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Abstract: Ultraviolet (UV) radiation has been considered a deleterious agent that living organisms
must avoid. However, many of the acclimation changes elicited by UV induce a wide range of
positive effects in plant physiology through the elicitation of secondary antioxidant metabolites
and natural defenses. Therefore, this fact has changed the original UV conception as a germicide
and potentially damaging agent, leading to the concept that it is worthy of application in harvested
commodities to take advantage of its beneficial responses. Four decades have already passed since
postharvest UV radiation applications began to be studied. During this time, UV treatments have
been successfully evaluated for different purposes, including the selection of raw materials, the
control of postharvest diseases and human pathogens, the elicitation of nutraceutical compounds,
the modulation of ripening and senescence, and the induction of cross-stress tolerance. Besides
the microbicide use of UV radiation, the effect that has received most attention is the elicitation
of bioactive compounds as a defense mechanism. UV treatments have been shown to induce the
accumulation of phytochemicals, including ascorbic acid, carotenoids, glucosinolates, and, more
frequently, phenolic compounds. The nature and extent of this elicitation have been reported to
depend on several factors, including the product type, maturity, cultivar, UV spectral region, dose,
intensity, and radiation exposure pattern. Even though in recent years we have greatly increased
our understanding of UV technology, some major issues still need to be addressed. These include
defining the operational conditions to maximize UV radiation efficacy, reducing treatment times,
and ensuring even radiation exposure, especially under realistic processing conditions. This will
make UV treatments move beyond their status as an emerging technology and boost their adoption
by industry.

Keywords: UV; UVB; UVC; UV illumination; photochemical treatments; abiotic stress; antioxidants;
phytochemicals; quality; food safety

1. Introduction

Ultraviolet (UV) radiation comprises the region of the electromagnetic spectrum (EM)
between visible light and X-rays (100–400 nm) [1]. It was discovered in 1801 by Johann
Wilhelm Ritter, who observed that radiation outside the violet end of the visible solar
spectrum could decompose silver chloride [2]. Seven decades later, it was discovered that
UV light could prevent microbial growth [3].

The UV region is frequently divided into three sub-regions, UVA (315–400 nm), UVB
(280–315 nm), and UVC (100—280 nm) (Figure 1), which are used for CIE and ISO stan-
dards [4]. Further sub categorization has been performed by some authors to discriminate
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within the UVC region vacuum UV (100 and 200 nm) with stronger ionizing power, but
less penetration [5–7]. Based on the known mechanisms of plant photoreception, the UVA
region has been split into short-UVA (315–350 nm) and long-UVA (350–400) [8].
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2. UV Radiation Sources

Commercially available UV sources include mercury lamps (low- and medium-
pressure), pulsed light (PL), and light-emitting diodes (LEDs) [9]. Although the market has
become highly dynamic with the improvement of LEDs, it is still dominated by mercury
lamps. These sources are based on the excitation of gas discharges and feature several
pitfalls, including a relatively high voltage requirement to operate and a substantial amount
of heat released [10]. However, one advantage is that, especially with medium-pressure Hg
lamps, high output powers can be achieved.

Xenon inert-gas lamps were introduced during the late 1970s in Japan, leading to the
development of sterilizing technology, called PureBright® [11]. PL treatments consist in
the exposure of fresh produce to polychromatic light (200–1100 nm), including ultraviolet
(180–400 nm), visible (400–700 nm), and near-infrared (700–1100 nm) wavelengths, in the
form of intense, but short, pulses (1 µs–0.1 s) [12,13].

Light-emitting diodes (LEDs) are based on the junction of two-terminal semiconduc-
tors (p-n junction) converting electricity into radiation. Depending on the materials out
of which the semiconductors are made, the LEDs emit at different wavelengths [14]. The
first LEDs, in the early 1960s, emitted infrared (IR) light. Over the years, it became possible
to develop LEDs of shorter wavelengths. UV LEDs have several advantages relative to
mercury lamps, including their lack of requirement for warming time, their lack of mercury,
their compactness, their robustness (with UV LEDs, no protection against glass breakage
is necessary, and mobile use is possible), and their large wavelength diversity (210 nm to
360 nm by varying the aluminum content in the AlGaN quantum wells) [10]. In addition,
they have lower electromagnetic interference, are easily adaptable for fast modulation in
terms of radiation intensity and pulse duration, present narrow-band emission without
spurious peaks, and require low maintenance [15]. Two important advantages of LEDs are
their long lifespan (expected lifetimes of many 10,000 s of h) and low heat emission [16].
The Achilles heel of UV LEDs is their relatively low quantum efficiency [17]. However, in
recent years, by reducing dislocations and defects and improving semiconductor doping
and light extraction, their quantum efficiency has been increased [18].

3. Uses in the Food Industry

UV technology has been applied in the food industry for many different purposes
(Figure 2).

Surface sterilization: One of the most common uses of germicide UVC lamps is as
environmental sterilizers in foodstuffs filling equipment, conveyor belts, containers, and
working surfaces [19,20]. Sterilizing UV lamps are frequently used for aseptic packing, a
technology that is expected to continue growing in the coming years [21,22].
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Fluid disinfection: UV radiation in the C zone has been used for water disinfection
since 1909. It has been also applied for juice pasteurization [23]. UVC does not generate
undesirable by-products, but on the other hand, it does not provide residual disinfection
capacity [24]. It has been applied to reduce chlorine use.

Air treatment: Air disinfection can be achieved through different strategies, ranging
from irradiating just the air in the upper region to treating all air, either when the room
is empty or during circulation through air-conditioning systems [25]. The fact that UVC
relatively low radiation doses (0.1–0.3 kJ m−2 for 2 log cycle reductions) can inactivate
human SARS-coronaviruses has increased the recent interest in using UV radiation for
air treatment [26–28].

Waste treatment: Another application of UV radiation has been the elimination of
undesirable volatile organic compounds (VOCs) in industrial exhausts [29,30]. This has
been achieved through advanced oxidation processes combining UV radiation with photo-
catalysts, such as TiO2 [9,31]. This strategy generates highly oxidative environments, which
facilitates the degradation of unwanted molecules [32].

Insect trapping: For a long time, it has been known that UV radiation can attract
insects; thus, it is used for trapping purposes [33]. The most common insect light traps use
“black-light” fluorescent tubes emitting ultraviolet (UVA) as an insect attractant in both pre
and postharvest [34]. Furthermore, insects may be trapped in glued materials or killed in
electrically charged grids [35].

4. Uses in Fruits and Vegetables Postharvest

UV technology may be of interest for the postharvest treatment of fruits and vegetables
for many different purposes [36,37] (Figure 3).

Raw material selection: The presence of skin defects or wounding is a main factor
affecting consumer acceptability and purchase decisions. Consequently, one of the most
intensive activities of packinghouses is to separate fruit with these defects. Normally,
this is performed through visual inspection or machine optical sorting when the fruit is
illuminated under proper white light [38]. In citrus, the use of UV lamps during initial
classification has may facilitate the identification of physical damages. UVA “black light”
illuminates fruit, showing that small peel cracks fluoresce intensely, allowing segregation
at early classification steps [39]. The conveyor belts transporting the fruit cross these rooms,
where the operators must wear protective glasses and gloves.
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Control of spoilage and pathogenic microorganisms: Relying on UVC germicide prop-
erties, a large body of research evaluated this technology in fruits and vegetables to control
surface microorganisms [40]. Microbial death induced by UVC has been attributed to DNA
mutations, including the formation of cyclobutyl-type dimers (pyrimidine dimers) and
pyrimidine adducts [41,42]. Furthermore, the overproduction of reactive oxygen species
(ROS) induced by UV radiation can oxidize membrane lipids and inhibit critical cellular
enzymes [43]. Most enzymes that contain aromatic amino acids are likely to be sensitive to
UV radiation to some extent due to their absorption in this region. Due to its higher energy,
UVC is the most effective at killing microorganisms [44]. UV radiation is lethal to bacteria,
viruses, protozoa, and fungi [45]. Successive studies showed that UV radiation is more
efficient for inactivating Gram-negative than Gram-positive bacteria. This effect has been
associated with the difference in the cell wall peptidoglycan structure, which can affect
radiation penetration [46]. Furthermore, eukaryotic organisms are normally more resistant
to UV than bacteria due to their higher cell size, complexity, and genetic redundancy [47].
The relatively high yeast resistance to UV radiation has also been associated with lower
DNA pyrimidine content relative to bacteria, which may increase the likelihood of photons
being absorbed by other compounds [48].

Several works have studied the impact of postharvest pre-storage single exposure
on most common postharvest fungal pathogens, including Rhizopus, Penicillum digitatum,
P. expansum and Penicillum italicum, Monilinia sp., Botrytis cinerea, Colletrichcum sp. and
Fusarium sp. among others [49,50], with positive effects with regards to reducing disease
incidence and severity. Direct germicide action compromising microbial viability has been
frequently reported [51], but less severe effects, such as the reduced germination speed
of viable conidia, have also been observed [52]. With regards to human pathogens, the
direct UV irradiation of fresh produce reduced the viability of E. coli, Salmonella, and
Listeria [53–57]. These studies have so far mostly been conducted on a laboratory or, in the
best scenario, pilot scale. A review of the available research suggests that their widespread
commercial use requires some important aspects to be solved, especially with regards
to the adaptability of this treatment to continuous processing lines (where the treatment
duration may require minutes at low irradiances), safety procedures for workers and even
radiation exposure, while avoiding mechanical damage, especially to fruits and vegetables.
Furthermore, the fact that wet cleaning methods have long been applied to fresh produce
could limit the fast adoption of a different technology.
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The mechanisms through which UV prevents deterioration exceed radiation germicide
properties and involve host-induced physiological responses [58–60]. They include the
inhibition of ripening-related genes [61] and the induction of enzymes and compounds,
improving tolerance to opportunistic pathogens or other environmental effectors causing
oxidative damage. An array of defensive responses has been observed in UV-stressed
tissues. It includes the activation of glucanases and chitinases thought to be involved in the
degradation of microbial cell walls, the induction of genes related to phenolic compound
biosynthesis or oxidation, such as phenylalanine ammonia lyase (PAL), polyphenol oxidases
(PPOs), and peroxidases (PODs) [62,63]. Another frequent change reported is the upregu-
lation of gene coding for antioxidative enzymes, such as superoxide dismutases (SODs),
ascorbate peroxidases (APXs), and catalases (CATs) [64]. More recently, Rabelo et al. [65]
proposed that the UV response is mediated by the generation of oxidative stress as the
primary signaling molecule generated through the partial ionization of water and an in-
crease in mitochondrial activity. With regards to the induction of compounds that could
contribute to increasing host tolerance to pathogen attack, there have been several reports
on metabolites with direct antimicrobial activity (i.e., hydroxycinnamic acid derivatives,
6-methoxymellein, scoparone, scopoletin, rishitin), or reinforcing structural barriers [49,66].
Phenolic compounds showing in many cases antimicrobial and antioxidant properties have
been the most frequently identified family of induced antimicrobial compounds.

Enhancement of bioactive compounds: Early on, in 1977, Langcake and Pryce [67]
showed that UV exposure induced bioactive compounds in grapes. This raised the interest
in using UV treatments to improve fruit and vegetable phytochemical profiles. A literature
review shows that the number of publications on bioactive compounds and UV radiation
has increased exponentially in the last three decades. Table 1 provides an overview of
some relevant studies that used UV radiation on whole and fresh-cut fruit and vegeta-
bles, focusing on bioactive compounds. As a rule, the results show that the induction
of antioxidants by UV radiation tends to be greatest for phenolic compounds, although
increases in other antioxidant metabolites (ascorbic acid, glutathione, carotenoids) have
also been reported [65,68]. The subclass of compounds induced is mostly dependent on the
species considered [69,70] and even on the cultivar [71]. Increases in phenolic acids, non-
anthocyanin flavonoids, anthocyanins, other flavonoids, isoflavones, and stilbenes have
been frequently reported [62,72–76]. Furthermore, the subregion of the UV spectra applied
may determine the type of metabolite elicited; in carrots, chlorogenic acid and isocoumarin
were more inducible by UVB and UVC radiation, whereas ferulic acid was elicited by
all UV regions to comparable levels [77,78]. At low irradiances, UVB and UVC regions
are considered more inductive of secondary metabolites than UVA and UVB, which still
have effects on antioxidants but also initiate several photomorphogenic responses [79,80].
Other factors affecting phytochemical accumulation besides the UV region and dose that
have been less studied include the irradiances of the illuminating source and the mode of
exposure (pulse number duration, interval between successive irradiations, etc.) [13,81,82].
Recently, UV has been reported as a suitable green strategy to enhance the nutraceutical
content of fruit and vegetable beverages [83]. Considering there are receptors for UVB and
UVA but no receptors for UVC, it has been proposed that ROS plays a key role in secondary
metabolite biosynthesis for all three UV lights [77,78]. However, further studies are needed
to confirm the role of oxidative stress through UVB and UVA receptor-mediated responses.
Another proposed hypothesis is that UVB and UVC could share the same photoreceptors,
since the action spectrum of UVR8 protein (as the main UVB receptor) ranges from 250 to
310 nm [8], including the UVC region; therefore, this UVB receptor could also be activated
by UVC. It can explain why UVC produces similar effects to UVB in some cases according to
previous research, since the energy provided by shorter wavelengths of UVC may activate
the UVR8 protein [84]. Nevertheless, the UVR8 spectrum of action could slightly vary,
depending on the metabolic pathway. The action spectrum on PAL induction is closer to
the UVB region and thus may explain why UVB or even the combined effect of UVC + B
obtained a higher increase in total phenolics than UVC [85].



Foods 2022, 11, 653 6 of 19

Table 1. Effects of UV radiation on the phytochemical profile of fruit and vegetables and on other
quality attributes.

UV
Region Product Treatment Conditions Main Results Found Reference

Blueberries Dose: 6 kJ m−2 UVA had lower inductive effect than
UVB or UVC

[86]

Fresh-cut carrot Intensity 12.73 W m−2

Dose: 45.8 kJ m−2
Induction of PAL and increase in total

antioxidant capacity and phenolics.
[77]

Lettuce Intensity: 3.7 W UVA, 4.2 W
UVB, 7.5 W UVC.

Induction of PAL and phenolic antioxidants
in all UV regions. UVA caused no growth

inhibition. UVB inhibited growth and UVC
caused most severe lesions.

[87]

Tomato

λ: 353, 365 or 400 nm.
Intensity:0.28–0.33 W m−2

Dose: 0.17–7.1 kJ m−2

All wavelengths increased phenolics
and carotenoids. [88]

Daily dose:
UVA 2.9 kJ m−2

UVA 11.5 kJ m−2

UVB 0.941 kJ m−2

UVB 0.353 kJ m−2

Increased antioxidant capacity and flavonoid
accumulation. UVA was more promising than
UVB with regards to firmness maintenances

and antioxidant elicitation.

[89]

U
V

A

Soybean sprouts
UVA 173.0 kJ m−2

UVA 346.0 kJm−2

Intensity: 2 W·m−2

Treatments elicited isoflavone and
flavonol accumulation. [90]

Apples Dose: 219 kJ m−2
Increased content of flavonoids (64%) and

hydroxycinnamic acids (38%) in the peel after
14 days.

[91]

Bell pepper

Dose: 9.0 kJ m−2. Storage 4 d
at 20 ◦C under retail sale

photoperiod (14 h fluorescent +
10 h Blue & Red LEDs)

Capsaicinoids increased by ~22%, ~38%, and
~27% in the content of capsanthin, capsanthin

laurate, and capsanthin esters, respectively,
after the UVB treatment. This effect was

enhanced by ~18% after an
LED-supplemented photoperiod.

[92]

Brassicaceae sprouts Dose: 15.0 kJ m−2

Increased the total phenolics and antioxidant
activity. Increased the glucosinolate content
by ∼30%. Sulforaphane was enhanced by

37.5% in broccoli sprouts. Sulforaphene was
increased by 72% in radish sprouts.

[93]

Broccoli Intensity: 3.2–5.0 W m−2

Dose: 2–12 kJ m−2

Low doses and intensities delayed
chlorophyll degradation, whereas high

intensity elicited antioxidant accumulation.
[81]

Dose: 1.5–7.2 kJ m−2

UVB increased glucobrassicins by 18–22%.
Glucoraphanin was enhanced by 11% in

florets exposed to 1.5 kJ m−2, while a dose of
7.2 kJ m−2 by 16%. Florets exposed to 1.5 and
7.2 kJ m−2 UVB increased hydroxyl-cinnamic

acids by 12%.

[94]

Dose: 5–15 kJ m−2 alone or in
combination with UVC

(9 kJ m−2).

Combination of moderate UVB and UVC
doses reported the highest inductive effect on

phenolics and total antioxidant activity. A
high UVB dose (15 kJ m−2), single or

combined with moderate UVC, induced a
higher level of

glucoraphanin and sulforaphane.

[95]

U
V

B

Fresh-cut carrot
Dose: 1.5 kJ m−2 alone
or in combination with

4.0 kJ m−2 UVC

UVB caused the largest increase in phenolics
and antioxidant accumulation after 3 days

at 15 ◦C.
[77]
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Table 1. Cont.

UV
Region Product Treatment Conditions Main Results Found Reference

Intensity: 12.73 W m−2 (UVA)
10.44 W m−2 (UVB)
11.8 W m−2 (UVC)

Dose: 46–275 kJ m−2 (UVA)
37.5–225.5 kJ m−2 (UVB)
42.5–255 kJ m−2 (UVC)

Phenolics (chlorogenic acid and its isomers,
ferulic acid, and isocoumarin), antioxidant

capacity, and PAL activity increments.
Chlorogenic acid was induced by all UV
radiations but mostly by UVB and UVC.

[77]

Kale sprouts Dose: 0, 5, 10, and 15 kJ m−2

Enhanced the total antioxidant activity by
20%. Doses of 10 and 15 kJ m−2 stimulated

the glucoraphanin and glucobrassicin
synthesis by 30%.

[96]

Lemon Dose: 22 kJ m−2

Increased levels of anthocyanins, flavonols
and flavanones-dihydroflavonols. Increased
antifungal activity of flavedo extracts against

Penicillium digitatum.

[97]

Mango Dose: 5 kJ m−2 Increased ascorbic acid (42%) and phenolic
compound (36%).

[98]

Red cabbage sprouts
Dose 10 kJ m−2 proportionally
applied on germination days 3,

5, 7, and 10 days,

Phenolics were increased by 40%, while total
antioxidant activity and flavonols content
was increased by 35 and 30%, respectively.

Carotenoids were also enhanced.

[99]

Peach and nectarine Dose: 73–219 kJ m−2

Cultivar-dependent response: the stimulation
of phenol accumulation occurred after 24 h in
‘Big Top’ (69%) and 36 h in ‘Suncrest’ (21%).

Decreased phenolics in of ‘Babygold 7′

after 36 h.

[100]

Dose: 1.39 and 8.33 kJ m–2

Transient increase 24 h after illumination,
especially for flavanols, flavonols, and

flavones (+123, +70, +55, and +50%,
respectively). Phenolics induced not only in
the peel but also in the pulp. UVB increased

the glycoside/aglycone ratio of flavonols
and anthocyanins.

[74]

Prickly pear (red) Intensity: 6.4 W·m−2

Dose: 5.76 kJ m−2

Highest phenolic accumulation. The main
phenolics were quercetin, sinapic acid,

kaempferol, rosmarinic acid, and sinapyl
malate, showing increases of 709.8%, 570.2%,

442.8%, 439.9%, and 186.2%, respectively.

[101]

U
V

B

Intensity 6.4 W m−2

Dose: 5.76–69 kJ m−2

Immediate accumulation of betalains
(33–40%) and ascorbic acid (54–58%) in the

pulp and peel of wounded tissue.
[70]

Blueberry Dose: 4.0 kJ m−2 Increased anthocyanins (70%). Antioxidant
enzymes induced (SOD, APX).

[102]

Broccoli

Intensity: UVB s of 9.27 and
UVC 25.21 W m−2,

Dose 5, 10 or 15 kJ m−2 UVB,
UVC: 9 kJ m−2.

UVB + UVC increased glucobrassicin (34%) at
15 ◦C. UVB15 + C induced the highest

glucoraphanin levels of florets after 72 h at 15
◦C. UVB10 + C induced the highest total

phenolic content increase (110%) in leaves.

[95]

Carambola Dose: 13 kJ m−2 UVC induced antioxidant enzymes (CAT,
POX and SOD) and phenols accumulation.

[103]

U
V

C

Carrot Dose: 9 kJ m−2

+ hyperoxia (80 kPa O2)

Increase in phenolic compounds, which was
also observed in hyperoxia for 72 h. UVC +
hyperoxia showed higher accumulation of

chlorogenic acid.

[104]
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Table 1. Cont.

UV
Region Product Treatment Conditions Main Results Found Reference

Fresh-cut watermelon Dose: 1.6–7.2 kJ m−2

Increase in antioxidant capacity (7%),
maintenance of lycopene and ascorbic acid.

Microbial growth retardation. Only the
lowest doses (1.6 and 2.8 kJ m−2) preserved

sensory attributes.

[105]

Fresh-cut Bimi®

Broccoli
Dose: 1.5–15 kJ m−2

Increased total phenolics (25%).
Hydroxycinnamoyl acid derivates were

immediately increased after the treatments.
The higher the UVC doses, the higher total
antioxidant capacity values. UVC delayed

chlorophyll degradation.

[106]

Fresh-cut tatsoi baby
leaves

Dose: 4.54 kJ m−2 with
hyperoxia (100 kPa O2)

Improved phenolic content and total
antioxidant capacity retention throughout

storage. UVC and the combined UVC + O2-
controlled the epiphytic microbes.

[107]

Fresh-cut
pomegranate arils Dose: 4.54 kJ m−2

Combination of UVC and high O2 preserved
SOD and CAT and decreased POD and

PPO.UVC combined with high O2
maintained the level of anthocyanins and

phenolics.Combining UVC to high O2
enhanced the benefits of applying each

treatment alone.All treatments involving high
O2 and/or UVC kept anthocyanins high,

especially phenolic content.

[108]

Dose: 4.54 kJ m−2

The lowest antioxidant activity was found in
hot water + UVC + superatmospheric O2
packaging (HO) and the highest in UVC +

HO and HO treatments. Hot water alone or in
combination with UVC and HO inhibited
mesophile, mold and yeast growth, while

UVC + HO was most effective for controlling
yeast and mold growth.

[109]

Fresh-cut carrot

Intensity: UVB 9.27 W m−2,
UVC 25.21 W m−2, Dose: UVB

1.5 kJ m−2. UVC 4.0 kJ m−2.
Treatments alone or

in combination

Combined UVC + UVB showed better results
than each treatment alone. [96]

Fresh-cut red pepper
1.5; 3; 5; 6; 10 and 20 kJ m−2 in
the inner (I), outer (O) or both

fruit surfaces (I + O).

10 kJ m−2 (I + O) reduced decay and
softening.UVC induced the accumulation of

hydroxycinnamic acid-derivatives.Pectin
solubilization and wall disassembly were

delayed under UVC.UVC may control soft
rots by modulating the host susceptibility.

[110]

Garlic Dose: 2.0 kJ m−2 Increased total phenolics (11%) and reduced
microbial loads.

[111]

U
V

C

Grape Dose: 0, 0.5, 1.0, 2.0,
or 4.0 kJ m−2

Increased activity of antioxidant enzymes
(SOD and CAT) and induction of glutathione
reductase and guaiacol peroxidase at longer
times. Increased total thiol content by more

than 2.0 kJ m−2, total phenolics (20%),
anthocyanin (35%) for 5d at 20 ◦C.

[112]
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Table 1. Cont.

UV
Region Product Treatment Conditions Main Results Found Reference

Red pepper Dose: 10 kJ m−2

UVC treatments do not cause marked
modifications in DPPH radical scavenging
capacity or AA content. UVC treatments

increase the activity of enzymes involved in
the detoxification of superoxide and

hydrogen peroxide (SOD, CAT and APX)
during early cold storage.

[64]

Dose: 6 kJ m−2 UV (B or C)
and 6 + 6 kJ m−2 UV (B + C)

UVC greatly enhanced the flavonoid
accumulation. UVC + UVB increased by
∼94% the carotenoid content and the

flavonoid biosynthesis. Rutin accumulation
was highly enhanced (∼70%).

[92]

Spinach Dose: 1.5–3 kJ m−2 Greatest induction of antioxidants (60%) and
total phenolics (50%) with 1.5 kJ m−2 [113]

Dose: 4.54–11.35 kJ m−2

Total antioxidant activity and polyphenols
decreased throughout storage; this was more
evident in higher UVC doses.Mesophilic and
psychrophilic counts were reduced at similar
level than conventional sanitization washing.

[114]

Strawberry Dose: 4.1 kJ m−2
Induction of anthocyanin biosynthesis and

related enzymes, PAL, tyrosine
ammonia-lyase and cinnamate 4-hydroxylase.

[115]

Sweet cherry
Dose: 4 kJ m–2 or Interactions
of UVC with 2 regulated deficit

irrigation (RDI)

UVC increased phenols (21–36%) after
shelf-life in RDI fruit. [116]

Dose: 1.0–4.2 kJ m−2

Induction of total phenolics, flavonoids, and
anthocyanins (26%, 35% and 76%

respectively). Induction of phenylpropanoid
genes (PAL, C4H, 4CL).

[117]

U
V

C

Tomato Dose: 3.7 kJ m−2 Increased the accumulation of phenolic
compounds and lignin.

[60]

In addition to their effects on phenolics, carotenoids and ascorbic acid, UV treatments
have been shown to increase vitamin D content. Exposure to sunlight and dietary foods
are the most important ways for humans to obtain vitamin D [118–120]. Lifestyle changes
due to the SARS-CoV-2 pandemic have substantially reduced our regular exposure to
the sun, resulting in vitamin D deficiency [120]. Furthermore, patients with vitamin D
deficiency were five times more likely to be positive for COVID-19 than patients with no
deficiency [121]. Mushrooms are rich in ergosterol, a precursor to vitamin D2, which can be
converted to vitamin D2 under proper UV exposure. The eliciting capacity of UVA, UVB,
and UVC has been tested in different types of edible mushrooms, increases ranging between
25 and 8000% reported [122]. The UVB zone of radiation shows the greatest inductive effect,
with other important factors being the radiation dose applied, the product’s water content,
and the degree of processing [123].

Retardation of ripening and senescence: In some commodities and under proper treat-
ment conditions, UV radiation may delay ripening and senescence [60,124]. These effects
could be understood by recognizing that both developmental processes are genetically
regulated and require specific transcriptional programs to be induced. Under UV radia-
tion, cells redirect their normal developmental programs to primarily respond to external
stressing stimuli [125,126]. Stress acclimation favors the induction of UV-responsive genes
at the expense of ripening and or senescence-related genes [61,127,128]. The efficacy of
UV treatments to retard ripening is certainly dependent on the UV irradiation schedule
used, and to a great extent on the initial ripening state of the commodity [129]. Ripening
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progression would be more effectively delayed in fruit treated at early stages. Hundreds of
genes are up- and down-regulated in fruit irradiated with UV radiation. Most frequently,
up-regulated genes are mainly involved in signal transduction, defense response, and
metabolism. Conversely, genes related to cell wall disassembly, photosynthesis, and lipid
metabolism are usually suppressed. The retardation of ripening-related changes such
as softening may be one important contributor to the improved tolerance to postharvest
spoilage pathogens observed in treated products [61,82,130]. In some cases, especially with
long-term exposure, UVB has been shown to promote fruit ripening [131].

Induction of cross-stress resistance and synergistic responses: It is currently known
that biotic and abiotic stress responses use common signals, pathways, and triggers [40].
This overlap includes common changes in cellular redox status, reactive oxygen species,
hormones, protein kinase cascades, and calcium gradients as common elements [131] and
helps to explain cross-tolerance phenomena, whereby exposure to one type of stress can
improve tolerance to several different types of stress [132]. UV treatments preceding cold
storage have been reported to improve the chilling tolerance of sensitive commodities
such as peach [133], sweet pepper [134], and tomato [135]. Some of the metabolic changes
behind cross-tolerance include the induction of polyamine biosynthesis in stone fruit and
an increase in antioxidant enzymes in the case of pepper [64]. Another effect observed
from combining stresses is a synergistic response in plant tissues, as in those reported with
wounding and UV exposure. This synergism among stresses applied simultaneously is
due to the activation of similar signaling molecules and signaling pathways [136]. This has
been reported in the biosynthesis of polyphenols [77,78,102] and betalains [137]. In Table 2,
the physiological responses could potentially be higher in fresh-cut products compared to
whole tissues, where synergistic effects take place due to skin removal in whole produce,
being skin-determinant in the response due to the partial blockage of UV penetration [77].

Table 2. Advantages and drawbacks of using UV radiation in foods.

Advantages Drawbacks

• Simple.
• Non-ionizing treatment.
• Approved by food control agencies.
• Strongly germicide (UVC) and broad

microbiological control.
• Able to elicit hormetic responses inducing

phytochemical accumulation in
metabolically active foods.

• Relatively small changes in
physicochemical quality attributes.

• Energy-efficient and cost-effective.
• Lower restriction than other

irradiation methods.
• Could be combined with other

preservation methods.
• No wastes or by-products generated.
• Does not require water.

• Low penetration power in solids or
turbid liquids.

• Little or no residual effect.
• Direct exposure required for germicide

action and maximum effects.
• Absorbed by commonly used polymeric

packing materials.
• Difficult to adapt to commercial

operations/continuous processing.
• Harmful to operators if not

properly protected.
• Consumers concerns although it is a

non-ionizing radiation.

Advantages and disadvantages of UV treatments: UV technology provides several
advantages over other conventional preservation methods, but also has some important
drawbacks (Table 2). UV treatments can be simply applied and are able to inactivate a
wide range of pathogenic and spoilage microorganisms while causing negligible changes in
nutritional and sensory quality [95,96]. In contrast to other disinfection practices, it does not
require water or generate wastes and leaves no residues on treated surfaces and foods [48].
In addition, it is approved with no major restrictions by the European Food Safety Authority
(EFSA), the US Food and Drug Administration (FDA), and most other food regulatory
agencies. When compared to electron beam or gamma irradiation, UV technology also
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offers several advantages (i.e., lower investment required, fewer regulations, no treatment
label needed in the products) [138]. Another plus for UV treatments relates to their ability to
be relatively simply combined with other preservation techniques in the search for additive
or even synergistic effects [70,139]. UV irradiation is considered a very valuable tool within
the hurdle technology, an integrated approach aimed in creating safe and stable foods
by combining multiple physical, chemical, and/or biological preservation methods [139].
UV treatments have been applied in metabolically active fruit and vegetables not just due
to their germicide action but to activate natural defense mechanisms (i.e., phytoalexins,
free radical scavengers’ antimicrobial and antioxidant enzymes) [140]. Compared to many
conventional methods, UV treatments are also energy-efficient and cost-effective [141].
Finally, UV has historically being applied for a wide range of applications and validation
data is available.

However, there are several limitations of UV technology which prevent its wide
use in the food industry. It has a low penetration power, especially in solids and turbid
media [142]. Moreover, the fact that it does not provide residuality may be a drawback when
long-lasting effects are desired. To properly express the UV germicide properties direct and
even exposure is required [143]. This may be challenging in some cases under commercial
operations. Another difficulty could be to adapt UV treatments to continue processing
lines, especially if long exposure times or low irradiances are required. Considering the
moments in which UV could be used, UV treatments are defeated compared to ionizing
irradiation, since they cannot be applied after packing [144]. UV radiation could be also
harmful to operators if direct exposure occurs, but proper safety procedures and personal
protective equipment can easily prevent such risk.

Factors determining UV treatment efficacy: In the last two decades, more than
500 publications have tested postharvest UV illumination strategies in fresh horticultural
produce. These studies have been useful in identifying the main factors determining the
efficacy of the technology on both the commodity and the treatment sides (Table 3).

Table 3. Factors affecting the efficacy of postharvest UV treatments in fruit and vegetables.

Product Variables Process Variables

Commodity type Radiation wavelength
Cultivar Radiation dose (fluence)

Ripening stage Radiation intensity
(fluence rate/irradiance)

Degree of processing Exposure pattern
Product–radiation interphase Radiation uniformity

Product–microorganism interphase Post irradiation illumination

The factor that has received the most attention is the type of commodity. So far,
most commercially relevant fresh fruit and vegetable (>100 products) have been tested.
In general, positive results have been found in one or more of the effects outlined in the
previous section, depending on the species considered. In a few cases, some damages,
mostly related to tissue discoloration, have also been reported [145,146]. The outcome of
UV treatments has also been reported to be dependent on the cultivar [71,147]. A third
relevant factor with regards to UV irradiation efficacy is the product-ripening stage. As
a rule, the treatment of unripe fruit may lead to stronger phenotypes regarding ripening
delay than fruit at advanced maturity stages. The ripening stage not only affects the
impact of UV irradiation on ripening changes, but also its ability to control postharvest
decay. In fresh-cut bell peppers, UV radiation was more effective at reducing soft rot in
red ripe fruit [148,149]. The degree of commodity processing also has a substantial impact
on quality maintenance and antioxidant elicitation [102,114]. This could be due to the
increased surface during processing, which results in the exposure of a greater area of the
product. However, the induction of synergic effects induced by simultaneous UV and
wounding stresses has been suggested to be involved as well [70,100]. Finally, the nature
of the interphase between UV radiation and the product can also have a relevant effect.
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For instance, surface wetting would be expected to reduce UV penetration in vegetable
tissues. Another effect may be the impact of interphases on microorganism arrangements.
Heterogeneous microorganism distributions in liquid droplets can lead to preferential
concentration in the outer layer at the liquid–air interface, which may protect the cells
inside the droplet from UV bactericidal action [55].

Regarding treatment, the subregion of the UV spectra employed has a large influence
on the kind of responses obtained [150]. For instance, changes in nutraceutical compounds
have been reported for all three zones, but the greatest impact on disease control is clearly
observed for UVC [151]. The second relevant process variable is the radiation dose (en-
ergy per unit area). A broad range of doses has been explored (i.e., 0.1–50 kJ m−2 for
UVC region). However, a single study tried more than two or three doses and complete
optimization studies are currently lacking. Working with strawberries, Cote et al. [152]
showed that the radiation intensity (energy per unit time and unit area) is another key
process factor determining the efficacy of treatments. Strikingly, this variable has been
overlooked in several studies that do not report the radiation intensity of the illuminant
used. Subsequent work by Darré et al. [81] reported that both radiation dose and intensity
should be considered simultaneously when optimizing UV treatments. Low UVB doses
(5 kJ m−2) and intensities delay chlorophyll degradation and may be useful to complement
refrigeration. Instead, high-intensity UVB exposure may be better suited for the freezing
industry as a pre-treatment to increase the antioxidant capacity prior to further processing.

The irradiation pattern is another aspect to be considered when selecting a proper
treatment schedule. This has been relatively well studied for pulsed treatments with
xenon lamps. Bauer et al. [153] found that UV germicidal efficacy against Bacillus spores
was a function of pulsed radiation parameter, with shorter pulses and lower frequencies
being more effective. With regards to treatments with conventional single-UV radiation
sources, almost no attention has been paid to the relevance of the radiation exposure
pattern. Ortiz-Araque et al. [82] showed that at the same total dose (4 kJ m−2) and intensity
(36 W m−2), fractionated (two-step and five-step) treatments were much more effective at
controlling softening and decay than single pre-storage irradiation. The fractionation of
the treatments during storage delayed pectin debranching and delayed the solubilization
of polyuronides [130].

Although treatment uniformity and ensuring that all food surfaces are exposed to
UVC light may be one of most problematic causes in commercial settings, there are very
few studies attempting to overcome this limitation. Finally, some studies have reported
that light exposure after treatment may affect the outcome of UV treatments. This may be
due to photo repair mechanisms that may be activated in the presence of light [11,154,155].
It is not clear whether this effect would be significant in products. It is important to state
that eventually, all these factors and their combinations result in the generation of signal
molecules, such as ROS, and ROS levels determine the molecular and physiological re-
sponse of stress-challenged produce, either staying in homeostasis, going through hormesis,
or even responding to extreme stress [136].

5. Concluding Remarks

After microbial control, the elicitation of bioactive compounds is the aspect that has
received the most attention with regards to the use of postharvest UV treatments in fresh
produce. So far, several works have reported that appropriate exposure to UV radiation may
stimulate the biosynthesis of phenolic compounds and, to a lesser extent, of ascorbic acid,
carotenoids, and/or glucosinolates. Recent studies have identified the most relevant factors
determining the nature and extent of such changes on both the commodity and process
sides. These include the species, cultivar, ripening stage, degree of processing, radiation-
product interphase, radiation wavelength, dose, intensity, exposure pattern (i.e., pulse
frequency, duration), and illumination regime after treatment.

Despite the significant advances achieved, some important limitations remain. These
has likely slowed down the adoption of UV technology by industrial stakeholders. For
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fresh products, the main challenges remaining are reducing the treatment times to facil-
itate their compatibility with continuous processing lines and increasing the treatment
uniformity for large produce volumes without causing mechanical damage to products.
Solving these challenges would likely help UV irradiation to move beyond the stage of
emerging technology and translate all the knowledge accumulated about its application
into production.
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