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Abstract

Socioeconomic status (SES) and education (EDU) are phenotypically associated with psychiatric 

disorders and behaviors. It remains unclear how these associations influence genetic risk for 

psychopathology, psychosocial factors, and EDU/SES individually. Using information from >1 

million individuals, we conditioned the genetic risk for psychiatric disorders, personality traits, 

brain imaging phenotypes, and externalizing behaviors with genome-wide data for EDU/SES. 

Accounting for EDU/SES significantly affected the observed heritability of psychiatric traits 

ranging from 2.44% h2 decrease for bipolar disorder to 14.2% h2 decrease for Tourette syndrome. 

Neuroticism h2 significantly increased by 20.23% after conditioning with SES. After EDU/SES 

conditioning, neuronal cell-types were identified for risky behavior (excitatory), major depression 

(inhibitory), schizophrenia (excitatory and GABAergic), and bipolar disorder (excitatory). 

Conditioning with EDU/SES also revealed unidirectional causality between brain morphology, 

psychopathology, and psychosocial factors. Our results indicate that genetic discoveries related to 

psychopathology and psychosocial factors may be limited by genetic overlap with EDU/SES.

Introduction

Education (EDU) and socioeconomic status (SES) are risk or protective factors for traits 

related to mental health and disease.1, 2 Social position has been repeatedly correlated with 

mood, anxiety, and substance use related disorders, while EDU phenotypes such as 

educational attainment, math ability, and fluid intelligence are overall protective factors for 

development of neurological and psychiatric conditions.2 Though highly correlated, the 

specific EDU and/or SES phenotypes used in epidemiological studies clearly account in part 

for the incidence of numerous health outcomes, including self-reported health, chronic 

conditions, and overall mortality.3 It is therefore imperative to understand how EDU and 

SES phenotypes influence what we understand about human health and disease.

Genome-wide association studies (GWAS) are powerful hypothesis-generating investigation 

for detecting risk loci with respect to phenotypes of interest. Their widespread use has led to 

risk locus discovery underlying thousands of phenotypes across the spectrum of human 

health, including mental and physical traits, personality, anthropometric measures, 

intelligence, and behaviors.4 An observation generated from large-scale GWAS is the 

widespread presence of pleiotropy; a single SNP (or a set of SNPs) may have a range of 

relatively small effects on multiple similar or disparate phenotypes. On a genome-wide 

scale, these pleiotropic effects, detected using GWAS summary data, may be used to 

determine genetic correlations between phenotypes to putatively identify genetic 

underpinnings of trait pairs.5
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The EDU phenotypes educational attainment and cognitive performance have relatively high 

SNP-heritability: the phenotypic variance explained by genetic information was 40%6 and 

21.5%,7 respectively. SES is defined as the social standing or class of an individual or group, 

often measured as a combination of education, income, and occupation.8 SES phenotypes 

such as household income and Townsend deprivation index (i.e., measure of SES based on 

whether individuals own their homes, their employment status, their access to a vehicle, and 

whether or not individuals share living accommodations with others) are significantly 

heritable and show strong genetic correlation with EDU traits.9 Additionally, there is 

pleiotropy of genetic risks between EDU/SES and a range of psychopathologies and 

psychosocial factors (e.g., psychiatric disorders, personality traits, internalizing and 

externalizing behaviors, social science outcomes, and brain imaging phenotypes).10, 11

The epidemiological observations of high genetic correlations between genetic risk for 

EDU/SES, psychopathology, and psychosocial factors1, 2 raise two critical questions: (1) 

how might genetic variants with strong effects on EDU/SES affect our understanding of the 

overall genetic risk for psychopathology and psychosocial factors? and (2) is there evidence 

that genetic variants associated with psychopathology and psychosocial factors affect our 

understanding of the overall genetic risk for EDU/SES? The goal of this study was to 

investigate how the shared genetic effects between the general categories of EDU, SES, 

psychopathology, and psychosocial factors influence genetic risk for individual phenotypes 

within each of these classes.

There are several ways to approach these questions such as polygenic risk scoring (PRS) or 

multi-trait analysis of GWAS (MTAG). PRS12 is an analytic approach by which a persons’ 

genetic information is used to derive a numerical description of their risk to develop a 

disorder or display a certain trait.13 PRS is a tempting approach to answer our question; but 

PRS using psychopathology and psychosocial factors to predict the same or different 

phenotypes from an independent dataset often explain very little variance in the outcome 

phenotype.14, 15, 16 MTAG analyzes the GWAS of several traits with the goal of boosting 

statistical power and the detection of genetic signal across those traits. MTAG adjusts per-

SNP effect estimates and association p-values using the strength of the genetic correlation 

between phenotypes.17 Genetic correlations between EDU/SES and related phenotypes 

have, however, demonstrable biases from environmental confounders. If genetic correlations 

involving EDU and SES proxy phenotypes are significantly upwardly biased, an MTAG 

adjustment of summary statistics may inappropriately correct (i.e., bias) the summary 

statistics used for this study. To disentangle the complex genetic overlaps between EDU/

SES, psychopathology, and psychosocial factors, we therefore used multi-trait conditioning 

and joint analysis (mtCOJO), which generates conditioned GWAS summary statistics for 

each phenotype of interest after correcting for the per-SNP effects of another phenotype.18 

The mtCOJO approach is not based on genetic correlation, but leverages the causal 

relationship between trait pairs inferred by Mendelian randomization (MR). For our 

phenotypes of interest, mtCOJO is an advantageous approach, which, in theory, is 

independent of the effects of environmental confounders.19, 20 MR detects causal inferences 

between trait pairs using non-modifiable risk factors (SNPs) under the assumption that (1) 

SNPs are associated with an exposure variable, (2) SNPs are associated with an outcome 

variable only through the exposure, and (3) SNPs are not associated with confounders of the 
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relationship between exposure and outcome. Because SNPs are non-modifiable, 

environmental confounders of the relationship between SNP, exposure, and outcome should 

not influence MR estimates.19, 20

We used the mtCOJO approach to condition psychopathology and psychosocial factors with 

the per-SNP effects of EDU and SES phenotypes and investigate their underlying biology of 

more than 125 GWAS at multiple levels: (1) risk locus detection, (2) heritability (h2), (3) 

gene-set enrichment, (4) tissue transcriptomic profile enrichment, (5) cell type 

transcriptomic profile enrichment, (6) phenotype relationships via structural equation 

modeling and genetic correlation, and (7) latent genetically causal relationships (see flow 

diagram Fig S1). Our findings identify several cell types and phenotype relationships that 

were masked by the shared genetic etiology between psychopathology, psychosocial factors, 

and EDU/SES. Furthermore, we demonstrate that the same multi-level analyses of EDU and 

SES are largely robust to the effects of shared genetic etiology with psychopathology and 

psychosocial factors.

Results

An overview of all analytic approaches and their results is shown in Fig. S1.

Trait Inclusion

The genetic correlations (rg) between EDU (educational attainment, cognitive performance, 

highest math class, and self-rated math ability), SES (household income and Townsend 

deprivation index), and psychopathology and psychosocial factors (i.e., psychiatric 

disorders, personality traits, externalizing behaviors, social science outcomes, and brain 

imaging phenotypes) were estimated using the Linkage Disequilibrium Score Regression 

(LDSC) method (Figs. 1 and S2, Tables S1–S4).21 Description of brain imaging phenotype 

selection is described in the Supplemental Material. Note that sample overlap between EDU/

SES, psychopathology, and psychosocial factors was accounted for in conditioning 

experiments via incorporation of the sampling covariance estimated from GWAS summary 

statistics.18, 22

Conditioning Heritability and Risk Locus Discovery

We tested the effects of conditioning on the observed-scale heritability estimates (h2) using 

LDSC.21 Except for major depressive disorder (MDD), anxiety, and posttraumatic stress 

disorder (PTSD), conditioning reduced the h2 for all psychiatric disorders relative to their 

original estimates. The decrease in h2 ranged from 2.44%±0.187 for bipolar disorder 

(original p=3.55×10−33, h2=4.39%, se=0.360; highest conditioned p=5.67×10−65, h2=2.22%, 

se=0.460; lowest conditioned p=4.05×10−80, h2=1.70%, se=0.440) to 29.0%±0.105 for 

Tourette syndrome (original p=6.56×10−98, h2=21.0%, se=2.52; highest conditioned 

p=2.61×10−18 h2=6.72%, se=0.770; lowest conditioned p=1.27×10−18, h2=6.43%, se=0.730; 

Figs. 2 and S3, Table S5). Tourette syndrome exhibited the largest decrease in h2 after 

conditioning with the effects of EDU/SES phenotypes (1.78×10−11<pdiff<3.02×10−11, mean 

h2 decrease compared to original Tourette syndrome = 0.144, se=0.001). Conversely, two 

phenotypes exhibited significant increases in h2 after conditioning with EDU/SES 
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phenotypes: neuroticism (p=3.08×10−226, highest conditioned h2=20.2%, se=0.630; 

p=2.35×10−207, lowest conditioned h2=18.1%, se=0.590) and subjective well-being 

(p=8.11×10−62, highest conditioned h2=3.65%, se=0.220; p=4.67×10−52, lowest conditioned 

h2=3.34%, se=0.220).

Conditioning the neuroticism GWAS (p=3.88×10−46, original h2=9.41%, se=0.65) with 

EDU/SES phenotypes revealed several novel risk loci (ranging from 59 loci (neuroticism 

conditioned with income) to 100 loci (neuroticism conditioned with deprivation index; Fig. 

S4), increased h2 (1.94×10−32<p<5.27×10−28, mean h2 increase = 10.1%, se=0.747; Table 

S5), and confirmed known LD-independent risk loci. We observed an increase in the 

association signal in the neuroticism GWAS with the strongest effects observed after 

conditioning with SES phenotypes income (lambda GC=1.36; intercept=0.971, se=0.009) 

and deprivation index (lambda GC=1.75; intercept=0.967, se=0.009; Fig. S5 and Table S6). 

This increase was not related to an increase in the potential bias of population stratification 

(i.e., there was no significant change in the LDSC intercept, 0.884<pdiff<0.994), supporting 

that the observation was attributable to the increased detection of valid neuroticism 

polygenic signals. Using a physical proximity single-SNP-single-gene based annotation of 

conditioned neuroticism genomic risk loci (Table S7–S9), the top gene sets included Gene 

Ontology (GO) cellular component synapse (7.51×10−6<p<9.58×10−4, mean enrichment = 

0.138, se=0.019), GO biological process long term synaptic potentiation 

(2.95×10−6<p<7.43×10−5, mean enrichment = 0.650, se=0.042), and GO cellular component 

synapse part (enrichment 2.46×10−5<p<0.001, mean enrichment = 0.144, se=0.017).

The significant increase in h2 for GWAS of subjective well-being (original p=7.47×10−36, 

h2=2.50%, se=0.20) uncovered a 5.7 kb genomic risk locus on chromosome 7 (minimum 

genome-wide significant p=1.45×10−8) which maps to the α2δ1 subunit of calcium voltage-

gated channel (CACNA2D1, Tables S10–S12). The protein encoded by CACNA2D1 has 

been implicated in familial epilepsy and intellectual disability pedigrees but to our 

knowledge has not been implicated in genome-wide studies of these phenotypes.23, 24 The 

shared biology between neuroticism and subjective well-being and all other 

psychopathologies and psychosocial factors revealed similar results as those with EDU/SES 

phenotypes and are described in Supplementary Results (Figs. S3 and Tables S13–S17).

We next considered h2 estimates for psychopathology and psychosocial factors after 

conditioning in two additional experiments: (1) with latent factors representing EDU/SES 

phenotypes (excluding income, which failed to load on a latent factor; see Correlative, 

Latent, and Causal Relationships between Psychopathology and Psychosocial Factors) and 

(2) with all EDU/SES phenotypes simultaneously. All traits exhibited a reduction in SNP-h2 

except for extraversion (p=3.47×10−41, h2=0.137, se=0.010 when conditioned with all 

EDU/SES phenotypes and p=6.32×10−4, h2=0.035, se=0.010 when conditioned with latent 

factors; Table S18). Though extraversion h2 increased, the conditioned GWAS resulted in no 

genome-wide significant findings.

Tissue-Type Transcriptomic Profile Enrichment Differences

After conditioning with GWAS of EDU/SES phenotypes (Table S19), schizophrenia was the 

only trait demonstrating significant changes in tissue-specific transcriptomic profile 
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enrichment. Compared to the unconditioned schizophrenia GWAS, all conditioned 

schizophrenia brain tissue GTEx (Genotype-Tissue Expression)25 annotations, with the 

exception of c1 cervical spinal cord, had significantly decreased enrichments (Fig. S6 and 

Table S19). The maximum decrease was observed after conditioning schizophrenia with 

educational attainment (average beta decrease for all brain tissue annotations = 0.038, 

se=0.004).

After conditioning with EDU and SES phenotypes, the cerebellum and cerebellar 

hemisphere GTEx annotations remained the most enriched in the schizophrenia GWAS 

(original cerebellum p=1.76×10−22, enrichment=0.080, se=0.008; original cerebellar 

hemisphere p=1.28×10−22, enrichment=0.077, se=0.008; conditioned cerebellum 

6.83×10−22<p<5.82×10−19, mean enrichment=0.047, se=0.001; conditioned cerebellar 

hemisphere 7.43×10−23<p<6.56×10−20, mean enrichment=0.047, se=0.001). After adjusting 

for the effects of cognitive performance and educational attainment, we uncovered 

enrichment of skeletal muscle tissue transcriptomic profiles in the schizophrenia GWAS 

(original skeletal muscle p=0.135, enrichment=0.010, se=0.009; skeletal muscle conditioned 

with educational attainment p=0.032, enrichment=0.010, se=0.006; skeletal muscle 

conditioned with cognitive performance p=0.024, enrichment=0.011, se=0.006).26 Though 

demonstrated in early studies of schizophrenia patients,27 contemporary studies are required 

to validate this enrichment.

Cell-Type Transcriptomic Profile Discoveries

Cell-type transcriptomic profile enrichments were evaluated in two ways: (1) assess 

differences in within-data-set cell-type enrichments before and after conditioning with 

EDU/SES (based on MAGMA cell-type enrichment Step 128) and (2) assess the effects of 

conditioning on the detection of conditionally independent proportional significance (PS) of 

the cell type enrichments (based on MAGMA cell-type enrichment Step 328). PS cell-types 

are those whose genetic signals could be differentiated from one another. PS values ≥ 0.80 

indicate independent genetic signals relative to a second cell type. We then used genes 

whose expression profiles define the excitatory (Ex) and inhibitory (In) cell types of 

PsychENCODE29 to perform gene set enrichment analyses of GO and KEGG gene sets.

There were no statistically significant differences in cell-type transcriptomic profile 

enrichments for psychopathology and psychosocial factors (MAGMA cell-type Step 1) after 

conditioning with EDU/SES; however, we discovered several PS cell-type pairs not detected 

in the unconditioned GWAS for (1) risky behavior (Fig. 3 and Table S20), (2) MDD (Fig. 3 

and Table S21), and (3) schizophrenia (Fig. S7 and Table S22; MAGMA cell-type Step 3).

In unconditioned GWAS of risky behavior, there were no PS cell-type enrichments. After 

conditioning with EDU phenotypes, human cortex fetal quiescent and Ex2 were 

conditionally independent from one another (risky behavior conditioned with cognitive 

performance Ex2 p=7.48×10−4, β=0.035, se=0.011, PS=1.37; fetal quiescent p=0.032, 

β=0.023, se=0.012, PS=1.82; risky behavior conditioned with educational attainment Ex2 

p=0.001, β=0.034, se=0.011, PS=1.38; fetal quiescent p=0.030, β=0.024, se=0.012, 

PS=1.77; (Fig. 3 and Table S20). The genes that define the Ex2 cell type were enriched in 
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nervous system development (GO:0007399; enrichment FDR=3.70×10−4) and eye 

development (GO:001654; enrichment FDR=6.30×10−4) gene sets.

The unconditioned MDD GWAS exhibited cell-type transcriptomic profile enrichments 

between adult GABAergic neurons, In6b, and gestational week 10 (GW10) stem cells. After 

conditioning with self-rated math ability, the genetic signal from human midbrain neurons 

was conditionally independent from lateral geniculate nucleus (LGN) GABAergic neurons 

(p=0.002, β relative to midbrain neurons=0.041, se=0.014, PS=0.822; Fig 3), In6b neurons 

(p=6.59×10−6, β relative to midbrain neurons=0.517, se=0.11, PS=0.969), and In5 neurons 

(p=5.26×10−5, β relative to midbrain neurons=0.039, se=0.01, PS=0.813; (Fig. 3 and Table 

S21). The gene expression profiles of these cell types implicate the neurotransmitter 

transport (GO:0007269; enrichment FDR=0.003) and locomotory behavior (GO:0007626; 

enrichment FDR=0.015) gene sets in MDD psychopathology.

Correlative, Latent, and Causal Relationships between Psychopathology and Psychosocial 
Factors

We next evaluated relationships between phenotypes using three methods: genetic 

correlation, genomic structural equation modeling (genomic SEM), and latent causal 

variable (LCV) analysis.

Genetic correlations were assessed between all psychopathology and psychosocial factors 

after conditioning with individual EDU and SES phenotypes. Though small changes in 

genetic correlation magnitude were observed, psychopathology and psychosocial factor 

genetic correlations largely persisted (Fig. S8 and Table S24).

Genomic SEM30 was used to identify how unconditioned and conditioned psychopathology 

and psychosocial factors relate to a latent unobserved genetic factor connecting them (Fig. 

4). In unconditioned models, exploratory factor analysis (EFA) identified a two-factor model 

as best suited to explain the relationships among psychopathology and psychosocial factors. 

In confirmatory factor analysis (CFA), these two latent factors generally highlight 

relationships between all psychiatric disorders and brain imaging phenotypes (F1) and 

anxiety, MDD, depressive symptoms, and neuroticism (F2). The correlation between 

unconditioned F1 and F2 was 0.14. After conditioning with highest math class, self-rated 

math ability, and deprivation index, the GWAS of neuroticism and MDD were no longer 

major contributors to the same factor. Conditioned F1 had major contributions from MDD 

(mean loading=0.611, se=0.005) and depressive symptoms (loading=0.538, se=0.098) while 

conditioned F2 had major contributions from neuroticism (loading=0.877, se=0.080) and 

anxiety (loading=0.658, se=0.009). Interestingly, after conditioning with the SES phenotype 

income, the SEM best-fit converged on a single common factor between all psychopathology 

and psychosocial factors with major contributions from MDD (loading=0.808, se=0.068) 

and depressive symptoms (loading=0.831, se=0.022).

Latent Causal Variable (LCV) analyses were used to detect causal relationships between trait 

pairs that are independent of the genetic correlations between them.30 Considering only the 

unconditioned psychopathology and psychosocial factors, one trait pair exhibited significant 

genetic causality proportion (gĉp): left subcallosal cortex→obsessive compulsive disorder 
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p=4.54×10−6, gĉp=0.167, se=0.047 (Tables 1 and S25 and Figs. 5 and 6). This partial causal 

relationship did not survive conditioning; however, thirteen unique trait pairs demonstrated 

significant gĉp after conditioning both traits with an EDU or SES phenotype (Table 1). Most 

notable were those causal relationships involving brain imaging phenotypes which became 

significant after conditioning with EDU phenotypes: (1) extraversion→left subcallosal 

cortex (1.23×10−13<p<1.83×10−6, mean gĉp=0.188, se=0.107) after conditioning with 

educational attainment, highest math class, and self-rated math ability, (2) left subcallosal 

cortex→subjective well-being (1.45×10−9<p<1.16×10−8, mean gĉp=0.745, se=0.009) after 

conditioning with cognitive performance, educational attainment, and highest math class, (3) 

openness→left insular cortex (2.54×10−23<p<3.63×10−8, mean gĉp=0.296 , se=0.050) after 

conditioning with cognitive performance, highest math class, and self-rated math ability. 

These average gĉp estimates represent only Bonferroni significant relationships; however, 

each trait pair listed was nominally significant after conditioning with all other EDU and 

SES phenotypes but not significant in the unconditioned experiment (Table 1).

The EDU/SES phenotype that revealed the most latent causal relationships between 

psychopathology and psychosocial factors was Townsend deprivation index. Conditioning 

with this phenotype revealed 7/13 causal relationships, most of which involved bipolar 

disorder or the volume of the right-ventral diencephalon (Fig. 6 and Table S26).

Discussion

EDU and SES are important influences on numerous psychopathology, psychosocial, and 

mental disorders, but it has been difficult to determine the extent to which this is so, and the 

biological nature of the relationship. How much of the genetic risk for schizophrenia, for 

example, is caused by reduced educational attainment? Or how much of the risk for 

schizophrenia reflects a shared biology with the predisposition to educational attainment? 

These are important questions to answer if we are to understand the biology of both kinds of 

traits. To get at this question, we conditioned one on the other, and thereby statistically 

removed its effects, and then asked the question, “how much of the heritable risk for that 

trait remains?” In most cases, EDU/SES accounted for some of the genetic variance in the 

psychopathology and psychosocial phenotype and adjusting for EDU/SES reduced the 

strength of the association with the heritable risk for that disorder. However, in a few cases 

(depression, anxiety, neuroticism, PTSD, and subjective well-being) adjusting for EDU/SES 

either increased or did not change these associations. In the space below, we present a 

framework for interpreting the complexity of these findings.

The biology underlying psychiatric disorders was most affected by shared genetic etiology 

with EDU/SES proxies, as evidenced by significant decreases in h2 for all psychiatric 

disorder except MDD, anxiety, and PTSD when conditioned with EDU/SES. Conversely, 

conditioning the neuroticism and subjective well-being GWAS revealed additional risk loci 

that were not detected in their unconditioned GWAS. Using an independent method, Turley, 

et al. observed similar information gain;17 however, we demonstrated that this information 

gain is due to polygenicity rather than population substructure as evidenced by stable 

intercept estimates no different from the unconditioned neuroticism GWAS but increasing 

lambda GC. That is, we believe this demonstrated biological underpinnings, as opposed to 
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the underlying population genetics phenomena. Unlike Turley, et al., we do not report 

comparable risk locus gain with subjective well-being.

In structural equation models of psychopathology and psychosocial factors, neuroticism and 

MDD originally loaded onto the same common factor. After conditioning with highest math 

class, self-rated math ability, and deprivation index, the loadings of neuroticism and MDD 

separate, suggesting that their unique biology may be distinguishable. This is consistent with 

our observation of ameliorated genetic correlation between these two phenotypes due to 

conditioning. Hill, et al., described two factors of neuroticism, one of which aligns more 

closely with anxiety and tension phenotypes and the second of which aligns more closely 

with worry and vulnerability phenotypes.31 With genomic SEM, we support these claims: 

neuroticism loads onto the same common factor as anxiety while MDD aligns with 

depressive symptoms and loneliness. We demonstrate here that neuroticism and MDD are 

highly positively genetically correlated in their unconditioned versions. Based on the present 

results, we hypothesize that conditioning these phenotypes with EDU and SES reveals their 

unique genetic architectures. We demonstrate that, after conditioning with EDU/SES, 

general neuroticism appears more similar to the Hill, et al. anxiety/tension phenotype. 

Lastly, our genomic SEM data mirror those genetic correlation results from Hill, et al., 
adding weight to our observed two-factor model.31

Cell type transcriptomic profile enrichments underlying the GWAS of psychopathology and 

psychosocial factors were robust to the effects of EDU and SES phenotypes, but we 

uncovered cell-type information for risky behavior, MDD, schizophrenia, and bipolar 

disorder, which highlight cell-specific processes. The cell-types discovered in the 

conditioned schizophrenia GWAS overlap with those in the conditioned bipolar disorder 

GWAS. These findings recapitulate common therapeutic targets for these disorders. For 

example, inhibitory and GABAergic neuron transcriptomic profile enrichments were 

detected in the conditioned MDD GWAS and these are common targets of emerging 

therapeutic options (e.g., scopolamine, an antidepressant which blocks the M1 receptor of 

GABAergic interneurons in the medial prefrontal cortex;32 ketamine blocking the activation 

of somatostatin interneurons in PFC33) for MDD and depressive symptoms.32 Detection of 

overlapping cell-type information may support drug repurposing efforts in psychiatric 

disorders and related mental health conditions, though the effect of these detected cell types 

as therapeutic targets requires experimental validation.

Using genome-wide information, we uncovered putatively causal relationships between 

many psychopathology, psychosocial factors, and brain measurements. These analyses 

detected well-known relationships between traits (e.g., bipolar disorder, schizophrenia, and 

MDD) but also elucidated several relationships involving brain imaging phenotypes. In 

particular we identified the volume of the left subcallosal cortex as a possible mediator of 

the relationships between several psychopathology and psychosocial factors (e.g., 
extraversion, subjective well-being, and alcohol dependence), which in turn demonstrate 

potential causal relationships with mood disorders, which are commonly comorbid with 

alcohol dependence.34 The brain structural convergence detected here may indicate common 

disease mechanisms; however, these commonalities may be confounded by fine-grained 

nuances of the relationship between brain microstructure and mental health and disease. The 
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LCV method used to identify these causal relationships does not support multivariable 

analyses nor does it employ sensitivity tests to detect horizontal pleiotropy (i.e., a SNP is 

associated with both phenotypes through separate mechanisms) or effect-size outlier SNPs. 

These observations likely confound our causal inferences and require more robust testing 

with traditional Mendelian randomization methods suited to accommodate weak genetic 

instruments (i.e., those SNPs not strongly associated with either phenotypes of interest, 

typically with association p-values greater than 5×10−8).35, 36, 37 It should be recognized that 

LCV and other causal inference methods indeed have reduced power with respect to highly 

polygenic traits, such as those studied here, leading towards downwardly biased genetic 

causality proportion estimates. It is therefore unlikely that estimates with high genetic 

causality proportions are false positives.30

Certain relationships regarding psychopathology and psychosocial factor conditioning that 

might have been expected were not observed in our study. Intellectual abilities are 

genetically correlated with ASD and ADHD and disabilities therein often co-occur with 

ASD and/or ADHD diagnoses.38, 39 According to the Diagnostic and Statistical Manual of 

Mental Disorders (5th Edition, DSM-5), diagnosis of intellectual disability or global 

developmental delay must be eliminated as possible explanations of ASD symptoms prior to 

making a formal ASD diagnosis. We had hypothesized that after conditioning with the 

effects of EDU phenotypes, these psychiatric disorders might demonstrate notable changes 

in their genetically predicted underlying biology, but this was not the case. This lack may 

suggest that ADHD and ASD diagnosis criteria robustly capture elements unique to the 

disorders rather than those shared with EDU/SES phenotypes. In other words, ascertainment 

of cases at the extreme ends of spectrum disorders40, 41 reliably capture trait specific biology 

with minimal phenotype confounding from shared effects with EDU and SES.

Information derived from the GWAS of EDU and SES phenotypes was generally robust to 

conditioning with psychopathology and psychosocial factors. When conditioned with 

individual psychopathology and psychosocial factors, we detected relatively few changes to 

the genetically predicted biology of EDU/SES phenotypes. Only when EDU/SES 

phenotypes were conditioned with several psychopathology and psychosocial factors did we 

observed changes in h2 and genetically predicted biology. When assessing the relationship 

between unconditioned EDU and SES phenotypes by genomic structural equation modeling, 

we revealed cognitive performance and highest math class as driving factors linking EDU 

and SES phenotypes. When conditioned, we uncovered an independent contribution of 

income to a common factor with educational attainment and self-rated math ability. Based 

on recent work of Morris, et al. to uncover why EDU and SES phenotypes are related to one 

another, and the near perfect loading of educational attainment on the common factor, these 

observations point to educational attainment as a mediator of the genetic and phenotypic 

correlations between EDU and SES.

Tissue and cell-type transcriptomic profile analyses of EDU, SES, psychopathology, and 

psychosocial phenotypes highlighted differences in cortical and cerebellar tissue enrichment. 

Though not significantly decreased in all phenotypes after conditioning, the bidirectional 

changes in cerebellar and cortical tissue enrichment (i.e., EDU/SES conditioned with 

psychopathology and psychosocial factors and psychopathology and psychosocial factors 
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conditioned with EDU/SES) highlight the importance of these brain regions and their shared 

transcriptional regulation in human mental health and disease.42 Furthermore, this 

observation of cerebellar and cortical tissue changes support the common psychopathology 

factor (a p-factor) studied extensively in recent mental health and disease research.43

Our study has three primary limitations. First, we did not select independent genetic 

correlates from the psychopathology and psychosocial factors tested with which to condition 

the EDU and SES phenotypes. Due to high genetic correlation between psychopathology 

and psychosocial factors, this approach may have introduced bias in our reporting of which 

EDU and SES phenotypes were robust to shared genetic etiology with all psychopathology 

and psychosocial factors. This potential over-conditioning likely drove our results towards 

the null (e.g., non-significant h2) and therefore, we have not reported gene set, tissue 

transcriptomic profile enrichment, cell-type transcriptomic profile enrichment, or genomic 

SEM loadings for EDU/SES traits where there might have been over-conditioning. For this 

reason, our results do not imply that, for example, educational attainment is a more powerful 

or specific EDU phenotype than cognitive ability. Second, it has recently been demonstrated 

that the origin of phenotypic and genetic correlations between EDU and SES phenotypes 

may be driven by dynastic effects and/or assortative mating acting independently or in 

concert6. Dynastic effects describe a condition where offspring inherit phenotype-associated 

genetic risks and phenotype-associated environmental risks. Assortative mating exists when 

mate pairs are non-randomly chosen based on certain attributes. We hypothesize that the 

dynastic and assortative mating events described between EDU and SES phenotypes6 may 

also appear in phenotypic and genetically correlated EDU, SES, and psychopathology and 

psychosocial factor pairs. Future studies will be required to describe how these evolutionary 

and social pressures influence the correlative and causal relationships uncovered here (e.g., 
OCD→anorexia nervosa after conditioning with the effects of educational attainment, 

income, and deprivation index). Third, the UK Biobank is considered a generally healthy 

cohort not enriched for any trait or disorder of interest. To our knowledge, the brain imaging 

GWAS (performed on a subset of UK Biobank participants) used here were not adjusted for 

variables related to blood pressure, height, weight, and bone mineral composition, 

substance-related (recreational or prescribed), or psychiatric variables. The presence of these 

variables in sufficient quantities among those UKB brain imaging participants could alter 

brain volumes affecting the results of the genetic analyses conducted.

By conditioning psychopathology and psychosocial factors for the shared genetic etiology 

with EDU and SES phenotypes, this study elucidates biological underpinnings and causal 

relationships between phenotypes. These biological mechanisms, cell-types, tissue-types, 

and causal trait pairs could not have been detected without adjusting the effects of EDU and 

SES. This study highlights how the pervasive effects of EDU and SES may mask genetically 

determined underlying biology of psychopathology and psychosocial factors in support of 

multi-trait analyses of GWAS to enable trait-specific discoveries.

Methods

This study was conducted using genome-wide association statistics generated by previous 

studies. Owing to the use of previously collected, deidentified, aggregated data, this study 
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did not require institutional review board approval. Ethical approval had been obtained in all 

original studies (Table S1). An overview of all materials, methods, and key findings from 

this investigation of the genetic overlap between EDU, SES, and psychopathology and 

psychosocial factors is shown in a flow diagram in Fig. S1.

Trait Description and Selection

Four EDU (educational attainment, highest math class, self-rated math ability, and cognitive 

performance) and two SES phenotypes (average household income before tax and Townsend 

deprivation index) from the Social Science Genetic Association Consortium (SSGAC), UK 

Biobank (UKB), and 23andMe were used in this study to condition psychopathology and 

psychosocial factors. These unconditioned phenotypes were characterized on the level of 

heritability, tissue transcriptomic profile enrichment, and cell-type transcriptomic profile 

enrichment in Fig. S1. Briefly, the educational attainment phenotype describes the number 

of years of schooling completed per participant. Highest math class and self-rated math 

ability were derived from the 23andMe survey regarding participant mathematical 

background. For self-rated math ability, 23andMe participants were asked “how would you 

rate your mathematical ability” ranging from “very poor” to “excellent.” For highest math 

class, 23andMe participants were asked to indicate the most advanced mathematics course 

they have successfully completed (excluding statistics courses) ranging from pre-algebra to 

coursework more advanced than vector calculus. Cognitive performance was evaluated as a 

standardized score of logic and reasoning questions completed within a two-minute time 

limit. The cognitive performance measure per participants represented a standardized mean 

across trials. The UKB phenotype Townsend deprivation index was calculated immediately 

prior to a participant joining the UKB project using preceding national census information. 

The measure incorporates four variables including unemployment, non-car ownership, non-

home ownership, and household overcrowding. The UKB phenotype average household 

income before tax was self-reported via touchscreen questionnaire at recruitment to the 

UKB. Participants were asked to report their household income, in pounds, in categories 

ranging from “less than £18,000” to “greater than £100,000.”

Psychopathology and psychosocial factors from the Psychiatric Genomics Consortium 

(PGC), SSGAC, Genetics of Personality Consortium (GPC), UKB, and UKB Brain Imaging 

Genetics (UKB BIG) were selected based on their genetic correlation with EDU and SES 

phenotypes (Table S1 and Figs. 1 & S2). To focus our analyses, we predetermined that 

psychopathology and psychosocial factors would be included if (1) they had heritability (h2) 

significantly greater than zero, and (2) they were at least nominally genetically correlated 

with 2/4 EDU and 2/2 SES phenotypes. It is recommended that each phenotype in a genetic 

correlation pair have h2 z-scores ≥ 4 to produce reliable estimates of genetic overlap21 but 

mtCOJO and structural equation modeling (see below) only require h2 estimates 

significantly greater than zero at a nominal level (p<0.05) for each trait included. For this 

reason, we relaxed the h2 suggestions for genetic correlation analyses with respect to trait 

inclusion. Genetic correlation estimates should be interpreted in light of this relaxed h2 

criteria. In other words, significant genetically correlated trait pairs in which one or both 

traits exhibited h2 z-scores < 4, such as anxiety, conscientiousness, loneliness, and PTSD, 

should be interpreted as requiring replication in larger, sufficiently powered data sets. The 
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relaxation of this recommended threshold is not expected to influence results from any other 

analysis performed herein.

Conditioning

Conditional genome-wide association analysis was performed in Genome-wide Complex 

Trait Analysis (GCTA) using the mtCOJO feature using the 1000 Genomes Project 

European ancestry linkage disequilibrium reference panel.18 For case-control GWAS 

summary statistics, odds ratios and corresponding standard error were converted to log-odds 

and corresponding standard error.

Causal estimates within mtCOJO were calculated using Generalized Summary-data-based 

Mendelian Randomization (GSMR). In our main analysis, mtCOJO was used to test the 

assumption that EDU/SES → psychopathology and psychosocial factors; however, we also 

tested the reverse scenario in the section Effects of Psychopathology and Psychosocial 

Factors on Education and Socioeconomic Status. MR relies on three key assumptions about 

the instrumental variables used to test for causal inference between phenotypes: (1) genetic 

instruments are associated with the exposure of interest (in our main analysis, EDU/SES 

were exposure phenotypes), (2) genetic instruments are not associated with the outcome of 

interest (in our main analysis, psychopathology and psychosocial factors were outcome 

phenotypes), and (3) genetic instruments do not affect the outcome except through the 

exposure. In our analyses of psychopathology and psychosocial factors conditioned with the 

effects of EDU and SES phenotypes (e.g., MR to test the hypothesis that EDU/SES → 
psychopathology and psychosocial factors), each MR causal inference was performed using 

genome-wide significant SNPs in the exposure (EDU/SES trait). To test how 

psychopathology and psychosocial factors influence EDU and SES phenotypes (e.g., MR to 

test the hypothesis that psychopathology and psychosocial factors → EDU/SES), we relaxed 

this SNP inclusion threshold where necessary (e.g., when UKB BIG phenotypes served as 

the exposure phenotype and lacked sufficient numbers of genetic instruments at the level of 

genome-wide significance) such that at least two SNPs were included in the causal 

inference. Note that MR-based conditioning with mtCOJO is not sensitive to sample overlap 

due to the method’s incorporation of sampling covariance between SNP effects into the 

model.18

Implemented in mtCOJO, heterogeneity in dependent genetic instruments (HEIDI) outlier 

testing was performed to detect SNPs with outlier effect size estimates assuming SNP effect 

distributions in both exposure and outcome.18, 22

Heritability and Genetic Correlation

The Linkage Disequilibrium Score Regression (LDSC) method is used for formatting 

GWAS summary association data and estimating SNP-heritability of a trait (h2) and genetic 

correlation between traits. LDSC assumes SNPs have not been pruned for linkage 

disequilibrium and that sample ascertainment of a phenotype was performed in a genetically 

homogeneous population. With respect to genetic correlation, phenotypes should be 

ascertained from cohorts representing similar ancestral backgrounds. Genetic correlation 

with LDSC is not sensitive to sample overlap.
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Observed-scale h2 was calculated for each original and conditioned GWAS using the LDSC 

method with 1000 Genomes Project European reference population.21

Gene-set, Tissue Transcriptomic, and Cell-type Transcriptomic Profile Enrichment

Original and conditioned GWAS were used as standard input for Multi-marker Analysis of 

GenoMic Annotation (MAGMA v1.06) implemented in FUnctional Mapping and 

Annotation (FUMA) v1.3.3c with the following parameters: genome-wide significance p < 

5×10−8, minor allele frequency ≥ 0.01, and LD blocks merged at < 250kb for LD r2≥0.6 

with lead variant.28, 44

SNPs underlying each phenotype of interest were mapped to genes within 10kb physical 

proximity using FUMA.44 Mapped genes were assessed using the gene-set enrichment 

feature of FUMA, and gene ontology enrichment analysis with ShinyGO.45

Tissue transcriptomic profile enrichment was performed relative to the GTEx25 v7 53 tissue 

types with the default 0kb gene window.

Cell-type transcriptomic profile enrichments were performed using eleven human specific 

transcriptomic profile datasets related to the brain;28 PsychENCODE_Developmental, 

PsychENCODE_Adult, Allen_Human_LGN_level 1, Allen_Human_MTG_level1, 

DroNc_Human_Hippocampus, GSE104276_Human_Prefrontal_cortex_all_ages, 

GSE104276_Human_prefrontal_cortex_per_ages, GSE67835_Human_Cortex, 

GSE67835_Human_Cortex_woFetal, Linnarson_GSE101601_Human_Temporal_cortex, 

and Linnarson_GSE76381_Human_Midbrain. Cell-type transcriptomic profiles were 

assessed in three ways as per the FUMA analysis pipeline. (1) enrichment of cell-type 

transcriptomic profiles within each selected data set, (2) within data set conditionally 

independent cell-type transcriptomic profile enrichments, and (3) across data set cell-type 

transcriptomic profile enrichments.

For analyses within data sets, step-wise conditional significance is evaluated for each cell 

type in a data set against the p-values for all other cell-types in that same data set. The 

output from these analyses identify cell types within a data set whose transcriptomic profiles 

are enriched in a given GWAS independently of the signal from all other cell type 

transcriptomic profiles in the same data set.

Using within-data-set conditionally independent cell-types identified above, cross-data-set 

analysis identifies cell-type transcriptomic profiles enriched in a given GWAS independent 

of all other cell-types from all chosen data sets. Proportional significance (PS) and 

conditional independence of cell-type pairs indicate that enrichment of these cell-types in a 

given GWAS are driven by independent genetic signals.

For a given pair of cell types, PS of cell type a given cell type b (PSa,b) ≥ 0.8 and PSb,a ≥ 0.8 

indicates independent genetic signals for cell types a. Interpretation of additional PS 

thresholds for each cell type in a given pair can be seen in detail (https://fuma.ctglab.nl/

tutorial#celltype) or in Watanabe, et al.28
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Latent Causal Variables

LCV is a method for inferring genetic causal relationships between trait pairs using GWAS 

summary data using effect size estimates or z-scores.30 The LCV model assumptions are 

notably weaker than traditional MR assumptions. First, LCV assumes that the distribution of 

effect sizes for a given trait pair represents one distribution of effect sizes proportional in 

both traits of interest and a second distribution of SNPs that only affect the outcome trait. 

LCV therefore assumes that symmetry in shared genetic architectures between traits arises 

from the action of a latent genetic component rather than a non-genetic confounder 

commonly elucidated by MR. Second, the model assumes a single genetic LCV mediating 

trait relationships; however, in simulations of LCV power in the presence of more than one 

LCV, causal estimates were unlikely to be detected. There are no assumptions of parametric 

effect size distributions under the LCV model; however, LCV is indeed less well powered 

for highly polygenic traits.

LCV modeling was implemented in R using the 1000 Genomes Project Phase 3 European 

reference panel. As recommended, GWAS summary data were filtered to include only SNPs 

with minor allele frequencies greater than 5% and the major histocompatibility region was 

removed due to its complex linkage disequilibrium structure. Note that genetic correlation 

does not imply that shared genetic risks between traits are causal. The LCV model output 

distinguishes whether genetic correlations support genetic causation and the degree to which 

(i.e., the genetic causality proportion; gĉp) genetic risk for trait 1 is causal for trait 2. LCV 

gĉp estimates were only interpreted for trait pairs where both traits exhibit LCV-calculated 

h2 z-scores ≥ 7.

Genomic Structural Equation Modeling

Genomic structural equation modeling (SEM) was performed using GWAS summary 

statistics in the genomicSEM and lavaan R packages.46 Because genomic SEM relies on a 

genetic covariance matrix estimated with LDSC (see Heritability and Genetic Correlation), 

the same set of assumptions applies here. Though tolerant to deviations form these 

expectations, genomic SEM is most well-powered when index phenotypes (i.e., those 

GWAS whose summary statistics are used to model latent factors) are highly heritable, 

consist of primarily non-overlapping samples, performed in large sample sizes, and have 

high genetic correlation among them.46

Exploratory factor analyses (EFA) were performed on two groups of phenotypes: (1) all 

mental health outcomes conditioned with EDU and SES phenotypes and (2) all EDU and 

SES phenotypes conditioned with all psychopathology and psychosocial factors. EFA were 

performed for 1 through N factors until the addition of factor N contributed less than 10% 

explained variance to the model. Confirmatory factor analysis was performed using the 

diagonally-weighted least squares estimator and a genetic covariance matrix of munged 

GWAS summary statistics for all phenotypes based on the 1000 Genome Project Phase 3 

European linkage disequilibrium reference panel. Munging was performed using LDSC.
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Statistical Considerations

Z-tests were used to determine differences in heritability, SNP effects, gene-set enrichments, 

tissue transcriptomic profile enrichments, cell-type transcriptomic profile enrichments, 

genomic SEM loadings, and LCV estimates between conditioned and unconditioned GWAS. 

It should be noted that while much of the data generated for this study relied on one-sided 

tests (e.g., LDSC tests whether the h2 for Trait X is greater than 0 and MAGMA tests 

whether the transcriptomic profile of Tissue X is overrepresented relative to all other tissue 

types), Z-tests reported herein were used to compare the conditioned versus unconditioned 

versions of a trait GWAS. In other words, two sides were considered – for example, the 

unconditioned h2 could be greater than or less than the conditioned h2 for a trait. Z-scores 

for the difference between conditioned and unconditioned measurements were converted to 

p-values assuming a two-tailed distribution prior to multiple testing correction. P-values 

were corrected for multiple testing considering a false discovery rate at 5%.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Trait inclusion genetic correlations.
Genetic correlation between psychopathology, psychosocial factors, education phenotypes, 

and socioeconomic status phenotypes. Nominally significant genetic correlations were 

considered to select traits for inclusion in conditioning experiments (* = p<0.05).
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Fig. 2. Heritability (h2) changes.
Each data point indicates an observed-scale h2 estimate and standard error of the original 

(OR; grey) indicated phenotype or that same phenotype after conditioning with education 

and socioeconomic status phenotypes (CP: cognitive performance, DI: deprivation index, 

EA: educational attainment, HM: highest math class, INC: income, MA: self-rated math 

ability). Two p-values are shown: (1) the h2 estimates of each conditioned phenotype was at 

least nominally significant (p<0.05) as demonstrated by the size of each data point, (2) solid 

data points indicate that the h2 estimate of a conditioned phenotype was significantly 

different from the original h2 estimate in grey. Phenotypes showing significant h2 changes 

are shown here while all phenotypes are presented in Fig S3.
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Fig. 3. Cell-type transcriptomic profile enrichments underlying psychopathology and 
psychosocial factors.
Cross-data-set proportional significance (PS) and conditional independent (i.e., genetic 

signatures of cell-type pairs are distinguishable) of cell-type transcriptomic profile 

enrichments underlying unconditioned and conditioned GWAS for (A) risky behavior and 

(B) major depression. The human cell-type data sets from FUMA are labeled individually 

for each panel using different colors; cell types in the x and y directions are conditionally 

independent signals from within-data-set analysis performed in FUMA (cell-type 

enrichment step 228). Genetic signals from colinear cell types labeled with a single asterisk 

could not be differentiated from one another in FUMA.
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Fig. 4. Trait loading onto latent factors.
Genomic structural equation modeling of psychopathology and psychosocial factors before 

and after conditioning with education and socioeconomic status phenotypes. Each column 

shows the confirmatory factor analysis (CFA) loading value (blue shading indicating that a 

trait is a major contributor to the latent factor and blue tinting indicating that a trait is a 

minor independent contributor to the latent factor) for each psychopathology and 

psychosocial factors (in the x direction) into one of two factors (F1 and F2) from exploratory 

factor analysis (EFA). Grey boxes indicate that a given trait was not predicted to load onto a 

given factor column. Red boxes indicate that the trait was predicted by EFA to load onto a 

factor but did not independently load during CFA.
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Fig. 5. Causal relationships masked by education and socioeconomic status effects.
Latent Causal Variable (LCV) results detecting putative causal relationships between the 

genetic risk for two psychopathology and psychosocial factors. Each data point indicates a 

trait pair comparison in which the y-direction indicates a causal estimate whereby both traits 

have been conditioned on one education and socioeconomic status phenotype. The color of 

each data point indicates the magnitude of causal estimate (e.g., causal relationship = −1 

indicates that trait 1 decreases trait 2) The dashed diagonal lines indicates a one-to-one 

relationship between x and y axes. Significant putative causal relationships are labeled and 

described in detail in Table 1.

Wendt et al. Page 23

Nat Hum Behav. Author manuscript; available in PMC 2021 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. Latent causal variable (LCV) relationship network.
(A) Summary of the causal relationship (derived from Fig. 5) network originating from brain 

imaging phenotypes (bolded text). (B) Causal relationships with no evidence of brain 

imaging phenotype connection in the current study (derived from Fig. 5). Arrow thickness 

indicates the size of the estimated causal relationship between the two traits on either end of 

the arrow while triangles indicate the direction of causal effect; the color of each arrow 

indicates the education or socioeconomic status phenotype used to condition each trait of a 

trait pair (black = cognitive performance; purple = educational attainment; blue = income; 

red = deprivation index; green = highest math class; pink = self-rated math ability); mean 

genetic correlations from LCV are included above each set of horizontal arrows. Sample 

interpretation (from A): decreased extraversion causes lower left subcallosal cortex volume 

after removing the effects of highest math class, educational attainment, and self-rated math 

ability.
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