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Abstract: Histone deacetylases (HDAC) are epigenetic enzymes responsible for repressing gene
expression through the deacetylation of histone lysine residues. Therefore, inhibition of HDACs
has become an interesting approach for the treatment of several diseases, including cancer, hema-
tology, neurodegenerative, immune diseases, bacterial infections, and more. Resveratrol (RVT) has
pleiotropic effects, including pan-inhibition of HDAC isoforms; however, its ability to interfere with
membranes requires additional optimization to eliminate nonspecific and off-target effects. Thus,
to explore RVT as a scaffold, we designed a series of novel HDAC-1 and -2 inhibitors containing
the 2-aminobenzamide subunit. Using molecular modeling, all compounds, except unsaturated
compounds (4) and (7), exhibited a similar mode of interaction at the active sites of HDAC 1 and
2. The docking score values obtained from the study ranged from −12.780 to −10.967 Kcal/mol.
All compounds were synthesized, with overall yields ranging from 33% to 67.3%. In an initial
screening, compounds (4), (5), (7), and (20)–(26), showed enzymatic inhibitory effects ranging from 1
to 96% and 6 to 93% against HDAC-1 and HDAC-2, respectively. Compound (5), the most promising
HDAC inhibitor in this series, was selected for IC50 assays, resulting in IC50 values of 0.44 µM and
0.37 µM against HDAC-1 and HDAC-2, respectively. In a panel of selectivity against HDACs 3–11,
compound (5) presented selectivity towards Class I, mainly HDAC-1, 2, and 3. All compounds
exhibited suitable physicochemical and ADMET properties as determined using in silico simulations.
In conclusion, the optimization of the RVT structure allows the design of selective HDAC inhibitors,
mainly targeting HDAC-1 and HDAC-2 isoforms.

Keywords: histone deacetylase; resveratrol; enzymatic inhibition; gene regulation; new drugs

1. Introduction

Epigenetic modifications are involved in chromatin remodeling and in altering gene ex-
pression. Acetylation of lysine residues is one of the most well-described post-translational
modifications in epigenetic mechanisms. The two main enzymes involved in this mecha-
nism are histone acetyltransferase (HATs) and histone deacetylase (HDACs). HAT acety-
lates the lysine residues in the histone tail to neutralize the amino acid charge and eliminate
its interaction with the DNA, resulting in chromatin relaxation and facilitating access to
the genetic material by RNA polymerase, leading to gene expression. Contrarily, histone
deacetylases (HDAC) are a family of enzymes responsible for removing acetyl groups,
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restoring lysine charge, and interacting with DNA, hindering the entry of RNA polymerase
resulting in gene silencing [1–4] (Figure 1).
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Eighteen HDAC isoforms have been described and classified into four classes (class
I–IV), according to their homology and localization in cells. HDAC comprises the following
isoforms: class I (HDAC-1, 2, 3, and 8), class IIa (HDAC-4, 5, 7, and 9), class IIb (HDAC-6
and 10), class III (SIRT1–7), and class IV (HDAC-11). Regarding their mechanism of action,
classes I, II, and IV are zinc-dependent enzymes, while class III includes NAD+-dependent
enzymes, also called sirtuins (SIRTs) [5,6]. HDACs have been described as promising
targets in several diseases, including cancer (solid and hematological malignancies) [7],
neurological, autoimmune, inflammatory, metabolic disorders, and others. Despite their
potential to treat diseases, few FDA-approved drugs have reached the market. Among
the drugs licensed for use as HDAC inhibitors are: vorinostat (Zolinza) [8]; romidepsin
(Istodax) [9]; belinostat (Beleodaq) for cutaneous T-cell lymphoma [10]; and panobinostat
(Farydak) [11] for the treatment of multiple myeloma. China’s National Medical Products
Administration has also approved tucidinostat (Epidaza) [12] for the treatment of peripheral
T-cell lymphoma [13,14] (Figure 2). The reasons for their limited therapeutic use are
severe hematological (thrombocytopenia, neutropenia) and cardiac (ventricular arrhythmia)
adverse effects related to their lack of selectivity for inhibiting the other distinct isoforms.
Thus, approaches aimed at designing selective inhibitors are widely desirable to address
off-target and adverse effects of HDAC inhibitors [15]. Structural requirements for the
design of selective HDAC inhibitors have been described elsewhere [16–21]. In general, the
scaffold of an HDAC inhibitor is constituted by a zinc-binding group, a hydrophobic linker,
and an exposure “cap” (Figure 2).

Resveratrol (RVT) (trans-3,5,4′-trihydroxystilbene) (Figure 3) is a natural product with
pleiotropic effects, acting on several diseases such as cancer, cardiovascular, metabolic,
neurodegenerative, and inflammation [22–25]. Experiments using nuclear extract of HeLa
cells revealed that RVT inhibited all HDAC isoforms at 100 µM but was most active against
HDAC-1 and HDAC-10 followed by HDAC-4 and HDAC-9, with 40% and 50% inhibitory
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values, respectively [26]. In addition to HDAC classes I, II, and IV, RVT also activates
SIRT [27]. Dose-dependent experiments showed that RVT increased the deacetylation rate
of SIRT1 [27]. The activation of SIRT1 has been reported to be one of the modes of action of
RVT for metabolic disorders, cardioprotection, cancer, and neuroprotection [28]. Although
RVT is an interesting prototype as an HDAC inhibitor, its poor potency, lack of selectivity,
and nonspecific effects due to its bilayer membrane-perturbation effects demand additional
efforts to optimize its HDAC inhibition [29,30]. Previously, we have described the potential
of RVT analogs as inducers of fetal hemoglobin in sickle cell disease by inhibiting HDACs
without membrane perturbation effects [30].
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Therefore, in a continuing effort to design RVT derivatives with HDAC inhibition,
we described herein the synthesis and evaluation of novel analogs containing the 2-
aminobenzamide subunit. This subunit in tucidinostat (selective class I) acts as a zinc-
binding group. We carried out molecular modeling studies to improve their selectivity
against HDAC class I and explored chemical modifications in the linker and “cap” regions,
to further comprehend their rigidity and polarity (Figure 3).

2. Results and Discussion
2.1. Molecular Docking Studies and In Silico Prediction of ADME Properties

The structural basis for RVT optimization was assisted by molecular docking, which
suggested the poses and modes of interaction between HDAC-1 and HDAC-2. For RVT, the
DS values were found to be −5.565 and −6.453 against HDAC-1 and HDAC-2, respectively.
Both non-ionized and ionized phenol groups were considered in this study. RVT fits into the
binding pocket, but we did not observe any interactions with zinc, as previously reported [26].
Figure 4 shows that in the HDAC-1 active site, RVT can interact with residues ARP176
through hydrogen bonding and with HIS141 and HIE178 via π- π interactions. In the HDAC-2
binding pocket (Figure 5), RVT interacts with GLY143 and PHE155 by hydrogen bonding and
π-π, respectively. The limited number for RVT explains its poor DS value compared to the
optimized compounds described here. Figures S3 and S4 in the Supplementary Materials
show the pose of RVT in the active site of HDAC-1 and HDAC-2, respectively.
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Figure 5. RVT interactions with HDAC-2 binding site.

Computational studies guided the type (H, OH, NH2, and CONH2) and pattern (ortho
and para) of substitution for all compounds, and it was carried out to provide additional
interactions with the enzymes. The insertion of 2-aminobenzamide as a zinc chelating
subunit allows the orientation of this group toward the metal at the active site of the
enzyme. Table 1 shows the DS values for HDAC-1 and HDAC-2, ranging from −4.462
to −10.763 Kcal/mol for HDAC-1 and −10.971 to −12.780 Kcal/mol for HDAC-2. For
HDAC-2, redocking procedures were performed since the co-crystallized ligand (20Y) was
already described. Notably, the root mean square deviation (RMSD) of 20Y for HDAC-2
was 0.46 Å.

Except for compounds (4) and (7), the poses of the compounds revealed that, in
addition to the 2-aminobenzamide subunit occupying the active site of HDAC-2, there
were interactions involving hydrogen bonds with HIS145 and/or HIS146 and GLY154.
The rigidity conferred by the unsaturation of compounds (4) and (7) did not allow an
appropriate fit against HDAC-1 and HDAC-2. Structural differences between both isoforms,
such as a wider entrance in the active site for HDAC-2 [16], could explain the change in the
pattern of the poses of unsaturated compounds.

Compound (5), a saturated analog of compound (4), presented an improved DS value
with the 2-aminobenzamide moiety occupying the active site for both HDAC-1 and HDAC-
2 (Figure 6). The flexibility conferred by the C-C sp3 bond of (5) enables its rotation and
improves its fit at the active site of both enzymes. Moreover, an additional hydrogen
bond was found involving the amino group (NH2) in the cap and LEU276 or GLU208 in
comparison with compound (4) (Figures S5 and S6).
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Table 1. Docking score values (Kcal/mol) for HDAC-1 and HDAC-2.

Compounds
Docking Score (DS) Values (Kcal/mol)

HDAC-1 HDAC-2

Resveratrol (RVT) −5.565 −6.453
Tucidinostat −7.606 −11.436

(4) −4.462 −10.967
(5) −8.724 −11.707
(7) −5.331 −10.997

(20) −8.542 −11.399
(21) −8.760 −11.621
(22) −5.068 −11.839
(23) −7.268 −12.234
(24) −10.763 −12.780
(25) −8.764 −11.128
(26) −8.437 −10.971
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For all compounds containing a flexible linker (5; 20–26), no significant differences in
DS values were found when comparing the presence of the following atoms: carbon (5),
nitrogen (21, 24), and oxygen (20, 22–26) at this linker. However, compounds presenting
polar subunits in the cap, such as (5), (22), (23), and (24), presented an additional hydrogen
bond with an external LEU276, which was not seen in other compounds (Figures S7–S11).
For some compounds, such as (20), (21), and (24), additional π- π interaction with TYR209
residue was observed, but with no significant changes in DS values (Figures S7–S11).

Protection of the amine group of compound (23), with bulky phthalimide
groups (25, 26), did not demonstrate any additional interactions with external amino
acids. In addition, this group was unfavorably exposed (Figures S12 and S13).

In order to evaluate the reliability of proposed poses by docking, we simulated the
compound (5) complexed with HDAC-1 and HDAC-2 and also the compound (4) in
complex with HDAC-2. In all simulations, the protein remained quite stable, with RMSD
below 2 Å (Figures S14–S16). Due to the high rigidity, compound (4) showed oscillating
RMSD below 3 Å during all five replicates (Figure S17). Despite unfavorable exposure of
the 4-aminophenol moiety to the solvent, the aminobenzamide group strongly interact
with Zn2+ and residues HIS145, HIS146 and GLY154 and remain in the active site during
the 50 ns simulations, despite being a weaker inhibitor than (5). Specifically, the ligands
interact with HIS145 during more than 85% of frames in all simulations, and during around
40–50% of frames with HIS146 and GLY154 (Table S1)
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On the other hand, the compound (5) showed higher value of RMSD when in complex
with both HDAC-1 or HDAC-2, without difference between the proteins
(Figures S18 and S19). However, despite the high value it is observed very stable plateau at
2 and 4 Å along the simulations. This is easily explained by two possible positioning of
4-aminophenyl moiety in the surrounding of the protein cavity (Figure 7). The first one
is similar to the proposed by the docking and group seems to do not perform any stable
interaction with protein (Figure 7, green line). The latter is characterized by the T-stacking
of 4-aminophenyl with PHE155 (Figure 7, green stick). This interaction is already known
and is present in many of the existing crystallographic structures of HDAC-2. However,
differently to those available in PDB, the compound (5) also presents a second phenyl ring
that perform a π-stacking interaction with the PHE155 and thus define a triplet cluster of
aromatic rings (Figure 7, green stick). It is needed to reinforce this interaction but is still
not enough to stabilize the 4-aminophenyl near the PHE155, since we observed few flips
between the conformations (Figures S20 and S21).
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Figure 7. Representation of compound (5) conformation predicted by molecular docking (green
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interaction with compound (5).

In silico predictions of ADME properties were obtained by the Swiss ADME software
(Table S1). Drug-like, ADMET, and physicochemical properties were characterized to iden-
tify those compounds that are most promising for further evaluation. For all derivatives,
cLogP values ranged from 2.12–3.21, being more lipophilic than RVT (cLogP 1.71). Tucidi-
nostat exhibited a cLogP value of 2.51. RVT, tucidinostat, and compounds (23)–(24) were
considered soluble, while the others were moderately soluble. All compounds are predicted
to have high intestinal absorption, except for compound (26), which is predicted to have
low intestinal absorption. CYP2C9 inhibition is predicted in all compounds. Regarding
the Lipinski rule, except for compound (26), all compounds presented a molecular weight
lower than 500 daltons; a cLogP value lower than 5, less than 5 hydrogen bond donors, and
less than 10 hydrogen bond acceptors. Therefore, all synthesized compounds comply with
Lipinski’s rule of five.

2.2. Chemistry

The synthetic routes to obtain compounds (4)–(5), (7), (20)–(24), and (25) and (26) are
shown in Figures 8–10. For compound (5), initially, 4-bromobenzoic acid (1) was treated
with oxalyl chloride in dichloromethane (DCM) and then added to o-phenylenediamine in
a basic medium to provide an intermediate (2) at a yield of 65%. As a next step, protection
of the amine group was carried out by introducing the protector group Boc, followed by
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the Heck [31] reaction with 4-vinylaniline and palladium acetate as catalysts to produce
compound (4) at a yield of 33%. The final reaction was catalyst hydrogenation with
palladium on carbon (Pd/C) and hydrogen gas (H2) to obtain compound (5) at a yield
of 90%. Compound (8) has been submitted for the same reactions but in a different
sequence. Initially, 4-bromobenzoic acid (1) was coupled to styrene through the Heck
reaction to provide an intermediate (6) at a yield of 60%. The final step was the treatment
of compound (6) with oxalyl chloride and then the coupling with o-phenylenediamine,
providing compound (7) with a yield of 6% (Figure 8).
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For compounds (20)–(24), 4-bromomethyl benzoic acid (8) was protected by esterifi-
cation with methanol and sulfuric acid [32] and then reacted through SN2 [33] with phe-
nol, aniline, 4-aminophenol, 4-hydroxyphenol, or salicylamide, to provide intermediates
(10)–(14) at yields ranging from 50 to 82%. The final step was the ester hydrolysis and cou-
pling reaction with o-phenylenediamine through coupling agent 1,1-carbonyldiimidazole
(CDI), providing compounds (20)–(24) with yields ranging from 10 to 40% (Figure 9).

Compound (25) was treated with coupling agents 1-ethyl-3-
(3-dimethylaminopropyl)carbodiimide (EDC) and 4-dimethylaminopyridine (DMAP) and
coupled with phthalic or 3-nitrophthalic anhydride to obtain compounds (25) and (26) at
yields ranging from 15 to 25% (Figure 10).
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2.3. Enzymatic Evaluation

Enzymatic assays to evaluate HDAC inhibition were performed, and the design in-
volved three steps: (a) Preliminary screening to identify the most promising compounds;
(b) Evaluation by a panel of HDAC isoforms to investigate selectivity; and (c) Determination
of IC50 values. Firstly, compounds (4–7; 15–26) were evaluated at 10 µM against HDAC-1
and HDAC-2 (Table 2). Intermediates (6; 15–19) and finally (4, 5, 7, 20–24) compounds eval-
uated at 10 µM showed inhibitory activity against HDAC-1 ranging from 0–96%, while for
HDAC-2 those values ranged from 0–93%. All intermediates (6; 15–19) exhibited no-effect or
very weak inhibitory effect against both HDAC-1 and HDAC-2, with compound (15) being
the most active among the series, inhibiting HDAC-1 by 16% whereas HDAC-2 by 11%.
These results were expected due to the lack of the zinc-binding subunit in these structures.

Table 2. Initial enzymatic inhibition screening of compounds (4)–(7), (15), (17), (19), (20)–(24), (25),
and (26), against HDAC-1 and HDAC-2.

Compound
(10 µM)

HDAC-1
(%)

HDAC- 2
(%)

(4) 45 ± 1.2 28 ± 1.0
(5) 93 ± 1.0 92 ± 0.8
(6) 9 ± 1.0 0
(7) 42 ± 0.7 32 ± 0.7
(15) 16 ± 0.6 10 ± 0.5
(17) 12 ± 0.7 11 ± 0.5
(19) 13 ± 0.9 8 ± 0.6
(20) 87 ± 1.1 85 ± 1.1
(21) 96 ± 1.3 93 ± 1.2
(22) 96 ± 1.2 92 ± 0.7
(23) 72 ± 1.1 52 ± 0.8
(24) 86 ± 1.0 81 ± 1.1
(25) 14 ± 0.5 21 ± 0.8
(26) 1 ± 0.5 6 ± 0.6

Of the final compounds (4, 5, 7, 20–26), the most active ones were (5, 20, 21, 22, and 24)
by inhibiting up to 96% of HDAC-1 and 93% of HDAC-2 enzymatic activity. The confor-
mational restriction provided by the double bond does not favor the inhibitory effect, as
previously observed in the docking studies. Compounds (4) and (7) presented inhibitory
values of 45% and 42% against HDAC-1 and 28% and 32% against HDAC 2, which are up
to three times lower in comparison with compound (5). For compound (5) the inhibitory
values against HDAC-1 and HDAC-2 were 92% and 93%, respectively.

Compounds (20)–(24) exhibited inhibition values against HDAC-1 ranging from 72%
to 96% and against HDAC 2 from 52% to 93%. These compounds contain a greater po-
lar link than (5), suggesting that such an effect is not desirable for HDAC inhibition.
Compounds (20) and (21) have been already published in the literature as HDAC in-
hibitors [33,34]. Compound (20) had its HDAC inhibition activity evaluated only in the
enzymes from the HeLa nuclear cells, while compound (21) presented an IC50 of 1± 0.1 µM
against HDAC-1 and 1.4 ± 0.05 µM against HDAC-2. The comparison between (20), (22),
and (23), showed that the amino group in the position para of the ‘cap’ has an improved
effect compared to the H (20) and hydroxy (22) groups. Interestingly, the presence of bulky
protecting amine groups in the ‘cap’ as represented by compounds (25) and (26) led to a
reduction in the effect since their inhibition values were 14% and 1% for HDAC-1 and 21
and 6% for HDAC-2, respectively.

Based on the results, compound (5) was selected for further assays to evaluate its
selectivity against the HDACs (4–11) and the determination of IC50 values (Table 3). At a
concentration of 10 µM, compound (5) inhibited HDAC-3 and HDAC-10 by 82% and 60%,
respectively. For other HDAC isoforms, values were found to be equal to or lower than
15%. The value of IC50 for HDAC-1 and HDAC-2 was 0.44 µM and 0.37 µM, respectively.
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Table 3. Selectivity study of compound (5) against HDACs 3–11 at 10 µM.

Compound 3 4 5 6 7 8 9 10 11

(5) 82 ± 1.2 5 ± 0.4 5 ± 0.5 3 ± 0.4 15 ± 0.7 13 ± 1.0 7 ± 0.4 60 ± 1.4 15 ± 0.6

The results seen in the molecular docking studies contributed to comprehend and
predict the trends in the activity of the compounds. As shown, the docking score and
the pose predicted for compound (4) and (5) have already demonstrated a difference in
the interaction pattern and in the mode of binding between these molecules due to the
conformational rigidity changes, with (5) being highlighted as the most promisor between
both compounds. A similar result was seen in the enzymatic evaluation, with compound
(5) being at least 2-fold more active than compound (4) against both HDAC-1 and HDAC-2.
Regarding compounds (20)–(24), the docking study showed a similar mode of binding
among them and, besides a few differences in the interactions with the amino acid residues.
DS values did not change much when the data from HDAC-2 was analyzed. A similar
trend was seen in the experimental results, with the inhibition values ranging from 72 to
96% against HDAC-1 and from 52 to 93% against HDAC-2. Compounds (25) and (26) were
developed with an additional protection in the cap region, by the addition of the phthalim-
ide subunit. The in silico study demonstrated that the cap region of these molecules was
exposed to the solvents, and was not able to perform any additional interaction with the
active site. The enzymatic evaluation demonstrated that both compounds were not able to
inhibit HDAC-1 and HDAC-2 efficaciously. Although compounds (5), (21), and (22), were
the most active inhibitors for HDAC-1 and HDAC-2, we selected compound (5) for the IC50
and selectivity studies. The reason for that was due to favorable pharmacodynamic and
ADME profiles. It is well established in the literature the importance of the hydrophobic
character of the linker. As described [16], the 11 Å channel in the active site of HDAC-1 and
HDAC-2 presents hydrophobic amino acid residues, which was taken into account in the
decision of compound (5) compared to (21) and (22). The presence of arilamine in addition,
the intermediate clogP values (logP < 3), and good water solubility for (5), motivated the
continuity of the studies with this compound. We found no compound (5) sub micromolar
IC50 values against HDAC-1 and HDAC-2, and an interesting selectivity towards HDAC
Class I.

3. Materials and Methods
3.1. Computational Methods
3.1.1. Molecular Docking Studies

In silico studies were performed on Schrodinger (2019–4) Maestro v12.2 molecular
modeling environment and MarvinSketch on a computer containing an Intel Core I7–4790
processor with 16 Gb memory and the Nvidia GeForce GTX 980 graphic processor. All the
2D structures were drawn using MarvinSketch. The 3D structures were generated by the
LigPrep procedure. Tautomers and stereoisomers were assessed. For this study, the targets
used included HDAC-1 (PDB ID: 4BKX; resolution: 3.00 Å) and HDAC-2 (PDB ID: 4LY1;
resolution: 1.57 Å), which were retrieved from Protein Data Bank. Protein preparations
were carried out on the Protein Preparation Wizard, following the steps: (i) Removal
of water molecules; (ii) Adding hydrogen atoms; (iii) Filling in incomplete side chains;
(iv) Energy minimization using OPLS3 force field. It was used in Epik to generate the
protonation state at pH 7.0 ± 2.0 and OPLS03 as a field force [35]. The validation of the
molecular docking method for HDAC-2 was performed by redocking of the crystalized
compound (20Y) and the calculation of the Root Mean Deviation Square (RMSD). The
minimization steps were repeated until the converge threshold RMSD was equal to 0.15 Å.
The grid generation was prepared with volume appropriated to cover all investigational
active sites. The interaction box (measuring 15 Å × 15 Å × 15 Å) was centered on the Zn+2
atom. All docking calculations were performed using Glide in extra-precision mode (XP).
We performed re-docking to check for all docking simulations, 20 poses were generated,
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and post-docking minimization was performed. All these parameters were kept as default.
The compounds were scored by GlideScore [36]. The poses were analyzed by PoseView
and UCSF Chimera.

3.1.2. Molecular Dynamics Simulations

The best ranked pose of complexes HDAC-1-(5), HDAC-2-(5), and HDAC-2-(4), gen-
erated by docking, as well as the free HDAC-2 protein, were selected as input structure
for four batches of molecular dynamics simulations (MD). N and C-terminal were capped
with ACE and NME residues, respectively. The three structural ions (Zn2+ and two K+ for
HDAC-1, and Zn2+, Ca+ and Na+ for HDAC-2) were retrieved, respectively, from PDB
IDs: 4BKX and 4LY1. All hydrogen atoms were removed to avoid nomenclature mismatch.
Except for HIS286, considered as HIP, no protonation change was identified using the
PDB2PQR software [37,38] at pH 7.0 and thus all other residues were kept at their default
state. The histidine tautomers were defined as HID to residues 44, 73, 145, 146, 172, and
349, and as HIE to residues 33, 38, 62, 183, 184, and 204 (HDAC-2 numbering), to optimize
the protein hydrogen-bond network. The RESP charge of ligands (4) and (5) was obtained
using the default parameters of R.E.D server [39,40], except for CHR_TYP = RESP-X1. An-
techamber and tLeap features of AmberTools21 were applied to generate a suitable ligand
library in gaff2 force field for complex preparation. The previously prepared protein and
parametrized ligand were parametrized using gaff2 and ff19SB [41] forcefields and solvated
by a truncated octahedral box of OPC water, centered at the center of mass of protein and
with edges located at least 12 Å from any protein atom. Na+ and Cl- for neutralization and
salt concentration of 120 mM. Finally, using parmed, we implemented the hydrogen mass
repartitioning (HMR) [42]. Four minimizing steps was performed. Firstly, 2000 steps of
minimization were executed in CPU version of pmemd implemented in Amber20 [43,44],
restraining the protein, structural ions, and ligand, with force of 500 kcal.mol−1. After this,
all minimization/simulation protocols were executed in the GPU version of pmemd. We
performed an extra 7000 steps of minimization of solvent, followed by another 7000 steps
restraining only the protein residues. The first half of the steps in each execution was
carried out using the steepest descent method, which was switched to conjugate gradient.
The last minimization protocol consisted in a minimization without restraint until conver-
gence. Each system was linearly heated to 310K at NVT ensemble Berendsen thermostat
non-solvent constraint with force of 10 kcal.mol−1 during 200 ps, followed by density
equilibration during 500 ps at NPT ensemble, using the Langevin thermostat and Monte
Carlo barostat, with collision frequency and pressure relaxation time of 2 ps−1 and 1 ps,
respectively, also constraining non-solvent atoms with a force of 10 kcal.mol−1. We thus
equilibrated the system during 5 ns without constraints, using the same parameters of
density equilibration. After equilibration, each complex was simulated during 50 ns. All
protocol was replicated five times for each complex, changing only the random seed. A
timestep of 4 fs was used, enabled by the HMR and SHAKE algorithm, and the PME
long-range interaction cutoff was defined as 10 Å. Simulation analysis were carried out
using the cpptraj software.

3.1.3. In Silico Prediction of ADME Properties

In silico ADME properties of the compounds (4), (5), (7), (20)–(26), were determined
using the Swiss ADME software.

3.2. Chemistry
3.2.1. General Chemical Aspects

Solvents and reagents were purchased from commercial suppliers, and for reactions, all
solvents were dried before use. These reactions were monitored using thin-layer chromatog-
raphy (TLC), precoated with silica gel 60 (HF-254; Sigma-Aldrich, St. Loius, MA, USA) to
a thickness of 0.25 mm. The plates were exposed to UV light (254 nm) and, when necessary,
treated with ninhydrin to detect primary amines. All compounds were purified on a
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chromatography column with silica gel (60 Å pore size, 35–75 µM particle size) using ap-
propriate mobile phases as described for each compound. The purity of all compounds was
characterized by HPLC using a Shimadzu LC-10AD chromatograph equipped with a model
SPD-10A UV–vis detector (Shimadzu, Kyoto, Japan). For this study, all compounds exhib-
ited purity greater than 98.5%. Melting points (MPs) were determined in open capillary
tubes using an electrothermal melting point apparatus (SMP3; Bibby Stuart Scientific, Stone,
UK). Nuclear magnetic resonance (NMR) spectra for 1H and 13C of all compounds were
obtained on a Bruker DRX-600-megahertz (MHz) NMR spectrometer (Billerica, MA, USA)
using deuterated solvents for sample preparation. Chemical shifts were expressed in parts
per million (ppm) relative to tetramethylsilane. The coupling constants were reported in
hertz (Hz), and the signal multiplicities were reported as singlet (s), doublet (d), doublet of
doublets (dd), doublet of doublets of doublets (ddd), triplet (t), and multiplet (m). Mass
spectra were acquired using the LC-DAD-ESI system from Shimadzu HPLC (CBM20A)
(Shimadzu, Kyoto, Japan), LC-20AD quaternary pump, SPD-M20A detector, SIL-20A au-
tosampler, and CTO-20A column compartment, coupled to a Bruker Ion Trap ESI source
(Amazon SL). Mass analysis was performed in positive mode and m/z scanned 50–1000
using the following parameters: source voltage of 4.5 kV, 9.00 L/min sheath gas, 40 psi
nebulizer, and dry temperature of 300 ◦C.

3.2.2. General Procedure for the Synthesis of Compound (2)

In the first step, 2.5 mmol of 4-bromobenzoic acid (1) was kept under stirring at room
temperature with an excess of oxalyl chloride (4 mmol) and 2 drops of dimethylformamide
(DMF) in anhydrous DCM for 1 h. Subsequently, the solvent was removed under a vac-
uum and stored. In the second step, two equivalents of o-phenylenediamine (5 mmol)
were added to anhydrous tetrahydrofuran (THF) and 4-methylmorpholine (10 mmol) and
kept under stirring at 0 ◦C for 30 min. Later, the stored reaction medium was resus-
pended with THF and added dropwise to the amine solution. The reaction was kept
under stirring conditions at room temperature (RT) for 12 h. The solvent was removed
under vacuum, resuspended in 100 mL of ethyl acetate, and washed with distilled water
(3 × 50 mL). The organic layer was dried over sodium sulfate, and the solvent was removed
under a vacuum. A column chromatography (flash silica; eluent: ethyl acetate: hexane,
5:5 (v/v)) purification of the crude product provided compound (2). White powder; yield:
65%; 1H NMR (300 MHz, DMSOd6, δ ppm) δ: 9.80 (1H, s, NH), 7.94 (d, J = 8.4 Hz, 2H),
7.72 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 7.6 Hz, 1H), 6.97 (t, J = 7.6 Hz, 1H), 6.77 (dd, J = 8.0 Hz,
1H), 6.59 (t, J = 7.3 Hz, 1H), 4.94 (s, NH2, 2H). 13C NMR (75MHz, DMSOd6, δ ppm) δ: 164.4,
143.3, 133.8, 131.2, 130.0, 126.8, 126.6, 125.1, 123.0, 116.1, 116.0.

3.2.3. General Procedure for the Synthesis of Compound (4)

A mixture of compound (2) (1.7 mmol), di-tert-butyl dicarbonate (2.55 mmol), and THF
were stirred at RT for 12 h. The solvent was removed under vacuum, resuspended in 100 mL
of ethyl acetate, and washed with distilled water (3 × 50 mL). The organic layer was dried
over sodium sulfate, and the solvent was removed under vacuum to obtain compound
(3) as a brown oil. In a separate flask, one equivalent of compound (3) (1.7 mmol) was
added to 3 mL of triethanolamine, 4-vinylaniline (1.7 mmol), palladium acetate II (5 mol%)
and stirred at 120 ◦C for 24 h. The reaction medium was diluted with 100 mL of ethyl
acetate and washed with distilled water (5 × 50 mL). The organic layer was dried over
sodium sulfate, and the solvent was removed under a vacuum. The crude product was
purified by column chromatography (flash silica; eluent: ethyl acetate: hexane, 3:7 (v/v)),
providing the stilbene at a yield of 33%. The stilbene was treated with trifluoroacetic acid to
provide a compound (4). Yellow powder; yield, 33%; 1H NMR (300 MHz, DMSOd6, δ ppm)
δ: 9.64 (s, NH), 7.95 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H),
7.23 (d, J = 16.3 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 6.99–6.96 (m, H-12, 2H), 6.79 (t, J = 7.6 Hz,
1H), 6.62–6.57 (m, H-15, 3H), 5.3 (d, NH2). 13C NMR (75MHz, DMSOd6, δ ppm) δ: 165.0,
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149.2, 143.1, 141.1, 132.0, 131.1, 128.2, 128.1, 126.7, 125.4, 124.4, 123.5, 121.7, 116.3, 116.2;
MS/ESI m/z calculated for C21H19N3O: 329.15, found: [M+H]+ 330.19.

3.2.4. General Procedure for the Synthesis of Compound (5)

The medium containing compound (4) (1.5 mmol) was added to 10 mL of anhydrous
acetone and Pd/C (10 mol%). H2 was influxed, and the reaction was stirred at RT for 6 h.
The reactional medium was filtered through Celite®, washed with acetone, and the solvent
was then removed under vacuum. Then, 100 mL of ethyl acetate was added and washed
with distilled water thrice (3 × 50 mL). The organic layer was dried over sodium sulfate,
and the solvent was removed under vacuum to obtain the compound (5). White powder;
yield, 90%. 1H NMR 300 MHz, DMSOd6, δ ppm) δ: 9.59 (1H, s, NH), 7.88 (2H, d, H-9),
7.32 (2H, d, H-10), 7.17 (1H, d, H-3), 6.97 (1H, t, H-5), 6.88 (2H, d, H-15), 6.78 (1H, d, H-6),
6.60 (1H, t, H-4), 6.48 (2H, d, H-16), 4.89 (4H, s, NH2), 2.89 (2H, t, H-12), 2.75 (2H, t, H-13);
13C NMR (75MHz, DMSOd6, δ ppm) δ: 166.7, 146.0, 144.1, 142.0, 135.3, 129.7, 129.5, 129.2
127.2, 125.3, 124.7, 118.1, 116.6, 116.2, 35.6; MS/ESI m/z calculated for C21H21N3O: 331.16,
found: [M+H] + 332.17.

3.2.5. General Procedure for the Synthesis of Compounds (6)

One equivalent of 4-bromobenzoic acid (1) (2.98 mmol), styrene (2.98 mmol), palladium
acetate II (5 mol%), triethanolamine (3 mmol), and 8 mL of anhydrous toluene, were stirred
at 120 ◦C for 24 h. The solvent was removed under vacuum, resuspended in 100 mL of
ethyl acetate, filtered through Celite®, and washed with distilled water (3 × 50 mL). The
organic layer was dried over sodium sulfate, and the solvent was removed under a vacuum.
The crude product was purified by column chromatography (flash silica; eluent: ethyl
acetate: hexane, 5:5 (v/v)) to provide the compound (6). White powder; yield 60%; 1H NMR
(300 MHz, DMSOd6, δ ppm) δ: 8.13 (d, J = 8.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.42 (dd,
J = 7.7 Hz, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.25 (d, J = 16 Hz, 1H), 7.20 (d, J = 16 Hz, 1H),
7.16 (t, 1H). 13C NMR (75MHz, DMSOd6, δ ppm) δ: 167.8, 137.3, 135.6, 133.4, 130.1, 129.7,
128.8, 128.1, 127.4, 126.0

3.2.6. General Procedure for the Synthesis of Compound (7)

One equivalent of compound (6) (1.10 mmol) was treated with an excess of oxalyl
chloride (1.55 mmol), two drops of DMF, and 2 mL of toluene. The reaction was stirred
at 70 ◦C for 2 h. The solvent was removed under a vacuum and stored. Two equivalents
of o-phenylenediamine (2.2 mmol) were added to 250 µL of triethylamine (1.87 mmol),
and 10 mL of DCM at 0 ◦C and the reaction was stirred for 1 h. Subsequently, the stored
reaction medium was resuspended with dichloromethane and added dropwise to the
amine solution. The reaction was stirred at room temperature for 24 h. The solvent was
removed under vacuum, resuspended in 100 mL of ethyl acetate, and washed with sodium
bicarbonate saturated solution (3 × 50 mL) and distilled water (2 × 50 mL). The organic
layer was dried over sodium sulfate, and the solvent was removed under a vacuum. The
crude product was purified by column chromatography (flash silica; eluent: ethyl acetate:
hexane, 5:5 (v/v)) to provide a compound (7). Yellow powder; yield, 6%; mp 177–179 ◦C.
1H NMR (300 MHz, DMSOd6, δ ppm) δ: 9.17 (s, NH), 8.0 (d, 2H), 7.77 (d, 1), 7.72 (d, 2H),
7.65 (d, 1H), 7.40 (d, 2H), 7.30 (m, 2H) 7.0 (d, 1H), 6.86 (t, 1H), 6.67 (d, 1H), 4.64 (s, NH2).
13C NMR (75 MHz, DMSOd6, δ ppm) δ: 165.1, 143.7, 142.0, 137.9, 134.9, 132.3, 130.5, 129.6,
128.8, 127.6, 127.5, 127.4, 127.2, 126.2, 124.9, 118.1; MS/ESI m/z calculated for C21H18N2O:
314.14, found: [M+H]+ 315.16.

3.2.7. General Procedure for the Synthesis of Compounds (10)–(13)

In the first step, 4-bromomethylbenzoic acid (8) was treated with 10 mL of methanol
and 1 mL of sulfuric acid, and the reaction was stirred for 12 h at RT. The reaction medium
was placed on an ice bath, and the product (9) was precipitated followed by filtration to
yield 94.3% as a white powder. In the next step, one equivalent of compound (9) (1.31 mmol),
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phenol (1.31 mmol), aniline (1.31 mmol), 4-hydroxyphenol (1.31 mmol), 4-aminophenol
(1.31 mmol), or salicylamide (1.31 mmol), as well as potassium carbonate (2.62 mmol),
potassium iodide (1.31 mmol), and 10 mL of butanone, was added, and the reaction was
stirred at 90 ◦C for 12 h. The solvent was removed under vacuum, resuspended in 100 mL
of ethyl acetate, and washed with distilled water (3 × 50 mL). The organic layer was dried
over sodium sulfate, and the solvent was removed under a vacuum. The crude product was
purified by column chromatography (flash silica; eluent: ethyl acetate: hexane, 2:8 (v/v))
to provide compound (10). White powder; yield, 55%; 1H NMR (300 MHz, DMSOd6,
δ ppm) δ: 7.98 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.30 (dd, J = 7.8 Hz, 2H), 7.01 (d,
J = 7.8 Hz, 2H), 6.95 (ddd, 1H), 5.20 (s, CH2), 3.85 (s, CH3). 13C NMR (75 MHz, DMSOd6,
δ ppm) δ: 167.2, 159.1, 139.0, 133.7, 128.3, 127.8, 126.0, 120.2, 115.5, 70.6, 51.7; column
chromatography (flash silica; eluent: ethyl acetate: DCM, 3:7 (v/v)) to provide compound
(11) Orange oil; yield, 82%. 1H NMR (300 MHz, DMSOd6, δ ppm) δ: 7.95 (d, 2H), 7.42 (d,
2H), 7.17 (t, 2H), 6.67 (t, 1H), 6.53 (d, 2H), 4.50 (s, CH2), 3.92 (s, CH3). 13C NMR (75 MHz,
DMSOd6, δ ppm) δ: 166.4, 147.3, 144.1, 128.8, 127.7, 126.5, 127.0, 117.5, 113.0, 51.7, 45.0.;
column chromatography (flash silica; eluent: ethyl acetate: hexane, 2: 8 (v/v)) to provide
compound (12). Brown powder; yield, 50%. 1H NMR (300 MHz, DMSOd6, δ ppm) δ: 7.97
(d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 6.83 (d, J = 9.0 Hz, 2H), 6.67 (d, J = 9.0 Hz,
2H), 5.08 (s, 2H), 3.85 (s, CH3). 13C NMR (75 MHz, DMSOd6, δ ppm) δ: 167.3, 153.5, 152.4,
139.7, 130.2, 126.3, 126.0, 115.7, 69.8, 51.7; column chromatography (flash silica; eluent:
ethyl acetate: hexane, 5:5 (v/v)) to provide compound (13). White powder; yield, 70%. %.
1H NMR (300 MHz, DMSOd6, δ ppm) δ: 7.97 (d, J = 8.3 Hz, 2H), 7.57 (d, J = 8.3 Hz, 2H),
7.35 (d, J = 7.4 Hz, 2H), 6.92 (d, J = 7.4 Hz, 2H), 4.85 (s, NH2) 5.13 (s, CH2), 3.82 (s, CH3).
13C NMR (75 MHz, DMSOd6, δ ppm) δ: 167.0, 149.7, 144.3, 140.4, 132.0, 127.7, 127.4, 116.2,
115.1, 70.2, 51.7.

3.2.8. General Procedures for the Synthesis of Compounds (15)–(19)

One equivalent of compounds (10)–(13) (0.4 mmol) were added to 5 mL of THF and
sodium hydroxide aqueous solution (50% m/v) (2 mmol), and the reaction was stirred at
RT for 8 h. Then, the pH was adjusted to 4; the solvent was removed under vacuum,
resuspended in 100 mL of DCM, and washed with distilled water (3 × 50 mL). The organic
layer was dried over sodium sulfate, and the solvent was removed under vacuum to pro-
duce compounds (15–19). Compound (15)-White powder; yield, 57%. 1H NMR (300 MHz,
DMSOd6, δ ppm) δ: 7.96 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.2 Hz, 2H), 7.30 (dd, J = 7.9 Hz, 2H),
7.01 (d, J = 7.9 Hz, 2H), 6.95 (ddd, 1H), 5.19 (s, 2H); 13C NMR (75 MHz, DMSOd6, δ ppm)
δ: 168.8, 158.9, 140.5, 132.4, 129.9, 129.6, 126.5, 121.6, 115.7, 70.9; Compound (16)-Brown
powder, yield 65%. 1H NMR (300 MHz, DMSOd6, δ ppm) δ: 8.09 (d, 2H), 7.46 (d, 2H),
7.13 (t, 2H), 6.66 (t, 1H), 6.51 (d, 2H), 4.46 (s, 2H); 13C NMR (75 MHz, DMSOd6, δ ppm)
δ: 168.9, 147.7, 141.9, 129.6, 129.3, 129.2, 127.4, 118.3, 114.5, 46.9. Compound (17)-Brown
powder; yield, 40%. 1H NMR (300 MHz, Acetoned6, δ ppm) δ: 8.05 (d, J = 8.4 Hz, 2H), 7.59
(d, J = 8.4 Hz, 2H), 6.83 (d, J = 9.1 Hz, 2H), 6.67 (d, J = 9.1 Hz, 2H), 5.13 (s, 2H-6); 13C NMR
(75 MHz, Acetoned6, δ ppm) δ: 168.9, 154.4, 153.3, 140.9, 133.0, 129.7, 126.6, 117.0, 116.5,
70.3. Compound (18)-White powder; yield, 70%. 1H NMR (300 MHz, DMSOd6, δ ppm)
δ: 7.95 (d, J = 7.5 Hz, 2H), 7.54 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 7.5 Hz, 2H), 6.92 (d, J = 8.3 Hz,
2H), 5.13 (s, 2H), 4.90 (s, NH2); 13C NMR (75 MHz, DMSOd6, δ ppm) δ: 168.9, 151.0, 143.9,
140.5, 132.4, 129.9, 126.5, 116.9, 116.0, 70.4. Compound (19)-White powder; yield, 21%; mp.
196.5 to 198.6 ◦C. 1H NMR (300 MHz, Acetoned6, δ ppm) δ: 8.09–8.03 (m, 3H), 7.68–7.63 (d,
3H), 7.53–7.50 (d, 2H), 4.73 (s, 2H), 5.49 (s, CONH2); 13C NMR (75 MHz, Acetoned6, δ ppm)
δ: 168.9, 168.7, 157.7, 140.9, 133.5, 132.3, 131.1, 129.9, 126.6, 122.7, 122.0, 115.6, 71.5.

3.2.9. General Procedure for the Synthesis of Compounds (20)–(24)

One equivalent of compounds (15)–(19) (0.88 mmol), CDI (1.32 mmol), and 5 mL
of acetonitrile were stirred at RT for 1 h. Then, o-phenylenediamine (0.97 mmol) was
added to the reaction and stirred for 24 h at RT. The solvent was removed under vacuum,
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resuspended in 100 mL of ethyl acetate, and washed with distilled water (3 × 50 mL).
The organic layer was dried over sodium sulfate, and the solvent was removed under a
vacuum. Compound (20) was purified by column chromatography (flash silica; eluent:
ethyl acetate: hexane, 1:9 to 8:2 (v/v)) and obtained as a brown powder, with a yield of
40%; compound (21) was purified by column chromatography (flash silica; eluent: ethyl
acetate: DCM, 2:8 (v/v)) and obtained as a white powder, with a yield of 25%; compound
(22) was purified by column chromatography (flash silica; eluent: ethyl acetate: hexane, 1: 9
to 8:2 (v/v)); compound (23) was purified by column chromatography (flash silica; eluent:
ethyl acetate: DCM, 2:8 (v/v)); compound (24) was purified by column chromatography
(flash silica; eluent: 100% ethyl acetate). Compound (20)-Brown powder; yield, 40%;
mp 162 to 163.7 ◦C. 1H NMR (300 MHz, DMSOd6, δ ppm) δ: 9.60 (s, NH), 8.52 (d, 2H),
8.39 (d, 1H), 8.09 (d, 1H), 8.07 (d, 2H), 7.75 (m, 3H), 7.49 (d, 2H), 7.40 (t, 1H), 7.14 (t, 1H),
5.68 (s, 2H). 13C NMR (75 MHz, DMSOd6, δ ppm) δ: 165.6, 158.7, 142.1, 138.9, 138.4, 129.9,
128.2, 127.9, 127.6, 126.9, 121.3, 120.1, 117.7, 115.2, 115.2, 69.1; MS/ESI m/z calculated
for C20H18N2O2: 318.13, found: [M+H]+ 319.14; Compound (21)-White powder; yield,
25%; mp 188.3 to 189.9. 1H NMR (300 MHz, DMSOd6, δ ppm) δ: 9.60 (s, NH), 7.92 (d,
2H), 7.47 (d, 2H), 7.15 (d, 1H), 7.03 (d, 2H), 6.55 (d, 2H), 6.96 (t, 1H), 6.78 (d, 1H), 6.51
(t, 1H), 6.35 (t, 1H), 4.87 (s, 2H), 4.35 (s, NH2). 13C NMR (75 MHz, DMSOd6, δ ppm)
δ: 166.7, 147.8, 144.3, 142.0, 135.7, 129.1, 128.9, 127.7, 127.0, 125.3, 124.8, 118.3, 118.1,
116.5, 114.2, 46.9; MS/ESI m/z calculated for C20H19N3O: 317.15, found: [M+H]+ 318.17.
Compound (22)-Yellow powder; yield, 40%; mp 223.9 to 225.7 ◦C. 1H NMR (300 MHz,
DMSOd6, δ ppm) δ: 9.67 (s, NH), 8.99 (s, OH), 7.98 (d, 2H), 7.54 (d, 2H), 7.15 (d, 1H), 6.95
(t, 1H), 6.83 (d, 2H), 6.77 (d, 1H), 6.67 (d, 2H), 6.60 (t, 1H), 5.08 (s, NH2), 4.89 (s, 2H). 13C
NMR (75 MHz, DMSOd6, δ ppm) δ: 166.7, 154.3, 153.4, 142.1, 139.7, 138.6, 128.7, 127.7,
127.0, 125.3, 124.8, 118.1, 116.9, 116.6, 116.5, 70.8; MS/ESI m/z calculated for C20H18N2O3:
334.13, found: [M+H]+ 335.19; Compound (23)–White powder, yield, 35%; mp. 237 to
240 ◦C. 1H NMR (300 MHz, DMSOd6, δ ppm) δ: 9.67 (s, NH), 7.97 (d, J = 8.0 Hz, 2H), 7.78
(dd, J = 8.0 Hz,2H), 7.52 (d, J = 8.0 Hz, 2H), 7.17 (dd, J = 8.0; 7.6 Hz, 1H), 6.97 (td, J = 8.1;
8.0 Hz, 1H), 6.73 (d, J = 8.8 Hz, 2H), 6.60 (t, J = 8.1; 7.6 Hz, 1H), 6.50 (d, J = 8.8 Hz, 2H),
5.04 (s, 2H), 4.90 (s, NH2), 4.64 (s, NH2). 13C NMR (75 MHz, DMSOd6, δ ppm) δ: 165.1,
149.4, 143.2, 142.8, 141.4, 133.8, 127.9, 127.1, 126.7, 126.5, 123.3, 116.3, 116.1, 115.8, 114.9, 69.2;
MS/ESI m/z calculated for C20H19N3O2: 333.14, found: [M+H]+ 334.17; Compound (24)-
beige powder; yield, 10%; mp 200 to 205 ◦C. 1H NMR (300 MHz, DMSOd6, δ ppm) δ:
9.68 (s, NH), 8.02–8.00 (d, 2H), 7.79–7.78 (dd, 1H), 7.65–7.63 (m, 4H), 7.46–7.44 (t, 1H), 7.20
(d, 2H), 7.18–7.17 (d, 1H), 7.05 (t, 1H), 6.98 (t, 1H), 6.79 (d, 1H), 6.60 (t, 1H), 5.36 (s, CH2).
13C NMR (75 MHz, DMSOd6, δ ppm) δ: 165.0, 155.9, 143.2, 140.0, 134.2, 132.1, 130.6, 128.0,
127.4, 126.7, 123.7, 123.2, 121.0, 116.2, 116.0, 115.5, 113.1, 69.38; MS/ESI m/z calculated for
C21H19N3O3: 361.14, found: [M+H]+ 362.16.

3.2.10. General Procedures for the Synthesis of Compounds (25) and (26)

One equivalent of phthalic anhydride or 3-nitrophthalic anhydride (0.15 mmol) was
treated with EDC (0.30 mmol) in 5 mL of DMF for 1 h at room temperature. Then, 4-
dimethylaminopyridine (DMAP) (0.03 mmol) and compound (23) (0.15 mmol) were added,
and the reaction was stirred for 24 h at RT. 50 mL of ethyl acetate was added to the
reaction and washed with distilled water (4 × 50 mL). The organic layer was dried over
sodium sulfate, and the solvent was removed under a vacuum. Compounds (25) and (26)
were purified by column chromatography (flash silica; eluent: ethyl acetate: hexane, 5:5
(v/v). Compound (25)-Yellow powder; yield, 25%; 1H NMR (300 MHz, DMSOd6, δ ppm)
δ: 9.57 (s, NH), 7.99–7.94 (m, 4H), 7.92 (d, 2H), 7.62 (d, 2H), 7.49 (d, 2H), 7.15 (m, 3H), 6.96
(t, 1H), 6.78 (d, 1H), 6.59 (t, 1H), 5.29 (s, 2H), 4.87 (s, NH2). 13C NMR (75MHz, DMSOd6,
δ ppm) δ: 167.3, 166.7, 157.6, 142.0, 139.7, 138.6, 131.9, 128.7, 127.7, 126.7, 125.3, 118.1,
116.6, 115.9, 70.8; MS/ESI m/z calculated for C28H21N3O4: 463.49, found: [M+H]+ 464.52;
Compound (26)-Yellow powder; yield, 15%; 1H NMR (300 MHz, DMSOd6, δ ppm) δ: 8.33
(d, 1H), 8.24 (d, 1H), 8.20 (d, 2H), 8.11 (t, 1H), 7.66 (m, 3H), 7.54 (d, 1H), 7.38 (d, 2H), 7.23 (t,
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1H), 7.20 (m, 3H), 5.26 (s, 2H). 13C NMR (75 MHz, DMSOd6, δ ppm) δ: 165.5, 162.9, 158.2,
144.5, 143.8, 138.6, 136.4, 135.0, 129.7, 129.0, 128.3, 128.2, 127.0, 126.6, 124.2, 122.9, 122.6,
121.8, 118.9, 115.1, 111.4, 69.1; MS/ESI m/z calculated for C28H20N4O6: 508.13, found:
[M+H]+ 509.15.

3.3. Enzymatic Evaluation

The enzymatic assay to evaluate HDAC inhibitory effects for all final compounds
against the distinct isoforms was carried out in accordance with the previously described
procedures (Lopes et al., 2021). All compounds were initially screened at 10 µM against
HDAC-1 and HDAC-2. To characterize the selectivity of the most potent compounds, an
assay was carried out against HDAC isoforms (HDAC 4—HDAC-11). Moreover, the IC50
values of the most active compounds were determined in which vorinostat (SAHA) was
used as a drug control. All the compounds were dissolved in DMSO. A serial dilution of the
compounds was performed in 100% DMSO with the highest concentration at 1 mM. Each
intermediate compound dilution (in 100% DMSO) was diluted 10x in assay buffer to form a
10% DMSO intermediate dilution in HDAC assay buffer. 5 µL of this dilution was added to
a 50 µL reaction to bring the final concentration of DMSO to 1% in all the reactions. Three
independent experiments were carried out in triplicate for all experiments. The fluorescence
intensity was measured at an excitation of 360 nm and emission of 460 nm using a Tecan
Infinite M1000 microplate reader, and the percentage of activity was calculated using the
formula: % activity = (F − Fb)/(Ft − Fb), where F = the intensity of fluorescence in the
presence of the compound. In the absence of the test compound, the fluorescent intensity
(Ft) in each dataset was defined as 100% activity, while in the absence of HDAC, the
fluorescent intensity (Fb) in each dataset was set to 0% activity [45].

4. Conclusions

By using the chemical structure of RVT as a scaffold, we designed and synthesized
new derivatives of HDAC inhibitors. Molecular docking guided structural optimizations,
revealing that unsaturated linkers are not suitable for HDAC inhibition. All compounds,
except (26), exhibited drug-like properties. All compounds were synthesized and obtained
in global yields ranging from 33 to 67.3%, with inhibition values ranging from 1 to 96%
for HDAC-1 and 6 to 93% for HDAC-2. Moreover, all compounds were characterized
by analytical methods such as NMR 1H and 13C and mass spectrometry. The enzymatic
inhibition results corroborated with the data previously obtained in the in silico study.
Compound (5) was the most promising, with IC50 values of 0.44 µM and 0.37 µM against
HDAC-1 and HDAC-2, respectively. We found that compound (5) preferably inhibited
HDAC class I, mainly HDAC-1–3. All compounds were synthesized and obtained in
global yields ranging from 33 to 67.3%, with inhibition values ranging from 1 to 96% for
HDAC-1 and 6 to 93% for HDAC-2. Based on these results, it can be concluded that the
optimization of RVT structure resulted in more potent and selective HDAC-1 and HDAC–2
inhibitors that could be used as prototypes to be applied to a variety of diseases derived
from epigenetic modifications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15101260/s1, Figures S1 and S2: IC50 curve of compound (5)
against HDAC-1 and HDAC-2; Figures S3–S13: Pose prediction of the final compounds in the active
site of HDAC-2 and its interactions; Figures S14–S19: RMSD of heavy atoms of compounds (4) and
(5) during each replicate of HDAC-1 and HDAC-2; Figures S20 and S21: Distance between center
of mass of 4-aminophenyl ring to the hydrogen atom of PHE155 for each replicate in HDAC-1 and
HDAC-2; Figures S21–S41: 1H and 13C NMR spectra of the final compounds; Table S1: Prediction of
pharmacokinetic properties of the compounds;
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