scale, dynamics is so slow that only few
configurations might be explored, possibly leading to
finite-size effects at smaller scale. Hence, local
equilibrium finite-size effects might emerge from the
out-of-equilibrium slow dynamics of a very long
polymer.

Recent works have shown that chromatin folding
in higher vertebrates like mammals can also be well
described by copolymer models using genomic/
epigenomic contact interactions (Brackley et al.
2016; Chiariello et al. 2016; Di Pierro et al. 2016).
However, the observation that strong loops detected
between TAD boundaries occur mainly between
convergent CTCF sites (Dowen et al. 2014, Rao
et al. 2014; Vietri Rudan et al. 2015) is incompatible
with TAD formation mechanisms based only on
short-range interactions (Fudenberg et al. 2016;
Sanborn et al. 2015). To account for that, it was
recently proposed that TAD formation in mammals
might be driven by a loop extrusion mechanism
(Fudenberg et al. 2016; Sanborn et al. 2015):
extruder factors, putatively cohesin rings, bind to
chromatin and extrude sequentially large DNA
loops until unbinding or pausing at CTCF-bound
sites having the proper orientation. Development of
polymer models combining loop extrusion and
epigenomic-driven interactions would allow under-
standing more globally chromatin folding in mammals
from TAD formation to inter-TAD long-range
interactions.

Toward a predictive model: GSC-based inference
of epigenome-specific interaction parameters

The copolymer framework associated with the self-
consistent Gaussian approximation may represent
an efficient formalism to extract from the available
experimental data the effective genomic and

epigenomic interactions between chromatin loci.
A promising outcome of such inference process
would be a powerful model able to predict the
chromatin organization in various conditions,
allowing investigating in silico changes in TAD
formations and long-range contacts when altering
the epigenome. This may provide a very interest-
ing framework for understanding how modifica-
tions of the epigenome during development or
perturbations associated to diseases could lead to
cell phenotypic variations via large-scale chromatin
reorganization.

For that purpose, we have developed a scheme
that allows inferring the monomer-monomer-specific
interactions matrix Us(i, j) that describes at best the
experimental contact maps (Fig. 5 and legend). To
reduce the number of parameters and to strengthen
the robustness of the inference regarding the
presence of strong uncertainties in the experimental
data, we apply the method at the TAD level,
assuming that monomers within the same TAD
interact similarly (Us(i, j) =Us(i′, j′) if i and i′ are in
the same TAD and idem for for j and j′). Figure 5b
shows that this approximation leads anyway to a
very good match with experimental map.

We applied the inference scheme to the whole
Drosophila genome and asked to what extent the
inferred specific attractions were dependent on the local
chromatin states. In Fig. 5c, we plot the distribution of
Us values obtained for TADs as a function of their
main epigenomic state. As expected, heterochromatic
states (PcG, HP1, and null states) self-attract more
(−0.2kT < Us < − 0.6kT) than do active chromatin
(Us ≈ 0). This is again coherent with the observations
that repressed genes are embedded in more compact
environments.

These preliminary results pave the way to the
development of quantitative and predictive descrip-
tions of chromatin folding based on epigenomic
information in higher eukaryotes. Recently, similar
attempts to parameterize copolymer-like models
based on human HiC-data (Giorgetti et al. 2014;
Brackley et al. 2016; Chiariello et al. 2016; Di
Pierro et al. 2016) have also led to quantitative
and predictive descriptions of chromatin folding
however showing a weaker association between
epigenomic data and specific attractions.
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From 3D to 1D: spatial chromatin compartments
and the nanoreactor hypothesis

Functional importance of spatial compartments:
increasing the local concentration

As discussed before, the spatial organization of chroma-
tin results in part from the clustering of epigenomic

chromatin states but a still open question is whether this
spatial organization is only a byproduct of (epi-) genome
activity or is also participating in the regulation of the
epigenome assembly and more generally in the regula-
tion of the genome function. The basic concept behind
this structural/functional coupling is the increase of local
concentration of regulatory proteins due to spatial
colocalization. This paradigm has been actually
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evidenced and formalized for many years in the context
of the well-known lac operon system (Oehler et al.
1994, 2006, Oehler and Müller-Hill 2010; Vilar and
Leibler 2003). Molecular crowding and spatial confine-
ment increase the binding affinities of regulators (acti-
vators and repressors) to their chromatin/DNA-targeted
regulatory sequences (ibid). In some sense, the nuclear
compartments would correspond to biochemical
nanoreactors where a few number of reacting biomole-
cules are colocalized in space, favoring their biochemi-
cal (co)activity on chromatin and in fine on DNA.

In the lac system, the presence of few additional
dispersed recruitment sequences (operators) and the
ability of the lac-repressor to oligomerize and enhance
the association of a repressor to the effective
Brepressing^ site (Vilar and Leibler 2003). In eukary-
otes, similar strategies are acting at the level of
enhancer-promoter modules where the action at
Bdistance^ of the enhancer sequences are conditioned to
their physical contacts with the promoter: as for the lac
system, distal enhancer sequences might actually act as
secondary recruitment sequences for TFs that, by asso-
ciating with mediator and other architectural proteins,
can promote recruitment and stabilization of the tran-
scriptional machinery at promoters via long-range
looping and clustering (Spitz 2016; Liu et al. 2014).

Along the same line, in Drosophila, PcG-mediated
gene repression involves the spatial colocalization of the
silencer elements PREs into 3D compartments, the
so-called PcG bodies, mediated by the Polycomb
proteins (Wani et al. 2016; Lanzuolo and Orlando
2007; Bantignies et al. 2011; Cheutin and Cavalli
2012). Such clustering operates Bin cis,^ i.e., within an
epigenomic domains, but also Bin trans^ between distant
domains as for example between the ANT-C and BX-C
domains (white circle in Fig. 1a) where the level of
repression has been directly correlated to the level of
clustering between PcG domains (Bantignies et al. 2011).
Same colocalizationmechanisms of PcG-repressed genes
are also observed in mammals (Vieux-Rochas et al.
2015). In budding yeast, repression by the SIR system
has been linked to spatial clustering and perinuclear
anchoring of SIR-bound telomeres at the nuclear
membrane (Meister and Taddei 2013). And, a similar
coupling between clustering and repression at the nuclear
envelope also operates in higher eukaryotes such as
worms and mammals (Meister and Taddei 2013), which
has been recently remarkably evidenced in the

chromosome-wide inactivation process of the X chromo-
some (Chen et al. 2016).

The mechanisms that drive this nanoreactor forma-
tion has been discussed before: the polymeric nature of
chromatin induces a Bnatural^ confinement since
dispersed sequences on the same chain have a greater
probability to colocalize due to chain looping. Every
process that promotes this looping probability also
enhances local confinement. In particular, the
multimerization of regulatory DNA-binding proteins
can promote physical bridging between enhancer and
promoter and between silencers (Fig. 6A). Additionally,
insulator proteins, such as dCTCF associated with
cohesins, may contribute to the structural but also selec-
tive confinement of active/repressive modules by
forming Binsulated neighborhood^ (Dowen et al. 2014)
(Fig. 6A). At larger scale, TADs that can be either con-
stitutively or facultatively formed during development
contribute also to the confinement of the Bsub-TADs^
modules, providing a Bbasal^ (large-scale) level of
confinement and of selectivity that are then finer-tuned
at lower scale within sub-TADsmodules (LeDily et al.
2014). Implication of TADs in regulating transcription
has been also recently proposed in the process of mam-
malianX inactivation (Tiana et al. 2016;Giorgetti et al.
2014): consistently with this nanoreactor hypothesis, the
expression of the Tsix transcript was positively
correlated with the compaction level of its embedding
TAD. And more generally, recent studies have shown
that perturbing TAD integrity may indeed lead to tran-
scriptional deregulation and diseases (Guo et al. 2015;
Lupianez et al. 2015, Lupiáñez et al. 2016; Flavahan
et al. 2016; Hnisz et al. 2016, Franke et al. 2016).

The self-assembly of structural and functional
compartments: the Bliving chromatin^ framework

As pointed before, active and inactive structural domains
are also often characterized by a well-defined
epigenomic state. These local chromatin states are
characterized by a distribution of specific chromatin
marks that may favor the selective chromatin/DNA
binding of regulatory proteins. These epigenomic
marks are deposited and removed by specific enzy-
matic complexes (e.g., p300, PRC2, Su(Var)3–9,
Sir2, etc.) that can associate with the mark they
catalyze (H3/4KAc, H3K27me3, H3K9me2/3) and
that are often associated with architectural proteins
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(TFs, PRC1, HP1, Sir3) that promote bridging
between distant sites and thus compartmentalization.
Such Breader-writer/eraser-bridger^ mechanism
enables the mark and thus the chromatin state to
spread once nucleated at some specific genomic loci
(Beisel and Paro 2011; Simon and Kingston 2013; Zhang
et al. 2015; Chen and Dent 2014; Soshnev et al. 2016). The
crucial point here is that spreadingmight operate not only in
cis but also in trans to any chromatin fragment that are in
the spatial vicinity. This would introduce a positive
feedback between the local chromatin state dynamics
and the global compaction level: within a given domain,

the compaction would enhance the Bspreading^ of the
chromatin state over the entire domain which in return
would enhance global compaction (Fig. 6B). Some
experiments have pointed out the possible role of Blong-
range^ spreading in trans in maintaining epigenomic
domains (Obersriebnig et al. 2016). In the dosage
compensation mechanism, experiments suggest that the
global compaction indeedmay influence the establish-
ment of the inactivated (in mammals), downregulated (in
Caenorhabditis elegans) and upregulated (in Drosophila)
states by long-range spreading of H3K27me3/PRC1, Ac,
and DCC/H4K20me1 from initiation sites (Ferrari et al.
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Fig. 6 Self-assembly of nanoreactors and the living chromatin
model. A The spatial confinement of genomic regulatory
sequences such as enhancers (red segments) or silencers (blue
segments) result in the increase of the Blocal^ concentration of
activators (red rectangles) or repressors (blue rectangles) that are
targeted to these sequences; the formation of these active or
repressive compartments can result from the self-association
between the bound regulators and/or by independent mechanisms
such as loop extrusion.B The ability of regulators to both associate
with given chromatin markers (blue dots) and propagate these
markers in cis and in trans (light blue arrows) provide a robust
way of maintaining the functional compartments. C The living
chromatin model is a model that combines the copolymer

framework (self-attraction between monomer of same chromatin
state) and the epigenome dynamics framework (autocatalytic
conversion between states); here, as in D, we consider a simple
case with two states: repressive (−1) (blue) or active (+1) (red). D
Phase diagram of the living chromatin model for a small genomic
region as function of the epigenomic-spreading strength Je and of
the specific interaction strength Ji. The black line separates a
region where no global epigenomic state can be defined (a) and
a region where a coherent active or inactive state is stabilized (b).
For several points of the diagram, we plot the predicted contact
probability map (right) and the probability distribution of the
global epigenomic state (left) defined as the mean value of ei in
the region (∑ei)/N
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2014). In the mammalian system, some further evidence
of the dynamic coupling between epigenome assembly
and compaction has also been recently proposed
(EngreitzJ et al. 2013). Similar structural coupling might
also drive the formation of hyperacetylated mega-
domains as recently observed in NUT midline carcinoma
(Alekseyenko et al. 2015).

Theoretical investigations with quantitative predic-
tion of how confinement and spatial folding may affect
expression and epigenomic regulation have been mainly
developed in the context of chromatin/DNA looping
(Vilar and Leibler 2003; Doyle et al. 2014; Liu et al.
2016). However, they actually mainly focused on the
effect of one single loop, and further modeling of
enhancer/promoter communication in a chromosomal
context such as in TADs or higher order compartments
will be needed to better understand the functional role of
such compartments. Recent works on the computational
modeling of the epigenome assembly based on the
reader-writer properties have shown how an efficient
establishment and a robust maintenance of epigenomic
domain indeed require long-range spreading (Angel
et al. 2011; Dodd et al. 2007; Jost 2014); however,
these models are essentially 1D models with an ad hoc
introduction of confinement and with no feedback effect
of histone marks/chromatin state on the level of
confinement.

We, and other groups (Broederz et al. 2014;
Michieletto et al. 2016), are currently working on the
development of a proper theoretical framework that
explicitly couples the spreading of marks and the fold-
ing of the chromatin. We propose to refer to such model
as the living chromatin model which is basically a
copolymer model as presented in the previous section
but with the local monomer states that can switch
between different states according to basic transition
rules that will depend on the spatial folding of the chain
(Fig. 6C). In a simplified version of such approach, the
local epigenomic state ei of monomer i is allowed to
fluctuate between two states (−1 for repressive and +1
for active). The reader-writer mechanism (in cis and in
trans) imposes that −1 (resp. +1) monomers Baim^ to
propagate their states to their 3D neighborhood. This is
modeled by assuming that the dynamics of the epige-
nome is driven by the Ising-like Hamiltonian
Hepi = − (Je/N) ∑ δi , jeiej with Je(>0) the strength of the
epigenomic spreading and δi , j= 1 (resp.0) if monomers i
and j are (resp. not) spatially in contact. The dynamics of

the (co)polymer chain is driven by specific interactions
that depend on the local epigenomic landscape

H inter ¼ −∑J i eie j þ 1
� �

=2exp −r2ij= 2r2o
� �� �

with Ji(>0)

the strength of interaction between monomers of the
same epigenomic state. Coupling the GSC approach
(including the crumpling effect) to a mean-field approx-
imation for the epigenome dynamics allows to
efficiently study the system for any parameters Je and
Ji (Fig. 6D). Within this framework, we ask if it is
possible to establish and maintain a coherent
epigenomic state in an insulated genomic region
(N = 100), i.e., with almost all the monomers in the
same ei at the same time. For weak spreading, the
reader-writer mechanism is not strong enough to main-
tain a stable coherent state. For a given Ji, as Je is
increased, the system observes a phase transition and
fluctuates stochastically between a coherent active or
inactive state, the residence time in each macrostate
increasing exponentially with Je (Jost 2014). This
illustrates that long-range spreading (via the 3D poly-
meric structure) between distant loci along the linear
genome is a key factor to epigenome maintenance.
Strikingly, the position of the critical point is a decreas-
ing function of Ji. This implies that introducing specific
epigenomic-associated contact interactions allows the
quick establishment and the strong stabilization of a
coherent state at weaker, easier to control, spreading
efficiency. Indeed, 3D concentration of reader-writer-
bridger complexes is locally increased leading to
enhanced cooperative effects.

In vivo, the situation is clearly more complex.
Initiation (nucleation) for de novo activation/repression
may be performed via the primary targeting of
activating/silencing complexes to specific genomic sites
mediated by DNA-binding proteins (or by non-coding
RNAs) which is then followed by the coupled self-
assembly of the chromatin and structural state
(Noordermeer et al. 2011; Cheutin and Cavalli 2012) that
further enhances activation/repression and perpetuates the
active/repressive environment throughout cell division.
This may correspond to a conversion from (i) a Bhard-
wired^ targeting of regulators to few discrete recruitment
and bridging genomic sites at the induction stage (in
response to developmental or environmental cues), to (ii)
a Bsoft-wired^ targeting of regulators with weaker interac-
tions but associated to a larger number of spatially concen-
tratedsecondarysitesat themaintenancestage(nomore

46 Haddad N. et al.



or lower cues). In that context, the structural/functional
nuclear compartments would correspond to the self-
assemblyofarobustnanoreactorwherethebiochemical
reactions (DNA/chromatin binding of regulators,
multimerization of regulators, spreading of marks,
transcription, replication, etc.) would both depend on
and induce (reinforce) their spatial confinement. Testing
this hypothesis of (self-assembled) nanoreactor will
require dedicated experimental and theoretical investi-
gations. And, besides the need to further improve the
modeling of structural properties of chromosomes at
all scales, and in particular to develop dynamical
model of spatial organization, we stress that it might
be the time for physicists to engage in the quantita-
tive modeling of the functional consequence of
spatial compartmentalization.
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