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Food quality and safety issues occurred frequently in recent years, which have attracted more and more attention of social and
international organizations. Considering the increased quality risk in the food supply chain, many researchers have applied
various information technologies to develop real-time risk identification and traceability systems (RITSs) for preferable food
safety guarantee. ,is paper presents an innovative approach by utilizing the deep-stacking network method for hazardous risk
identification, which relies on massive multisource data monitored by the Internet of ,ings timely in the whole food supply
chain. ,e aim of the proposed method is to help managers and operators in food enterprises to find accurate risk levels of food
security in advance and to provide regulatory authorities and consumers with potential rules for better decision-making, thereby
maintaining the safety and sustainability of food product supply.,e verification experiments show that the proposed method has
the best performance in terms of prediction accuracy up to 97.62%, meanwhile achieves the appropriate model parameters only up
to 211.26 megabytes. Moreover, the case analysis is implemented to illustrate the outperforming performance of the proposed
method in risk level identification. It can effectively enhance the RITS ability for assuring food supply chain security and attaining
multiple cooperation between regulators, enterprises, and consumers.

1. Introduction

With the global intention of the food security concept shifted
from fighting hunger and malnutrition to healthy living and
food, the food supply chain is not only an important issue of
public health and trade but also one of the most challenging
sustainability issues, which significantly affects the stable
development of national sovereignty, economy, and society
[1].

Nowadays, the modern food supply chains usually
contain complicated transport links including planting,
harvesting, handling, storage, transport, loading, packaging,
and marketing, over an extended distance and different
partners from producer to consumer as a result of global

food trade and economy. Ensuring the quality and security
of food products in the supply chain systems is the most
likely and effective approach to solve many problems such as
covering climate change, biodiversity loss, land degradation,
and pollution [2]. For example, the soybean supply chain is
potentially responsible for global anthropogenic carbon
emissions due to miscellaneous ecological and social im-
pacts, ranging from uncontrolled deforestation, biodiversity
consumption, and inefficient exploitation of natural re-
sources to human and livestock’s food waste. ,erefore, it is
obvious that the safe and sustainable development of the
food supply chain is nowadays playing a vital role in human
health, steady economic development, and environmental
protection [3].
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Nevertheless, after a series of foodborne disease out-
breaks and food safety incidents occurring in the past few
decades, the food supply chain has faced increased quality
and safety risks. With extended haul distance and long-term
storage time from the planter to the consumer across dif-
ferent stages and industries, various chemical and microbial
contaminations, as well as foodborne viruses, have easily
invaded each supply stage of the food supply chain, which
have severely threatened the food safety and disrupted the
stable sustainability of food supply [4]. In particular, ex-
cessive enterprises and companies are now joining the food
supply chain which results in that the food products should
go through a number of interested parties before reaching
the final consumers.

In such a complicated and invisible supply chain, many
potential factors including temperature, humidity, pas-
teurization, or heat treatments have increased the unpre-
dictable risks in the food supply chain since not all
participants can strictly ensure their process operations and
management conform to all the standards. As a result, the
unsafe vulnerabilities of food supply chains have been ul-
teriorly aggravated due to the inherent multitiered cascading
effect [5]. ,erefore, ensuring food security and quality
along the supply chain has become an important and
substantiated approach to satisfy the uptrending demand of
customers for high-quality food with safety guarantees and
ecological sustainability.

With the development of information and intelligence
technologies such as the Internet of,ings (IoT), automated
robots and equipment, cloud computing, and smart factory
management systems, the modern food supply chains are
struggling to make the most of innovative technologies to
increase the interconnected efficiency of organizations and
support sustainable practices in the form of products and
services through various food supply linkages [6]. As one of
the important roles, the risk identification and traceability
system (RITS) along the food supply chain on the basis of
IoTand related technologies that aim at monitoring, sharing,
and connecting anything, anytime, and anywhere has be-
come a popular recognized approach for food safety and
quality assurance since it can monitor various foodborne
hazards on time, identify potential food safety issues, and
assess food contamination status by providing abundant
sensor data and surveillance information [7].

At the same time, the system is also a valuable tool in
supporting sustainable development in the food supply
chain from producers to consumers, which can efficiently
reduce resource waste, replace extensive operations with
carbon concentration, and eventually avoid food safety
incidents to mitigate climate change and other negative
environmental and social impacts of the whole process [8].
,e above benefits associated with lower-cost distribution,
reducing recall, and inventory expenses and averting many
hidden troubles that possibly existed have made most en-
terprises to broadly implement the RITS technology in their
food supply chain.

,erefore, by taking advantage of deep learning tech-
niques, the present study proposed the novel deep-stacking
network (DSN) to establish an improved identification and

traceability system, which aims to promote reliable food
safety and sustainable assurance of the whole supply chain.
,is method could not only automatically process a large
amount of monitoring biosignals collected by the multi-
source IoT sensors and instruments to evaluate food quality
but also mine the interaction of multiple hazards and related
risk factors to derive preferable risk grades of food supply
chains.

,is paper is organized as follows: in Section 2, this paper
introduces the work related to food safety risk prediction.
,en, Section 3 outlines the overall method of the proposed
deep-stacking network and IoT-based food system. In
Section 4, the comparative risk recognition results of dif-
ferent hazards are presented, and the risk distribution
analysis in terms of grain supply chains is discussed. Finally,
we conclude the paper with the future implementation
prospects in Section 5.

2. Related Works

2.1. Food Safety Traceability Frameworks and Construction
Standards. Nowadays, there are several food safety trace-
ability frameworks and construction standards, e.g., the
Rapid Alert System for Food and Feed (RASFF) system
approved by the European Union, Food Safety System
Certification (FSSC) framework, and the GEMS/Food
Contamination Monitoring and Assessment Programme
(GEMS/Food) established by the World Health Organiza-
tion (WHO), which aim to effectively manage accident safety
risks, promote quality improvement, maximize consumer
trust, support market efficiency, and achieve precision ag-
riculture within the supply chain [9]. Similarly, China has
rapidly developed a fully functional national surveillance
system monitoring various hazards based on the Hazard
Analysis Critical Control Point (HACCP) standard [10]. ,e
system currently provides traceability guarantee with early-
warning analysis for chemical and microbiological hazards,
foodborne diseases, and other potential risk factors, further
preventing large-scale food safety events and safeguarding
people’s lives and health.

Although lots of shared information have strengthened
the communication and cooperation between each node of
the food supply chain, these systems are not enough to
handle the increasing challenges of current food supply
chains, such as flexibility, compatibility, credibility, and
comprehensive decision-making [11]. On the one hand, the
growing information collected by various sensors of the IoT
or shared by different supply chain partners enables factories
to real-time solve the traceability problems of the food
supply chain and improve food quality and safety, but many
managers and researchers have now figured out that the
plentiful data sources stored in the system are not used
effectively since the existing RITS lacks an effective unified
method to timely process such large-scaled, multisourced,
and heterogeneous data of the whole supply chain, which are
very valuable in today’s highly competitive market [12].

Making full use of these data will support members’
operating abilities in hazard analysis, enhance enterprise
competitiveness in risk prewarning, and promote the
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effectiveness of food safety supervision and management
[13]. ,erefore, a complete RITS must contain a standard
evaluation and prediction model that automatically handles
huge monitored data collected from the IoT network and
diagnoses the possible risky problem, which affects the
performance of the whole food supply chain by reducing
inventory costs as well as the bullwhip effect across the long
distances and changing environment.

On the other hand, most researchers have performed risk
identification and prediction of the food supply chain from a
local perspective, which means each supply chain partner in
the food system can successfully find the quality and safety
problems in their own production process [14]. However,
existing methods still lack the comprehensive capacity
guaranteeing the safety and sustainability in the food in-
dustry since different component modes of the food supply
chain are scarce and incomplete [15]. Normally, an unsafe
product will cross a number of interested parties and
multitiered links to reach the end user along the food supply
chain.

Many foodborne mycotoxins contaminated in those
unsafe food products may spread in a fast-growing number
under certain circumstances since the food supply chain
naturally had the migration structure and dynamic cas-
cading function. A classical static-method-based RITS failed
to anticipate a wide variety of risk factors influencing food
safety and quality throughout the whole supply chain op-
erations and members [16]. ,us, the RITS assisted by in-
telligent IoT technology might already have been used in
operational management processes, but an effective ap-
proach to identify and prewarn risk grades of various factors
under the macroperspective is still absent in the whole food
supply chain.

2.2. Risk Prediction Based on Machine Learning. In order to
strengthening the safety of the extended food supply chain, a
variety of new approaches have been introduced to meet
these challenges. Machine learning models including the
random forest (RF), support vector machine (SVM), deci-
sion tree (DT), k-nearest neighbour (KNN), and artificial
neural network (ANN) [17–19] are applied to generalize the
main food supply stages and processes with the imple-
mentation of the IoTparadigm, which generally explores the
risky criticalities of each supply chain.,en, the connections
between the nearby supply chain entities are established to
assess the risk profile of the RITS as a whole, instead of
focusing on some specific supply links. For example, RF and
logistic regression (LR) were used to rank important vari-
ables offered by experts to classify the persistence of Listeria
monocytogenes in six retail delicatessens [20].

Similarly, SVM-based methods have been explored to
access risk levels for making sure the supply safety of dairy
production in northeastern Brazil [21]. Furthermore, many
studies have tried to apply multistacked algorithms in-
cluding DT, KNN, and ANN to rank the risk levels of
chemical hazards present in food products, which all
achieved better results compared to statistical methods or
manual analysis [22, 23].

Although classical machine learning methods would
offer an effective approach for food safety supervision to deal
with perishable products and unpredictable supply varia-
tions to some extent, the intelligence degree of existing food
systems is still too far away from meeting stringent food
safety requirements, as well as assisting managers in making
correct decisions dynamically for identification and miti-
gation of global risks [24]. Especially, since most companies
now are a part of the food supply chain, perishable food
products usually cross a number of interesting links before
reaching the last consumers. Traditional methods used in the
RITS make such systems fail to control the quality of food
products since enormous sensor data are not effectively
utilized to analyze the interactions between hazards joining
the supply chains [25, 26].

2.3. Risk Prediction Based on Deep Learning. In recent years,
as RITS management has been rapidly developed toward
Industry 4.0 on the basis of artificial intelligence and IoT
technologies, deep learningmethods including AlexNet [27],
GoogLeNet [28], VGG [29], and ResNet [30] are playing a
vital role in this transition.,e core concept of deep learning
technology is stacking multilayered neural networks with
various training tricks (including data enhancements, flex-
ible structural designs, complex loss functions, and pa-
rameter optimization strategies), which have been
demonstrated to be effective for handling food risk identi-
fication, assessment, and traceability problems on the basis
of abundant data stored in the RITS [31–33].

Meanwhile, some researchers have pointed out that deep
learning methods are very preferable to make full use of
these valuable data to enhance enterprise competitiveness, as
well as gain the trust of consumers in highly competitive
markets [34, 35]. However, deep learning methods com-
bined with IoT information analysis are yet to assess po-
tential risks of hazardous substances in the whole supply
chain [36, 37]. ,erefore, it is necessary for the RITS to
conduct a risk assessment model from a macroperspective,
which could comprehensively utilize and analyze large
amounts of sensor data to estimate the hazardous levels of
different contaminants and to ensure the safety and quality
of food supply chains [38, 39].

,erefore, by taking advantage of deep learning tech-
niques, the present study proposed the novel deep-stacking
network (DSN) to establish an improved identification and
traceability system, which aims to promote reliable food
safety and sustainable assurance of the whole supply chain.
,is method could not only automatically process a large
amount of monitoring biosignals collected by the multi-
source IoT sensors and instruments to evaluate food quality
but also mine the interaction of multiple hazards and related
risk factors to derive preferable risk grades of food supply
chains. With the comprehensive evaluation of food quality,
the food system could manage supply chain processes and
participants effectively to avoid possible quality accidents
and reduce regulatory costs. Meanwhile, the customers also
obtain a rare glimpse from the inside of a hierarchical supply
chain as well as the basis of a sharable and scientific risk
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analysis, which improve their confidence in making intel-
ligent purchasing decisions and buying high-quality food
products to meet a healthy daily diet.

3. Materials and Methods

Food safety inspection is a huge and complex Internet of
,ings systemwith various sensors. In this paper, all kinds of
sensor data are processed scientifically. On this basis, we
propose the deep-stacking network to forecast and estimate
the food safety risks. ,is paper achieves the proposed
method with three stages. Firstly, a multigranularity padded-
scanning method is adopted to generate input vectors with
adjustable dimensions in the first stage, and theK-fold cross-
validation method is applied to expand the utilization of
limited training data in the second stage. Finally, the deep-
stacking network is consolidated to extract a list of food
safety prewarning features, which speed up the mining
process and improve identification performance in the
present study.

3.1. Risk Identification and Traceability System. As the re-
sponse speed of the food system is very important, we
proposed an improved risk identification and traceability
based on IoT and nephanalysis technologies, which can take
advantage of information sharing to coordinate the opera-
tion among nodes of the supply chain, to ensure the food
safety prewarning system operates efficiently and safely. ,is
system collected a large amount of monitoring data from
various links through various equipment, including tem-
perature and humidity sensors, oxygen concentration sen-
sors, and carbon dioxide concentration sensors, as well as
different pollutant detection equipment (as shown in Fig-
ure 1). In the production, storing, and transportation chain,
this research cooperated with the food enterprises to obtain
various important environmental monitoring data, such as
temperature, humidity, light exposure, oxygen, and carbon
dioxide concentrations, as well as production information
including type, weight, expiration date, manufacturer, and
producing place, which were measured by a large number of
multisource sensors in the grain processing factories.

Meanwhile, we applied various contaminant testing
equipment to extract the key hazard data related to food
safety including heavy metals, microorganisms, mycotoxins,
and pesticide residues implicit in grain products at each
supply stage of the grain supply chain. Among them, the
heavy metal detector uses anodic stripping voltammetry to
detect elements and contents of different heavy metals in
grain products such as cadmium, mercury, arsenic, and
aluminum, while the mycotoxin detector is used to rapidly
detect aflatoxin-B1 (AFB1), ochratoxin A (OTA), zear-
alenone (ZON), deoxynivalenol (DON), T2 toxin, fumo-
nisin, etc., in rice, wheat, corn, and other grains with high
accuracy and sensitivity. ,e pesticide residue fast tester
detects various organophosphorus and hydrogen-formatted
pesticides in grain sales and consumption sites such as
farmers’ markets, supermarkets, planting bases, restaurants,
and laboratories.

Additionally, the microbial and pathogen detecting in-
struments use immunoconcentration technology to carry
out antibody capture, concentrated release, purification,
separation, and automatic detection of pathogenic bacteria
including coliforms (COLI), Salmonella, Listeria, methicil-
lin-resistant Staphylococcus aureus (MRSA), and other
bacteria in grain products. All data are transmitted to the
information cloud analysis and storage platform through
TCP/IP and wireless approaches, which is the center for data
collection, information storage, and exchanging from all
relevant steps in the food supply chain. ,e grain product
types included rice, wheat flour, corn, roughage, and other
grain-processed products, which cover the most important
grain structure of Chinese consumers.

With the RITS operated in the period from March 2016
to August 2019, there are a lot of grain data covering 26
primary grain-producing areas recorded in the food system.
,ose provinces are the highest consumption areas because
they are also the most densely populated. Due to the re-
dundant and abnormal information recorded and collected
through the IoT platform, we uniformly integrate different
data from various devices and extract some important at-
tributes to construct the retrospective database with regular
formats and value ranges. ,e final database and detail
attributes in uniformed styles are shown in Table 1.

,en, in order to get a reasonable hazard level, this paper
consults the relevant literature, studies the combination of
international standards and domestic standards, consults
relevant experts in the field of food safety, and crawls public
data on the internet. In order to obtain a more compre-
hensive, scientific, and credible risk assessment tool so
proper conclusions can be made,We hope to enrich the real-
time IoTdatasets with information derived from hazardous,
social, economic, and regulatory food safety aspects so that a
retrospective database can cover more dimensional analyses
and multiple participant perspectives.

,erefore, these qualitative indicators such as social
attention, harm degree, and accessibility of supervision are
covered. And quantitative indicators are also considered, for
example, the province’s total annual output, food produc-
tion, and consumer prices. ,e expanded attributes of the
final database are shown in Table 2. Based on the above
situations, the risk grade of each product is divided into
three areas (safety, warning, and danger) with eight levels:
high-safety level (I), safety level (II), warning level (III), low-
risk level (IV), medium-risk level (V), high-risk level (VI),
higher risk level (VII), and highest risk level (VIII), where
levels I and II belong to the safe area, level III belongs to the
warning area, and others are the danger area.

3.2. Data Analysis and Preprocessing

3.2.1. Unstructured Data Encoding. ,ere are a lot of un-
structured data recorded in the retrospective database,
which were collected from different sources and stored in
various formats. Moreover, with common operating errors
caused by incorrect human interference, the database is filled
with unauthentic and abnormal data unreflecting the real
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situations of grain quality security in the supply chain, which
has just reduced the prewarning and traceable performance
of the food system. It is necessary to add some data analyses
and preprocessing to extract encoding rules and uniform
multisource data format before proceeding with the se-
quential risk evaluation.

Abnormal and unstructured data cannot be directly
input to the computer for calculation, so it is necessary to
digitize such data through coding. In order to encode the
abnormal and unstructured data, the dictionary vectorizer
(DictV) and one-hot encoder (OneH) are combined to
complete the encoding process so that we could input the

Table 1: Attributive categories of the grain database.

Attributive
name Value

Province
Anhui | Beijing | Chongqing | Fujian | Guangdong | Guangxi | Guizhou | Hainan | Hebei | Heilongjiang | Henan | Hubei |
Hunan | Jiangsu | Jiangxi | Jilin | Liaoning | Qinghai | Shaanxi | Shandong | Shanghai | Shanxi | Sichuan | Tianjin |

Yunnan | Zhejiang
Grain type Rice | wheat | corn | roughage| rice-processed products | wheat-processed products | else
Link Production | circulation | sale
Production area City | village

Sampling sites Planting bases | warehouse | workshop| transportation facility | farmer markets | supermarkets |restaurants | hotel|
laboratories|

Hazard type AFB1| OTA| ZON| DON| T2| fumonisin| Al | As| Cd| Cr| Hg| Pb | COLI | Salmonella| MRSA| tebuconazole|
benzopyrene (BaP) | malathion|

Risk item Heavy metals| microorganisms| mycotoxins| pesticide residues|
Content and
unit mg/kg | μg/kg | CFU/g | MPN/g

Temperature −10°C–40°C
Humidity 0%–100%
Light exposure 0 Lux–1500 Lux
Oxygen 17%–25%
Carbon dioxide 0 ppm–1200 ppm
Weight 0 kg–100 kg
Expiration date 3–24 months
Production data 2015.01–2019.07
Risk level I | II | III | IV | V | VI | VII | VIII

regulatory body
consumers

transportstoreproductionplantation consumer

Maintain supply links in the food supply chain

Environmental monitoring sensors

Temperature and
humidity sensors

Oxygen concentration
sensors Carbon dioxide sensor

Contaminant criteria testing equipment

Pesticide residue
detector

Microbial and pathogen 
detecting instruments

fungal toxin
detectorHeavy metal detectors

…

Internet data

harmfulness

sociability Production
information

economics Information cloud analysis
and storage platform

Figure 1: IoT-based risk identification and traceability system for the grain supply chain.
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correct data to the grain RITS as cases which are employed to
mining risk association rules and prewarning information
directly. ,e dictionary vectorizer is an important method
for extracting features and vectoring data in a dictionary.
When a discrete variable is represented in an unordered
string value, it needs to be encoded by this method into
numeric variables. Although the dictionary vectorizer can
simply transfer the original data in string type or like fashion
as a numeric dataset, it might be out of standard and far from
practical applications since there will be some special data, in
which the category is larger than other categories, and the
categories in the original features have no size relationship. It
can lead to a negative effect on model building and risk
evaluation.

Considering the potential problem of encoding rules for
food safety, one-hot encoder is introduced to continue
completing the entire encoding. When a discrete variable is
processed after the dictionary vectorizer into a feature vector
without numerical order, the one-hot encoder can make
further improvements on the encoding quality by dis-
tinguishing different categories of feature vectors. ,e one-
hot encoder uses an N-bit register to encode N states of the
feature vector, and each state has its register bit. Once the
Euclidean distance between two states is the same, the
corresponding register bit is valid at any time as 1, and others
are 0. In particular, if there are original data in m × l di-
mensionality, which content n-type features in the l column,
then the one-hot encoder uses the 0/1 binary coding to
represent the feature vector with different types and changes
the data dimensionality into the new format m × n. ,is
encoding process does not alter any meaning of all funda-
mental features and ensures the Euclidean distances among
different features with types are the same, so we could
analyze the risk level based on some accepted unstructured
data that occurred at a supply chain node.

3.2.2. Value-Standardized Processing. For the same feature,
the values of different samples may be far apart. Some ab-
normally small or big data may mislead the correct training
of the model. Additionally, the data with very scattered
distribution will also affect the training results since the
classification results will be biased toward larger values.
Value standardization of the database is a common re-
quirement of most machine learning algorithms: if indi-
vidual features do not look like standard normal distribution
data (for example, Gaussian with 0 mean and unit variance),
they may behave badly. At this point, we can normalize the
values in the features, that is, convert to a normal

distribution with a mean of 0 and a variance of 1. ,us, it is
important to explore the data distribution of the features and
consider whether it is necessary to standardize the data
before training the model. In this paper, we complete the
value standardization operation in the Python programming
language by calculating the mean and standard deviation of
the training set as well as the test dataset in the same
transform. ,e standard score of sample x is calculated by
removing the mean and scaling to unit variance as follows:

D �
x − μj

sj

, (1)

where μj is the mean of the training samples and sj is the
standard deviation. Relevant statistics for the samples in the
training set are calculated, which can be centered and scaled
independently of each feature. ,e mean and standard
deviation are then stored to handle with subsequent data.
,e normalized variable values fluctuate around 0, with
greater than 0 indicating above average; otherwise, it means
below average. In a word, the correct and key data would be
stored in the food system for the mining risk level and
prewarning information after analyzing and processing
unstructured abnormal data from the retrospective database.

3.3. :e Deep-Stacking Network Method. Based on the
preliminary analysis of IoT data, this study intends to find
out inherent relationships among items in a huge database,
which consists of key features with temporal and spatial
distributions matching different hazard categories in grain
products. However, it is still difficult to comprehensively
analyze the risk grade of hazardous materials in the whole
supply chain since the previous methods are not applicable
to dispose a mass of heterogeneous data offered by multi-
source IoTsensors and instruments.,erefore, a novel deep-
stacking network is proposed to accurately identify the risk
level of main hazards and timely carry out risky prewarning
of food products in the grain supply process. In order to
improve the identification accuracy, this paper achieves the
proposed method with three stages. Firstly, a multi-
granularity padded-scanning method is adopted to generate
input vectors with adjustable dimensions in the first stage,
and the K-fold cross-validation method is applied to expand
the utilization of limited training data in the second stage.
Finally, the deep-stacking network is consolidated to extract
a list of food safety prewarning features, which speed up the
mining process and improve identification performance in
the present study.

Table 2: Extended attributes of the grain database.

Dangerousness Sociality Economic Regulatory
Health guidance value
Median lethal dose (LD50)
Acceptable daily intake (ADI)
Short-term dietary intake (IESTI)
Carcinogenicity
Toxicity

Social attention
Security

Event frequency
Hot search index (Google and Baidu)

Annual total output of the province
Annual total planting area of the province

Grain production price
Grain consumption price

Regulatory
accessibility

Standard quantity
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3.3.1. Multigranularity Padded-Scanning Method.
Because the raw database is mostly unbalanced, multi-
granularity scanning is to utilize many sliding windows with
different sizes and functions to filter the input dataset for
forming new input vectors, which obtain the enhanced
representation ability of high-dimensional input data. ,e
basic scanning process is as follows: first, input a complete
M-dimensional sample, and then perform sliding sampling
through a filtering window of length k and step size 1 to
obtain the subsample vector of M′-dimensional feature:

M′ � (M − k) + 1. (2)

Each subsample is then used for training in partial or
complete random forests, and a probability vector of length
P is obtained in each forest. In this way, each forest will
generate a characterization vector of length M′ ∗P. ,e
results of different forest layers will be spliced together to
obtain the output of this layer.,e underlying multigranular
scan will oversample all features except the first and last
dimensional features, while the first and last dimensional
features will be sampled less once. However, the first di-
mension and the last dimension feature may be very im-
portant in practical applications; that is, reducing the two-
dimensional sampling relative to other dimensions may
affect the final result of the classifier.

So, considering the limitation, this paper proposes a
padding optimization to perform a zero-compensation
operation on the edge of the P-dimensional sample. To this
end, add an extra feature with value 0 and length k − 1 to
both ends of the input M-dimensional sample before the
original multigranularity scanning process, as shown in
Figure 2. ,en, the sampling window with the length of k

and the step size s is subjected to sliding sampling so that the
k-dimensional feature of the subsample vector is obtained as
M′. ,e formula is determined by the following equation:

M′ �
(M + 2(k − 1) − k)

s
+ 1 �

(M + k − 2)

s
+ 1. (3)

According to the above multigranularity padded-scan-
ning method, we could get the more effective input vectors
with adjustable dimensions by scanning the feature with
padding operation since most of the key information con-
tained in the unbalanced samples is searched without losing
too much raw data. Moreover, the subsequent methods can
accurately determine whether raw data or feature vector
should be focused on when an abnormality is detected,
thereby availably avoiding the model overfitting in the risk
analysis and evaluation process.

3.3.2. K-Fold Cross-Validation Method. Using the results of
the padded scanning as inputs, a simple hold-out validation
is used; that is, d samples are randomly selected from all
training data D as a training set, and the rest is used as a test
set. However, in this case, the data were only used once and
were not fully utilized. In order to make full use of the

limited training database, we can use the K-fold cross-val-
idation method to divide the training/test dataset into a
larger number of subsets. After this operation, the model
overfitting is further processed due to dataset bias and
improper dataset partitioning. ,e training data are divided
into k parts; one part is selected as the test part and the rest as
the training part in each of k iterations. ,en, the evaluation
metric integrating different outputs of subsets is obtained as
follows:

E �
1
k

􏽘

k

i−1
Ei, (4)

where k is the subset of the original sample D of equal size,
i � 1, 2, 3, . . . , k is the number of the ith subset, Ei is the
evaluation results on each subset, and E is the overall
evaluation result.

3.3.3. Deep-Stacking Network Architecture. In order to
promote the risk identifying capacity of the grain RITS, this
paper introduces the deep-stacking network method in-
spired by the classic stacked learning strategy to mine the
relationship among risk factors and hazards, meanwhile to
assign the corresponding weights according to their different
risk levels. ,e deep-stacking network algorithm first uses a
large amount of data to train the primary learner and obtains
the output of the first-layer learner through the primary
learner. Next, a layer in the classic stacking algorithm is
added, the original input data and the results obtained by the
first layer are concatenated, and they are input into the second
layer. ,en, the second layer of the primary learner is trained
to obtain the output of the second layer; finally, the results of
the second layer of learners are concatenated, and the final
result is obtained by the secondary learner. ,e structure
diagram is shown in Figure 3. To unify various feature vectors
of different learners into the same dimensional space, this
paper adds the 1× 1 convolutional layer followed by a batch
normalization layer to outputting feature vectors of the
metaclassifier; thereby, each probability distribution of
component features is computed by the Gaussian expectation
expression, which is described as follows:

Pi
􏽦y|θi􏼐 􏼑 �

1
����
2πσi

􏽰 exp −
􏽥y − μi( 􏼁

2

2σ2i
􏼠 􏼡, (5)

where Pi denotes the probability score for the ith component
classifier. θi � (μi, σ2i ) denotes the estimation parameters,
which are composed of the mean vector μi and the co-
variance matrix σ2i , respectively. And 􏽥y � 􏽥y1, 􏽥y2, . . . , 􏽦yN􏼈 􏼉 is
the output label vector corresponding to the input features,
which should reflect the substantive features of their original
data. Subsequently, a Gaussian mixing method is applied to
count the final prediction result P of the risk level, which
fuses the probability scores of different subclassifiers. ,e
log-likelihood estimation of P is performed as the following
expression:

Computational Intelligence and Neuroscience 7



P � log 􏽘
n

i�1
Pi

⎛⎝ ⎞⎠ � 􏽙
n

i�1
􏽘

m

j�1
cji

log
1
���
2π

√􏼠 􏼡 − log σi −
1
2σ2i

yj − μi􏼐 􏼑
2

􏼢 􏼣,

(6)

where n is the number of subclassifiers, m indicates the
number of input data, and cji denotes the hidden variable
representing the mixture weight of the ith component
classifier on the jth label vector yj∈􏽥y. With the constraint
that the sum of cji adds up to 1, the total probability dis-
tribution of the final result is normalized by maximizing the
expected value of the log-likelihood function given in
multiple iterations until the parameters reach convergence.

,e overall algorithm steps are as follows: firstly, the
training data are coded by the dictionary vectorizer and one-
hot encoder, and the value is standardized according to
different hazard categories in the grain; secondly, the
multigranularity scanning method is improved, and all
features are extracted equally by adding padding operation;
meanwhile, the K-fold cross-validation is used to divide the
raw database into k equal-sized subsets to train multiple
different learners of the first layer; next, the output result of

the layer is concatenated with the original input as an input
of the next layer, and a plurality of different learners of the
second layer are trained; finally, in the case of multiple
trainings, the accuracy is no longer improved, the training
results of the last layer of learners are merged to obtain the
final results, and the model is subsequently applied for
testing new data. ,e overall pseudo-code of the deep-
stacking network framework for the decision-making pro-
cess is shown in Algorithm 1.

4. Experimental Results

4.1. Comparative Results. In order to illustrate the applica-
bility and effectiveness of the improved RITS with the support
of the deep-stacking network method, a case study has been
conducted in the grain industrial chains. In order to prove the
scientific and the effectiveness of this research, the grain
datasets describing 34 and 170 instances were selected from
the retrospective database stored in the cloud platform of the
RITS to train and test the risk evaluation model. ,e original
sample datasets contain 33 attributive indicators and the given
risk level, of which 14 features are coefficient terms recorded
as string-type data, and the others are recorded as numerical
features. ,e category distribution of all instances according
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to eight risk levels is as follows: level I (15566), level II (3752),
level III (1288), level IV (2117), level V (2575), level VI (1726),
level VII (1386), and level VIII (5760).

,e nature of this dataset allows for multiple risk levels
to be present in each instance. ,erefore, all raw data were
partitioned into 90% and 10% splits of training and testing
subsets for K-fold cross-validation with k� 5. Stratified
random partitioning was performed to ensure the even
distribution of the classes within each level subset, which
affects the feasibility of training and testing the model. ,e
90% random split constitutes the training subset, while the
remaining 10% were used as the validation subset to monitor
the training process and minimize overfitting. ,e random
splits for each fold were controlled by a random seed such
that the individual split could be reproduced as required.

When the best choice of the training process and pa-
rameters is achieved, the trained model was used to predict
the unknown risk level of the 10% testing datasets. ,e
prediction result of remaining data was then compared with
the given risk level. To objectively evaluate the results of
different algorithms, four performance indicators including
accuracy (ACC), precision (PRE), recall (REC), and F1-score
(F1) were used to compare the prediction results of each
model. Among them, the ACC is the ratio of the number of
correctly marked items to the total number of observations.

And the PRE is the number of true positives divided by the
total number of items marked as belonging to that category.

Meanwhile, the REC is defined as the number of true
positives divided by the total number of items belonging to
that category, also known as sensitivity. ,rough the above
three indicators, the number of results in the confusionmatrix
can be converted into a ratio between 0 and 1, which can be
counted on the basis of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). Moreover, this
paper employs another high-level indicator F1-score, which is
the harmonic mean of the ACC and REC with better com-
prehensive evaluation for multicategory identification prob-
lems. ,e detailed definitions of indicators are as follows:

ACC �
TP + TN

TP + TN + FP + FN
,

PRE �
TP

TP + FP
,

REC �
TP

TP + FN
,

F1 � 2 ×
PRC × REC
PRE + REC

.

(7)

Input: training data D � xi, yi􏼈 􏼉
m
i�1.

Output: ensemble classifier H and risk level P procedure
Step 1: unstructured data encoding.
for i � 1 to m do
D � (DictV/OneH(xi)), yi􏼈 􏼉

Step 2: standardize data.
for i � 1 to m do
D � (x − μj/sj), j belongs to different categories as equation (1)
Step 3: multigranularity scanning data based on padding.
for t � 1 to m do
Multigranularity scanning x as equation (3)
Step 4: K-fold cross-validation on the data.

D � D1, D2, · · · Dk􏼈 􏼉,
D1 ∪D2 ∪ · · · ∪Dk � D

D1 ∩D2 ∩ · · · ∩Dk � ∅􏼨 as equation (4)

Step 5: learn base-level 1 classifiers.
for t � 1 to T1 do
learn h1−t based on D

Step 6: construct new dataset of level 1 predictions and training data.
for i � 1 to m do
Dh � xi

′, yi􏼈 􏼉 where xi
′ � D(xi), h1−1(xi), . . . , h1−T1

(xi)􏽮 􏽯

Step 7: learn base-level2 classifiers.
for t � 1 to T2 do
learn h2−t based on Dh

Step 8: construct a new dataset of level2 predictions.
for i � 1 to m do
Dh � xi

′, yi􏼈 􏼉 where x′ � h2−1(xi), . . . , h2−T2
(xi)􏽮 􏽯

Step 9: learn a metaclassifier.
learn H based on Dh

calculate prediction result P as equation (6)
return H and P

End for and iterative computations.
End Procedure.

ALGORITHM 1: Deep-stacking network flowchart.
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To verify that the proposed method could be used in the
grain supply chain for recognizing risk levels, we establish
some experiments to compare the performance of the deep-
stacking network with that of other methods. Some classical
machine learning methods including logistic regression
(LR), K-nearest neighbour (KNN), support vector machine
(SVM), extra trees (ET), gradient boosting (GB), random
forest (RF), and decision tree (DT) and five deep learning
models including AlexNet, VGG, GoogLeNet (GLNet),
ResNet, and deep forests (DeepF) were selected in this
section to illustrate the identification challenge in the grain
supply chain, which has achieved remarkable success in
other fields. All models are trained and tested on a cloud
server platform with Ubuntu 16.04 system. And codes are
based on the open-source framework, TensorFlow 2.3 with
Python API, and run on a dual-core Intel Core i7-6800@
3.6GHz processor with four NVIDIA Tesla p40 GPUs,
which have 96G computing caches and 256G memory.
Before inputting into the model learning process, all original
data were encoded and standardized to improve the ro-
bustness of the model.

In order to illustrate the effect of the multigranularity
scanning and cross-validation operation on the accuracy, we
conducted separate experiments of each model in Archi-
tecture-1 (without padded-scanning and cross-validation
operations) and Architecture-2 (with corresponding oper-
ations). ,e identification accuracy results of each model are
summarized in Table 3. It is demonstrated that the identi-
fication accuracy of the risk level during the grain product
supply chain has been notably improved by the proposed
DSN model, which had the best performance compared to
other models.

As shown in Table 3, compared with other state-of-the-
art models, the experiments showed that our proposed
model has achieved comparable or better results for risk level
identification on the accuracy. In the model list from top to
bottom, the methods are separated into three groups, which
are (1) machine learning models, (2) deep learning networks,
and (3) proposed DSN. We first observe that the accuracy
results of some machine learning methods are generally
better than some deep learning models on the food safety
dataset. For instance, the AlexNet and VGG are the classical
conventional neural networks for various classification and
detection tasks based on images or videos in other domains.
However, they have achieved lower recognition rates than a
few shallow-structured models including GB, RF, and DT,
which illustrates the challenge and difficulty of automatic
risk level recognition in complex food supply chains. With
the complexity of the network structure optimized with
various modeling tricks, deep learning networks began to
show better accuracy results over traditional methods.

For example, GoogLeNet, ResNet, and deep forests
design the complex nonlinear multilayer architecture to
exploit discriminative high-dimensional features, achieving
accuracy values up to 85.18%, 87.26%, and 90.73%, re-
spectively. Meanwhile, with the less parametric architecture,
the DSN method could produce the preferable accuracy by
94.88% even without the aid of padded-scanning and cross-
validation operations, which have obviously improved the

result by 9.7%, 7.62%, and 4.15%, respectively, in compar-
ison with the above three deep learning models. It illustrates
the advantage of a deep-stacking strategy in improving the
efficiency and characterization capability of food risk pre-
warning. Moreover, with the extra support of multi-
granularity padded-scanning and K-fold cross-validation
operation, all models achieved better average accuracies than
original baselines as listed in the Architecture-2 column,
which directly proves the necessity of related operations.

Moreover, this proposed approach does not add much
computational burden to the recognition system in terms of
model parameters, which achieves comparable and even
outperforming results compared with other methods. In
order to better evaluate the computing cost of each model,
we select the model parameters as the metric, which indi-
cates how much computer memory is occupied when the
model is trained. In this paper, we count up the memory
scales of conserved model weights to record the value of
model parameters. As shown in Table 3, the comparison
performance between our proposed DSN and other models
suggested evident accuracy and computational advantages
for risk level identification. For instance, compared with
deep learning models including AlexNet, VGG, GoogLeNet,
ResNet, and deep forests, the model parameters of Archi-
tecture-1 and Architecture-2 are 202.53 megabytes and
211.26 megabytes, respectively, which have been obviously
improved at least by 16.43 megabytes and 12.28 megabytes.
Although the other machine learning models with shallow
structures obtain the smaller model parameters over most of
the deep learning models and our DSN method, however,
the overall performance of the DSN in both accuracy and
model parameters is evidently larger, making it easy to build
and embed in RITS applications.

Besides, our DSN method achieves the best result with
97.62% accuracy in automatically and accurately identifying
grain risk levels, which clearly performs over comparative
methods. Similarly, the DSN method enjoys consistent
better performance on the F1 indicator outperforming
existing methods under the same baselines and has achieved
large-margin promotion in terms of F1-score up to 0.967
under Architecture-1 and 0.991 under Architecture-2. ,is
clearly indicates that feature learning and risk forecasting
capability can still be improved even though the food data
are very tricky for other methods. ,erefore, our method is
more suitable for risk level recognition in the food supply
chains. ,e F1-score results of different models in two ar-
chitectures are shown in Figure 4.

4.2. Predicting Evaluation of Each Risk Level. More com-
parisons of prediction results in terms of different risk levels
are provided in Table 4, which can further illustrate the
feasibility and effectiveness of the proposed DSN model. To
properly assess the algorithm capabilities, new 7886 data
from the grain database were used to calculate the PRE, REC,
and F1 results for each risk category. When the PRE of a risk
level is close to 1.00, it means that 100% of the security level
instances in the test set are assigned to this correct level. And
REC equal to 1.00 means that each item in the certain level
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belongs to the correct level, but does not indicate how many
other items are incorrectly marked. Additionally, the range
of the F1-score is from 0 to 1, with 1 representing the best

output and 0 representing the worst output of the model.
,erefore, the higher the value of three indicators, the
stronger the model’s ability for identifying and predicting.

As shown in Table 4, the proposed DSN method obtains
the high average PRE, REC, and F1 values up to 0.99 for each
risk level. ,e comparison of different risk levels revealed
that level IV acquires the lowest values due to the small value
divide interval between safety and risky concepts, which is
still important but hard to accurately identify and assess.,e
results of the DSN indicate that the deep-stacking strategy
has a great influence on the learning of features while
performing network convergence, which further proves that
the DSN model is more suitable for the recognition task of
risk level recognition in grain supply chains because its
stability is higher than the other methods.

Moreover, the confusion matrix is used to measure the
prediction performance of the DSNmodel for each risk level,

Table 3: Identification result of the risk level in comparative methods.

Models
Accuracy (%) Model parameters (megabyte)

Architecture-1 Architecture-2 Architecture-1 Architecture-2
Logistic regression [19] 59.21 69.35 41.31 43.25
K-nearest neighbour [35] 66.32 69.01 50.65 61.36
Support vector machine [20] 66.70 72.60 47.33 58.97
Extra trees [18] 71.88 72.83 63.57 70.65
Gradient boosting [22] 78.94 81.29 61.37 66.91
Random forest [26] 80.51 83.93 70.18 81.32
Decision tree [17] 83.97 85.45 72.34 79.25
AlexNet [26] 70.62 71.32 218.96 223.54
VGG [28] 72.88 73.94 320.78 365.12
GoogLeNet [27] 85.18 87.98 425.89 478.23
ResNet [29] 87.26 89.68 507.34 528.67
Deep forests [32] 90.73 92.47 385.32 419.11
Proposed DSN 94.88 97.62 202.53 211.26
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Figure 4: Structure diagram of the deep-stacking network method.

Table 4: Recall, precision, and F1-score of each risk level based on
the proposed model.

Level PRE REC F1-score
I 1.00 1.00 1.00
II 0.98 0.98 0.98
III 0.97 0.97 0.97
IV 0.95 0.96 0.96
V 0.95 0.98 0.97
VI 0.97 0.96 0.97
VII 097 0.96 0.97
VIII 1.00 0.99 0.99
Total average 0.99 0.99 0.99
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which is the most basic, intuitive, and simplest method to
assess the right and wrong distribution of the model out-
come. ,e normalized confusion matrix of the DSN is
shown in Figure 5, which further reflects the high cor-
rectness of predictability and low confusion of error division
for grain risk prewarning.

4.3. Hyperparameter Influence on the Model Performance.
Although many deep learning models have shown their
efficacy for application in various fields, they may not be
suitable for different kinds of datasets or problems.,emain
drawback restricting the expanded application of deep
learning methods is that their performance will be seriously
influenced by hyperparameters based on experiential
knowledge or many attempts to select parameters for better
results. ,is process may spend a lot of computing resources
and time, and the hyperparameters obtained may not be
optimal, resulting in the instability and limited accuracy of
models. ,erefore, making an effective experiment to dis-
cuss the optimal hyperparameters is an essential step to
improving the model’s performance. To solve the above
issue, we investigate the three main hyperparameters in-
cluding epochs, batch size, and K to analyze the influence.
,e relation between several hyperparameters and the
model’s accuracy is shown as follows.

As shown in Figure 6, in the initial stage, as the batch size
hyperparameter becomes larger, the model performance
continues to rise, but after 64, the accuracy shows a
downward trend. ,erefore, the best selection of batch size
should be 64 when other conditions are the same. Similarly,
with the increase of the K hyperparameter, the accuracy of
the model increases rapidly. ,e difference is that the ac-
curacy tends to be stable and even fluctuates when the value
reaches 5. ,is means that the best value of K is 5, and there
is no need to choose a higher value. It will not only increase
the amount of calculation but also affect the stability of the
model. Finally, it can be seen from the relationship diagram
of the epoch selection that the performance is achieved when
the epoch hyperparameter is 100 when other conditions are
set the same. ,rough the above discussion, the hyper-
parameters of batch size, K, and epoch in this article are,
respectively, set as 64, 5, and 100, in order to ensure the
optimal performance of the proposed method.

4.4. Case Analyses and Discussion. In the rest of this paper,
we study the risk level distribution of different hazards and
analyze the relative effect on each supply link in order to
offer vital prewarning rules for the whole food system as well
as provide a detailed explanation related to the superiority of
the DSNmodel for food safety assurance.,rough the above
experiments, we can know that the risk situation of the
hazardous materials is different in each supply chain link,
but the risk level of various hazards may gradually accu-
mulate and spread along with supply chain processes. When
these risk levels and related features were input into the RITS
for a period, we found the results are encouraging to make
operators find the food safety risk immediately and enhance
the food quality assurance during the whole supply chain.

Moreover, with fully utilizing the IoT and cloud analysis
technology, the prewarning rules could be mined by the
proposed deep-stacking method from the massive un-
structured data stored in the cloud platform. All generated
prewarning information would be fed back into the food
system and history database to allow a continuous and
interactive process to achieve superior solutions and
traceable schemes for the future possible problems in supply
chain management. When more effective information and
communication are shared among supply chain partners
with the support of an IoT-based food system, the hidden
food safety information would be visualized.,e prewarning
information created in the supply chain along with the
product transactions would be analyzed by operators in
different food industries and companies, and all such results
are extracted and displayed in a visualization way, through
which the decision-making gap between supervisors and
consumers can be more clearly understood and offset.

For example, we could observe the distribution dis-
crepancy of each risk level among grain supply chains as in
Figure 7. It can be seen that the products under level I and
level II occupy the majority of all grain products, where the
overall quality of the supply chain is very safe. Nevertheless,
in the production and circulation links, level VIII and above
products account for a large proportion, indicating that
these products are highly prone to risks due to environ-
mental changes and spatiotemporal accumulation in a wide
range. ,erefore, food regulatory agencies need to
strengthen the supervision of the front-end links when
conducting random food safety inspections to protect the
health of consumers. Meanwhile, enterprise managers
should pay much attention to the quality and safety of grain
in production and circulation links and should add more
effective monitoring and prewarning technologies to avoid
the food safety incidents to a significant extent.

In addition, the food risk identification and prewarning
system with the DSN method will help to analyze the re-
lationship among various hazards, minimize the production
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of unsafe quality products, and reduce the economic losses
by avoiding product recall activities or additional destruc-
tion operations. For instance, with the prewarning analysis
of the potential relationship between the hazard category
and supply links, the prevention and control rules would be
more scientific, while the operators always determine the
corresponding operations on the basis of personal experi-
ence before. As shown in Figure 8, the ratio graph of un-
qualified samples in the production, circulation, and sales
links is shown to illustrate the link distribution of four
dominating contaminants.

We could find that the production and sales links suf-
fered a greater threat of various pollutants. Nearly 70% of the
heavy metal hazards are detected in the production link
originating from the metal residue of polluted soil and ir-
rigation water. Heavy metals exceeding the standard are also
frequently detected in other links, which means that heavy
metals easily continue to migrate and spread in the grain
supply chain. ,e excessive situation of pesticides has a
similar proportional distribution except for the sale link,
indicating that there are lots of excessive additives and
unqualified operations in the subsequent process of sales and
consumption, which need to be focused on and prevented in
grain supply chain management. ,e typical issue is that the
illegal addition of benzoyl peroxide (BP) which has been
confirmed to damage the human body and forbidden in the
Chinese national standard has increased in wheat flour and
related products.

Meanwhile, most microorganisms are concentrated in
the early production links with 90.79%, which reveals that

the grain safety risks of microorganisms are mainly caused
by the production industries and processing enterprises
since most microorganisms are sensitive to many envi-
ronmental factors of the global grain supply chain in-
cluding transit time, temperature, humidity, conveyance,
and product type. In contrast, the mycotoxins are affected
by more complicated factors in all links of the grain supply
chain, where there are various intrusion sources. ,e
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distribution ratio also reveals that mycotoxins can exist for
a long time with biodegradability degradation resistance,
which are easy to migrate and enrich in continuous links of
the grain supply chain. ,ereby, with the support of the
risk identifying and prewarning system, the performance
improvement of risk identification and prewarning en-
hances the safety and quality level of food supply chains,
which even promotes the management efficiency of the
food crisis and prevents the interruption of sustainable
food supply and the food recall cost, and waste would also
be reduced.

For example, with the geographical analysis of un-
qualified grain products in different provinces as shown in
Figure 9, customers will obtain an intuitive and compre-
hensive perception of the prewarning rules between un-
qualified production and geographical distribution. It can be
seen from Figure 1 that there are more cases of unqualified
grain in the southeastern coastal areas, while there are fewer
cases of grain unqualified in the western and northeastern
regions, which may depend on the distribution of grain, the
population density of different provinces, and the level of
consumption. So, consumers gain better confidence, secu-
rity, and satisfaction with access to safe, high-quality

production. Besides, the regional differences reveal the ur-
gent requirement for the overall supervision of grain
products across the whole supply chain, which calls poli-
cymakers to provide infrastructure development and fi-
nancial assistance to enterprises.,ere is also an urgent need
for the implementation of the intelligent food system with
the help of IoT technology and cloud analysis, which reflects
the society’s emphasis on the security and sustainability of
grain supply chains.

All in all, the developed DSN method has provided an
effective approach for the food risk identifying and pre-
warning system to strengthen the quality, security, and
sustainability of food supply chains.With the support of IoT,
cloud analysis, artificial intelligence, and other technologies,
it becomes easier to allow various food enterprises to ef-
fectively monitor, identify, and predict risk levels in real
time. Accurately identifying and sharing of risky factors can
reduce recall costs and unnecessary waste while promoting
the consumers’ satisfaction and security for high-quality
food productions. ,e system also provides more pre-
warning information for policymakers to develop targeted
regulatory policies and provide low-risk financial assistance
with a comprehensive decision-making perspective to
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ensure the grain supply chains’ quality sustainability. Ex-
perimental results and analyzing discussion of the practical
cases validate the feasibility of adopting the proposed DSN
model embedded into the IoT-based RITS, which would
avoid food safety incidents to a significant extent.

5. Conclusion

Overall, this study has proposed a new deep-stacking net-
work for the IoT-based risk identification and traceability
system to identify risk levels and mine traceability rules in
food supply chains. With the support of IoT technology and
cloud analysis platform, the system would monitor massive
multisource biosignals about food supply safety through
various sensors and instruments in real time. ,en, a deep-
stacking network optimized with data mining is proposed to
enhance the efficiency and performance of the RITS for
guaranteeing food supply chain security sustainability. ,e
verification experiments with practical food safety datasets
show that the proposed method has the best performance in
terms of prediction accuracy and stability compared to other
models, which takes various indicators reflecting identifi-
cation accuracy, response speed, and computing con-
sumption of food systems into account. ,ereby, this work
indeed makes a significant contribution to promoting the
security and sustainability of food supply chains, as well as
mining important decision support rules to help regulatory
authorities, enterprises, and consumers.

,e proposed methods in this paper can combine other
identification schemes for studying new modeling and
prediction of dynamical systems [40–42] and can be applied
to other fields [43–46] such as signal modeling, tracking, and
control systems. On the contrary, our network has high
requirements for data and does not perform well for un-
structured data. At the same time, this method has not been
verified in other scenarios. ,erefore, we would like to apply
advanced deep learning methods to adjust hyperparameter
searching and model training to improve the overall reli-
ability and efficiency of the food safety system even further.
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