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Heat stress is a global issue for the poultry industries with substantial annual economic 
losses and threats to bird health and welfare. When chickens are exposed to high ambient 
temperatures, like other species they undergo multiple physiological alterations, including 
behavioral changes, such as cessation of feeding, initiation of a stress signaling cascade, 
and intestinal immune, and inflammatory responses. The brain and gut are connected 
and participate in bidirectional communication via the nervous and humoral systems, this 
network collectively known as the gut-brain axis. Moreover, heat stress not only induces 
hyperthermia and oxidative stress at the gut epithelium, leading to impaired permeability 
and then susceptibility to infection and inflammation, but also alters the composition and 
abundance of the microbiome. The gut microflora, primarily via bacterially derived 
metabolites and hormones and neurotransmitters, also communicate via similar pathways 
to regulate host metabolic homeostasis, health, and behavior. Thus, it stands to reason 
that reshaping the composition of the gut microbiota will impact intestinal health and 
modulate host brain circuits via multiple reinforcing and complementary mechanisms. In 
this review, we describe the structure and function of the microbiota-gut-brain axis, with 
an emphasis on physiological changes that occur in heat-stressed poultry.
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INTRODUCTION

The microbiota-gut-brain axis (MGBA) has been widely investigated in human and mammalian 
species for decades due to its vital role in not only homeostatic maintenance but also the 
pathology of various neurodevelopmental and neurodegenerative disorders (Cryan et  al., 2019). 
In addition, the importance of this axis in non-mammalian species, such as chickens, has 
been acknowledged and the potential mechanisms are being investigated. The relationship 
between the gut microbiome and host is considered to be  mutualistic rather than commensal 
(De Palma et al., 2014). The host provides the microbiome with hospitable niches and undigested 
food, and in turn, these microorganisms metabolize and produce neuroactive components. 
These neuroactive molecules, such as serotonin (5-HT), exert a systematic or local effect in 
regulating host physiological processes, by entering the circulation or interacting with enteric 
nervous and immune systems, respectively. Factors that act on the central nervous system 
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(CNS), for instance via vagal afferents, influence host behaviors, 
whereas others trigger structural and functional changes in 
the intestine (Villageliũ and Lyte, 2017). The interactive effects 
between the gastrointestinal microbiota and the host could 
be benign or detrimental, depending on the type and magnitudes 
of factors, including but not limited to dietary composition, 
environmental stimuli, and host genetics and phenotypes (Kers 
et  al., 2018).

Stress, by a simple definition, is the adaptive physiological 
and psychological response of an organism to restore homeostasis 
(Glaser and Kiecolt-Glaser, 2005). The intestinal tract is reported 
to be  involved in responses to all kinds of stressors, including 
heat stress (Rostagno, 2020). Heat stress is a major environmental 
challenge and occurs when there is an imbalance in the net 
amount of heat energy produced by and released from an 
organism (Renaudeau et  al., 2012), during which the organism 
accumulates more heat than it can utilize and release. Heat 
stress is closely related to changes in the intestine, both 
structurally and functionally, and in the composition of the 
gut microbiota (Song et  al., 2014; Sohail et  al., 2015). Studies 
on the effects of heat stress on the gut microbiota in humans 
are lacking (Karl et  al., 2018), and a variety of animal models 
is utilized to thoroughly investigate these effects to provide 
clinical insights. In this review, we  focus on avian models, 
because heat stress has been widely reported to influence poultry 
meat and egg production, as well as flock health and wellbeing, 
through major changes in intestinal physiology and the gut 
microbiota (Lara and Rostagno, 2013; Rostagno, 2020). However, 
how heat stress interacts with the chicken’s gut microbiota 
and affects the MGBA is not fully understood and requires 
further elucidation.

Herein, we  review literature related to heat stress-induced 
alteration in chicken behaviors (such as feeding and social 
behaviors), physiological processes, intestinal integrity and the 
microbiota, and the immune system, with an emphasis on the 
relationships of these alterations to gut microbiota composition. 
We  also review what is known regarding the use of probiotics 
and prebiotics as preventative and therapeutic interventions 
in heat-stressed animals, and discuss strategies to ameliorate 
the detrimental effects of high temperatures on bird behavior 
and health.

MICROBIOTA-GUT-BRAIN AXIS

Microbiome Composition
Gut microbes consist of different microorganisms, such as 
bacteria, viruses, yeast, and other fungi, and protozoa. Most 
research on gut microbiota has focused on evaluating bacteria 
composition and function (Karl et  al., 2018); hence, bacteria 
being the target of this review. The amount of microbiota 
varies dramatically between intestinal sites, from about 105 
colony-forming units (CFU) per gram of digesta in the small 
intestine to around 1011 CFU per gram of digesta in the cecum 
(Xing et  al., 2019; Rychlik, 2020). During the past decade, 
technological advances in profiling microbiomes within the 
host, from improvements in laboratory culture techniques to 

16S rRNA gene sequencing and metagenomics sequencing, 
have enabled the study of the composition of the microbiome 
with greater resolution and depth. However, it is important 
to note that knowing the microbiome composition does not 
necessarily facilitate an understanding of their function and 
physiological consequences. In chickens, Lactobacilli dominate 
several parts of the upper digestive tract, including the crop, 
proventriculus, and ventriculus (gizzard), whereas the small 
intestine is mainly inhabited by Lactobacillus, Enterococcus, and 
Clostridiaceae. This prevalence of specific species is, to some 
extent, related to the function of the digestive organs, since 
the pH of gastric juices is relatively low, which favors domination 
by Lactobacilli. In the cecal tonsils, where digesta resides the 
longest time during digestion, and the concentration of short-
chain fatty acids (SCFAs) synthesized by bacteria is greater 
than elsewhere in the gastrointestinal tract (GIT), the most 
abundant phyla are Firmicutes, Bacteroides, and Proteobacteria 
(Oakley et  al., 2014; Villageliũ and Lyte, 2017; Karl et  al., 
2018; Rychlik, 2020).

Functions of Microbial Products
Microbial products can serve as an energy source to fuel the 
host and are capable of interacting with immune or 
neuroendocrine systems to influence host health and behaviors 
(Shenderov, 2016). SCFAs, once being taken up, can be  used 
as a metabolic substrate (ATP production) by intestinal cells, 
particularly intestinal epithelial cells (enterocytes) (Bergman, 
1990). Butyrate and propionate, two major SCFAs, interact 
with specific G-protein-coupled receptors to regulate and maintain 
energy and immune homeostasis in cells and thus influence 
their activity, by activating pathways, such as chemotaxis, 
apoptosis, proliferation, and differentiation, through gene 
expression programming (Clarke et  al., 2014; El Aidy et  al., 
2016). Acetate and butyrate are reported to participate in the 
maintenance of GIT barrier intactness, through which bacterial 
colonization and translocation are prevented (Fukuda et  al., 
2011; Fachi et  al., 2019). Additionally, SCFAs act as signaling 
molecules and are closely related to the synthesis of a variety 
of neuroactive molecules, such as leptin, glucagon-like peptide 
1, and other hormones, which can be  transported through 
the circulation to several brain regions. Neurons in the arcuate 
nucleus of hypothalamus, for instance, receive signals through 
receptors of these neuropeptides and neurotransmitters that 
are integrated to then regulate the host’s appetite (Tolhurst 
et  al., 2012; Clarke et  al., 2014; El Aidy et  al., 2016).

Bacteria synthesize classic neurotransmitters, such as 5-HT, 
which can act locally or distantly through the circulation or 
nervous system, and as such have been referred to in the 
literature as “mind-altering” (Cryan and Dinan, 2012). In the 
intestine, host enterochromaffin cells, a type of entero-endocrine 
cell, produce 5-HT. While most dietary-derived tryptophan is 
metabolized in the liver via the kynurenine shunt, some is 
converted into 5-HT. In fact, the majority (> 95%) of 5-HT 
in the body is synthesized in the gut, occurring via sequential 
conversion of tryptophan via two enzymatic reactions. Intestinally 
derived 5-HT, whether of host or bacterial origin, can then 
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act via the endocrine system or through the vagus nerve. 
Within the small intestine, most 5-HT is released into the 
mucosa, and it is estimated that roughly 2% of all enteric 
neurons are serotonergic (Mawe and Hoffman, 2013). Via a 
variety of receptors, including the ionotropic 5-HT3 and 
metabotropic 5-HT1, 2, 4, and 7, 5-HT influences gut motility 
(peristalsis), secretion of chemicals, such as bicarbonate, during 
digestion, vasodilation, and neuronal survival and inflammation 
(Mawe and Hoffman, 2013).

Relationship Between Microbiota and the 
Host Gut
Under normal and healthy conditions, microbial communities 
in the host GIT play an overall beneficial role. They assist in 
competing against pathogenic microbial taxa and maintaining 
intact intestinal lumen surface structures, ferment undigested 
polysaccharides into SCFAs, and provide additional vitamins 
(Oakley et  al., 2014). Indeed, coprophagic species, such as 
rabbits and rodents, recover such vitamins by consuming fecal 
pellets. There are detrimental effects of the gut microbiota 
undergoing dysbiosis, which can be  initiated by but also 
exacerbated in response to gastrointestinal environment 
perturbations (temperature, pH, nutrient composition, toxins, 
introduction of microflora, etc.), resulting in several acute or 
chronic diseases in the host (Karl et  al., 2018). There is a 
clear relationship, for example, between intestinal diseases, such 
as Crohn’s disease and inflammatory bowel syndrome, and 
unbalanced SCFA production and 5-HT availability in the gut 
(Oligschlaeger et  al., 2019). Thus, maintaining a healthy gut 
microbial community and hospitable mucosal environment is 
of utmost importance to host health and wellbeing. Generally, 
a microbiota that is diverse in both composition and genetic 
content or is dominated by beneficial taxa is characterized as 
being a healthy community (Karl et  al., 2018).

Physiological Connections Between Gut 
Microbiota and the Host Brain
The gut microbiota and brain have bidirectional connections. 
On the one hand, gut microbiota themselves are an important 
source of peripheral neurotransmitters and hormones. These 
molecules not only modulate gut functions like peristalsis, as 
described above, but also directly communicate the intestinal 
state through vagal afferents to the brainstem and higher brain 
regions. Various stressful stimuli through peripheral and central 
pathways lead to the activation of the hypothalamic-pituitary-
adrenal (HPA) axis, which might further alter gut microbiota 
composition and activity as well as intestinal epithelial cells’ 
function. Release of corticotropin-releasing factor (CRF) from 
the hypothalamus stimulates adrenocorticotropic hormone 
(ACTH) release from the anterior pituitary into the circulation, 
which then triggers the release of corticosteroids from the 
adrenal glands, including cortisol by humans and corticosterone 
by birds from the adrenal cortex into the circulation. 
Corticosteroids exert a multitude of effects on the GIT via 
direct interactions with enteric muscle cells and neurons, 
bacteria, and intestinal immune cells, leading to the release 

of cytokines, which via the circulation can act on the brain 
to affect mood, appetite, cognition, and emotion (Cryan and 
Dinan, 2012). Several environmental factors, such as dietary 
composition and drugs, can influence activity of the MGBA 
through one or more pathways that feed into these mutually 
reinforcing connections. For instance, appetite regulation is 
mediated mainly in several brain regions like the hypothalamus 
and brainstem. Nutrients in the gut stimulate the release of 
satiety factors, such as cholecystokinin, and also directly affect 
the microbiota, which in turn regulate the concentration of 
cytokines and neuroactive molecules that modulate brain function 
(Petra et  al., 2015).

HEAT STRESS

The adaptive physiological and behavioral responses of an 
organism to environmental demands or pressures have been 
described as stress responses, by which the organism attempts 
to maintain or restore homeostasis (De Palma et  al., 2014; 
Karl et  al., 2018). Stressors or stressful stimuli can vary from 
acute to chronic and from one time to several repetitive 
occurrences, and their magnitude can be  mild or severe. 
Additionally, the different capabilities of individuals to perceive 
stress result in various outcomes (Lucassen et  al., 2014). 
Individuals exposed repeatedly to stressful situations appear 
to be  more vulnerable to gastrointestinal diseases.

There exist various factors that cause changes in the intestinal 
microbiota of chickens. One major source of these factors is 
characteristics of the host itself, such as age, type and breed, 
sex, and sampling site in the GIT. Environmental factors also 
influence the microbiota composition, including biosecurity 
level, housing condition, litter, feed, temperature, and location 
(Kers et  al., 2018). Among those environmental factors, a 
growing amount of evidence indicates that heat stress has 
significant effects on the intestinal microbiota composition and 
tissue structure (see these effects via altered concentrations of 
neural/humoral factors in Table  1).

When birds are exposed to stressful factors (such as long-
term exposure to sunlight, high ambient temperature and 
humidity, and poor ventilation), their internal energy homeostasis 
is disrupted and physiological alterations ensue. The transient 
or long-term imbalance between heat dissipation to the 
environment and heat production inside the animal can disturb 
thermostasis and eventually result in heat stress. The 
thermoneutral zone is the ambient temperature range where 
the animal efficiently regulates and maintains a constant body 
temperature (Pollock et  al., 2021). When environmental 
temperature exceeds the upper critical temperature, which is 
the upper limit of the thermoneutral zone, animals are considered 
to be  exposed to heat stress (McNab, 2002). In general, 
thermoneutral zones for broiler chickens are 28 ~ 34, 25 ~ 31, 
22 ~ 28, 20 ~ 25, 18 ~ 24, and 18 ~ 24°C for each of the first six 
weeks of age, respectively (Cassuce et  al., 2013).

Core body temperature, when elevated by exposure to high 
ambient temperature, surprisingly did not dramatically alter the 
microbiota in the cecal tonsils (Xing et  al., 2019). However, 
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another study (Alhenaky et al., 2017) found that compared with 
the thermoneutral condition, both acute and chronic heat stress 
led to a higher rectal temperature, with the magnitude even 
higher in the former situation. Rectal temperature peaked during 
the first two days of heat exposure, then fluctuated until it 
reached a plateau. After that, individuals under heat stress showed 
thermo homeostasis during the rest of the observation period. 
The prevalence of intestinal pathogens (Salmonella spp.) was 
increased in heat-exposed chicks in comparison with the control 
birds (Alhenaky et  al., 2017). These results suggest that core 
body temperature, despite being temporarily affected by heat 
exposure, could be  adjusted promptly and exert a limited direct 
effect on the gut microbiota. However, the capacity for adaptation 
might be compromised if the chickens are exposed to consistent 
high ambient temperatures after the first few days, which can 
lead to a severe susceptibility to heat stress.

Thus, the influence of heat stress on the composition of 
the gut microbiota can occur as a direct consequence of altering 
body temperature, or indirectly due to an acute or gradual 
change in the birds’ behavior, physiological status, intestinal 
integrity, and immune system activity (See Figure  1), which 
will be  discussed in detail in the following sections.

HEAT STRESS INDUCES APPETITE 
SUPPRESSION

Our group demonstrated that exposure to high ambient 
temperatures suppressed food consumption in young broiler 
chickens, which was associated with changes in the activity 
of several appetite-regulating peptides, such as orexigenic 
neuropeptide Y and anorexigenic CRF, which both have peripheral 
effects associated with the enteric system and HPA axis (Bohler 
et  al., 2020). In another heat stress study, heat-exposed birds 
ate less, ingested more water, panted more often, and lifted 
the wings much longer (Mack et  al., 2013). Typically, the 
reduction in food intake is sustained during heat stress and 

is thought to be  a compensatory mechanism to reduce heat 
production associated with nutrient metabolism, although heat 
stress is associated with changes in nutrient absorption, 
particularly amino acids and glucose. For this reason, a multitude 
of heat stress studies with chickens and other species have 
employed dietary strategies to mitigate nutrient-induced heat 
production, including formulating diets to vary in macronutrient 
composition (Chowdhury et  al., 2021). The GIT of chickens 
consumes about 7% of the energy derived from the diet, so 
reduced feeding, while offsetting some of the heat production 
in the animal, could also elicit a fast and dramatic response 
in the GIT, primarily jeopardizing gut integrity and mucosal 
immunity, which further compromises nutrient assimilation, 
triggers systemic inflammation, and impairs production 
(Thompson and Applegate, 2006; Deng et  al., 2012).

In some commercial practices, the distance of the grow-out 
facility from the brooder house necessitates transporting chicks 
over long distances after hatching and processing. Although the 
residual yolk sac provides a reservoir of nutrients that are resorbed 
into the intestine and used by the chick after hatching, delayed 
access to food after hatch can impair intestinal development 
(Lamot et  al., 2014; Proszkowiec-Weglarz et  al., 2019, 2020; Qu 
et al., 2021), and also establishment of the microbiota (Flint et al., 
2012). Similar influences were observed in response to food 
withdrawal at a later age (Burkholder et  al., 2008). Having no 
access to food, even for a period of 6 h, allows pathogens, like 
Salmonella (Burkholder et  al., 2008), to colonize within the gut 
and reshape the microbial community (Thompson et  al., 2008). 
Sequencing techniques used to evaluate the taxonomy of the gut 
microbiota revealed that chickens subjected to food withdrawal 
had altered populations in the ileum and cecum, with increased 
Firmicutes and diminished Proteobacteria. Overall, the major effects 
of food deficiency on the intestinal microbiome are on the dominant 
families, such as Turicibacteraceae, Ruminococcaceae, and 
Enterobacteriaceae (Metzler-Zebeli et al., 2019). In broiler breeders, 
it is common practice to restrict the amount of food consumed 
throughout life, in order to meet target body weights to prevent 

TABLE 1 | The effects of heat stress-induced neuronal/humoral factors on intestinal physiology and gut microbiota.

Factors Effects Species References

HSF, HSP, and TLR Induced oxidative stress and intestinal barrier 
breakdown, initiated inflammatory signaling

Chicken Varasteh et al., 2015

Proinflammatory cytokines (e.g., IL-1β, 
IL-2, IL-6, and TNF-α)

Damaged tight junction and gut epithelial integrity, 
activated HPA axis, enhanced successful transmission 
of pathogens

Chicken Al-Sadi et al., 2010; Deng et al., 2012; 
Alhenaky et al., 2017; Jiang et al., 2021

Corticosterone Altered HPA axis, increased macrophage oxidative burst 
and decreased numbers of macrophage undergoing 
phagocytosis, depressed immune response, induced 
intestinal lesions, altered gut microbial communities

Chicken Deng et al., 2012; Quinteiro-Filho et al., 
2012b; Beckford et al., 2020; Zaytsoff et al., 
2020

Monoamines (e.g., 5-HT, NE, E, and 
DA)

Increased corticosterone and inflammatory cytokines Chicken, rat Johnson et al., 2005; Bahry et al., 2017

Appetite-related neuropeptides (e.g., 
CCK, ghrelin, CRF, and NPY)

Reduced food intake, activated HPA axis and stress 
response, impaired intestinal structure

Chicken Lei et al., 2013; Bohler et al., 2020; Wang 
et al., 2021

Reactive oxygen and/or nitrogen 
species

Abnormal heat tolerance, injured intestinal barrier, 
invading pathogens, translocated endotoxins, increased 
inflammatory cytokines

Rat Hall et al., 2001

5-HT, 5-hydroxytryptamine; CCK, cholecystokinin; CRF, corticotropin-releasing factor; DA, dopamine; E, epinephrine; HPA axis, hypothalamic-pituitary-adrenal axis; HSF, heat shock 
factor; HSP, heat shock protein; IL, interleukin; NE, norepinephrine; NPY, neuropeptide Y; TLR, toll-like receptor; and TNF-α, tumor necrosis factor-α.
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metabolic disorders and support optimal reproduction. However, 
as described above, such practices could negatively impact the 
gut microbiome which in turn could impact health of the chicken. 
Combined with exposure to high temperatures, restricted access 
to feed could have major impacts on the bacterial composition 
of the GIT and thereby affect the bird’s whole-body physiology.

Heat stress also negatively affects layer-type chicks, by reducing 
their food consumption, egg production, and quality, and 
increasing death rate (Mack et  al., 2013; Mignon-Grasteau 
et  al., 2015; Sahin et  al., 2018). In laying hens, integrity of 

the gut mucosa was impaired under heat exposure, resulting 
in limited nutrient transport across the intestinal mucosal layer 
(Zhang et  al., 2017). Moreover, the intestinal microbiome 
community was modified in heat-stressed pullets and hens 
(Burkholder et  al., 2008; Song et  al., 2014; Zhu et  al., 2019). 
Xing et  al. (2019) found that layer chicks displayed an altered 
microbiome composition rather than species abundance, in 
response to exposure to a high ambient temperature (29–35°C), 
and this change was closely associated with less food consumption. 
Another study involved exposing the layers to a cyclic temperature 

FIGURE 1 | Influences of heat stress on the microbiota-gut-brain axis (MGBA) and the pathways involved in the axis in chicken. The gut microbiota communicates 
with the gut-brain axis through several pathways, including neural, immune, and endocrine signaling. The gut microbiome produces neurotransmitters, such as 
serotonin, which can trigger responses of the vagus and enteric nervous system, and short-chain fatty acids (SCFAs), which can nourish the host and regulate the 
host’s brain activity and behaviors. Gut microbiota also stimulates intestinal immune cells to generate and secrete cytokines to induce immune response locally and 
systemically and modulate the brain. In turn, the brain utilizes the same pathways to alter the gut microbiota, especially their composition and abundance, under 
circumstances, such as heat stress. Heat stress can influence the MGBA both directly and indirectly. The hypothalamic-pituitary-adrenal axis is activated by heat 
stress and facilitates the production of corticosterone in birds, which further affects enteric cells and gut microbiota. The utilizations of prebiotics, probiotics, or 
symbiotics are promising approaches to alleviate the adverse effects of heat stress. ACTH, adrenocorticotropic hormone; CRF, corticotropin-releasing factor. This 
figure is adapted from previous publications (Cryan and Dinan, 2012; Aoki et al., 2017) and created with BioRender.com.
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of 35°C 7 h per day and found an increased alpha diversity, 
that is, the present species of the microbiome were elevated 
in the cecum after 2 weeks of exposure, although they returned 
back to normal levels after 4 weeks (Hsieh et  al., 2017). 
Additionally, the two most abundant cecal phyla, Bacteroidetes 
and Firmicutes, showed different richness by the end of the 
experiment. This study suggested that heat stress started to 
reshape the microbiota in layers at 2 weeks but the bacteria 
adapted to the temperature change later at 4 weeks (Hsieh 
et  al., 2017). Shi et  al. (2019) found slightly different results 
and observed significant changes in the abundance of those 
two phyla starting at 1 week, although also a loss of significance 
by 4 weeks. All of these findings suggest that the influence of 
heat stress on the gut microbiota depends on the magnitude 
and duration of heat exposure.

In layer chicks under heat exposure, there were elevated 
numbers of several detrimental genera, including Escherichia, 
Shigella, and Clostridium, which generate alpha-toxins and 
contribute to the occurrence of necrotizing enterocolitis. On 
the other hand, advantageous bacteria, such as Lactobacillus 
and Ruminococcaceae, were scarce (Heida et al., 2016). Bacteria 
in the genus Lactobacillus are widely used as probiotics, as 
their metabolites are capable of regulating the acid-base 
equilibrium in the intestine, which favors the development of 
a beneficial but not pathogenic microbiome (Menconi et  al., 
2011). Some species in the Lachnospiraceae group are also 
inhibited during heat stress (Biddle et  al., 2013; Meehan and 
Beiko, 2014). These species produce a relatively large proportion 
of butyrate, which helps maintain intestinal health by facilitating 
epithelial development. Generally, butyrate is less abundant 
than other SCFA (60% acetate, 25% propionate, and 15% 
butyrate; at least in humans), although it serves as the major 
energy source for colonocytes in the large intestine and is 
known to affect gene expression by acting as a histone deacetylase 
(HDAC) inhibitor and affects signaling via activation of several 
G-protein-coupled receptors (Liu et  al., 2018). Many studies 
have demonstrated a beneficial role for butyrate in maintaining 
intestinal barrier integrity, and in preventing inflammation (Liu 
et al., 2018). Thus, changes in the numbers of butyrate-producing 
bacteria could modulate the MGBA via effects of butyrate 
signaling on the peripheral and CNS (Liu et  al., 2018).

HEAT STRESS REDUCES INTESTINAL 
INTEGRITY

The gut microbiome environment is normally stable under 
healthy conditions. The intestine provides niches for bacteria 
to colonize and thrive, and in turn, commensal bacteria compete 
with pathogenic bacteria for space and nutrients to survive 
and produce metabolites that boost host intestinal immunity 
and suppress the growth of pathogens, which collectively protect 
the gut epithelium. However, stressful stimuli can concurrently 
impair intestinal barrier integrity and alter the microbiome 
(Tannock and Savage, 1974; Söderholm et al., 2002; MacDonald, 
2005). Once the mucosal layer is penetrated, intestinal pathogens 
have access to the host circulation and cause diseases and 

impair the efficiency of nutrient digestion and assimilation 
(Sansonetti, 2004; Keita and Söderholm, 2010).

There is evidence that the intestinal mucosa, which is 
susceptible to heat stress and microbiome change-induced 
damage and inflammation, can also adapt to maximize nutrient 
assimilation in some circumstances. Heat-treated chicks had 
decreased plasma thyroid hormone and increased plasma 
corticosterone, as well as a damaged mucosal layer in the 
jejunum, but the ability to transport glucose across the jejunal 
epithelium was enhanced, which may have compensated for 
the lack of energy due to reduced food consumption (Garriga 
et al., 2006). In another study, however, when chicks experienced 
a higher temperature (35°C, 5 degrees higher), their intestinal 
structures were significantly damaged, with reduced villus heights 
and functional absorptive surface areas, and elevated levels of 
blood endotoxins. These adverse impacts were not overcome 
by host adaptations alone but required exogenous butyrate 
supply for alleviation of symptoms, further demonstrating a 
beneficial role for butyrate in maintaining intestinal structure 
and function (Abdelqader et  al., 2017).

The ileum is a unique intestinal niche because of its proximity 
to the cecum and receipt of end-products of digestion that 
are not absorbed in the proximal small intestine. It is home 
to a larger amount of bacteria, even the pathogenic Salmonella, 
than the proximal small intestine and provides a rich source 
of nutrient substrate for fermentative activity (Fanelli et  al., 
1971). The intestine stands as the first line of defense against 
invading pathogens (Fagarasan, 2006). If, for some reason, the 
chicken small intestinal epithelium is damaged, Salmonella 
adhere at impaired locations and translocate into the host, 
causing a systemic infection (Burkholder et  al., 2008). This 
was observed in chickens that underwent 24 h of food deficiency 
or heat stress (McHan et  al., 1988; Alhenaky et  al., 2017). 
Treating chicks with high temperature chronically or acutely 
result in invading Salmonella, which are later detected in the 
liver, spleen, and muscles. The liver and spleen typically handle 
these exogenous pathogens, which are engulfed by macrophages 
and transported through the circulation. However, the organs 
that are primarily targeted by Salmonella during a systemic 
infection have yet to be  identified (Chappell et  al., 2009).

Two mechanisms were proposed that mediate the effect of 
heat stress on the intestinal epithelium. The first is that reactive 
oxygen and/or nitrogen species are produced in response to 
high environmental temperature and increased oxidative activity, 
overwhelming the capacity of endogenous antioxidant systems 
(Hall et al., 2001). When chicks are heat-exposed, the production 
of these free radical molecules provokes injury to the epithelial 
cell membranes, resulting in fewer tight junctions (TJ) and 
less expression of TJ genes. Thus, the intestinal barrier becomes 
permeable to paracellular entry by bacterial endotoxins. The 
second mechanism is that heat stress promotes the production 
of proinflammatory cytokines, which also damage the TJ (Al-
Sadi et  al., 2010). Among those cytokines, interleukin-2 (IL-2) 
and tumor necrosis factor-α (TNF-α) are among those whose 
concentrations in circulation are elevated in heat-stressed chicks. 
IL-2 is produced by T cells, and once released, it activates 
other types of cells like macrophages, which secrete 
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proinflammatory cytokines, such as TNF-α, to initiate 
inflammation (Hoyer et  al., 2008). However, the secretion of 
IL-2 could also be  stimulated by endotoxins (Costalonga and 
Zell, 2007); thus, this mechanism might be  a secondary or 
indirect effect.

HEAT STRESS ACTIVATES THE HPA 
AXIS

The HPA axis is an essential system that integrates and mediates 
an organism’s response to intrinsic and/or extrinsic stressors 
(McEwen, 2000). Its activation is characterized by the activation 
of hypothalamic CRF, the release of ACTH, and the production 
of corticosterone in rodents and birds (Iyasere et  al., 2017). 
Chronic and acute high ambient temperature exposure activate 
the HPA axis, which is usually characterized by elevated blood 
corticosterone in the animal. Elevations in circulating 
corticosterone are associated with an array of physiological 
responses, such as suppressed food intake and growth 
performance, and aberrant immune and inflammatory responses, 
to name a few (Quinteiro-Filho et al., 2012a; Beckford et al., 2020).

In addition to corticosterone, activation of the HPA axis 
is accompanied by the generation of many other hormones, 
neuroactive molecules, and cytokines. These factors are shared 
by many systems in the body (such as the CNS, endocrine, 
and immune systems) and directionally mediate systematic 
interplay through the binding of ligands to their receptors 
(Kaiser et al., 2009). For example, the CNS regulates immunity 
primarily through HPA axis activity and sympathetic outflow 
(Ziegler, 2002). Hormones involved in the regulation are 
corticosterone from the HPA axis and catecholamines from 
sympathetic activity. Two major catecholamines, norepinephrine 
(NE) and epinephrine (E), could further regulate the synthesis 
of inflammatory cytokines, with reduced levels of 
proinflammatory IL-12, TNF-α, and interferon γ, and enhanced 
expression of anti-inflammatory IL-10 and transforming growth 
factor β (Johnson et  al., 2005). In turn, signals from visceral 
organs or tissues, particularly the GIT, can be  picked up by 
parasympathetic inflow or sent back to the HPA axis (Calefi 
et al., 2016). Indeed, intestinal inflammation provides feedback 
to the HPA axis, which in turn regulates immune defense 
against pathogens (Karrow, 2006).

Although activation of the HPA axis by heat stress is linked 
to intestinal immunity and inflammation (Lara and Rostagno, 
2013; Galley and Bailey, 2014; Scanes, 2016; Calefi et al., 2017), 
few have gone so far as to investigate actual changes in the 
gut microflora and brain activity. Generally, beneficial commensal 
bacteria were less competitive, whereas pathogenic species, such 
as Escherichia coli and Salmonella, flourished in heat-stressed 
animals due to impaired intestinal integrity and function, and 
increased permeability (Song et  al., 2013). In a study with 
broiler chickens, heat stress and/or intestinal infection with 
Clostridium and Eimeria spp. (bacteria and protozoal species, 
respectively) led to changes in concentrations of monoamines 
in key brain regions, including a decrease in 5-HT, NE, and 
E in the hypothalamus, and dopamine in the mid-brain (Calefi 

et  al., 2019). Authors speculated that these data demonstrated 
activation of the HPA axis via increased release of cytokines 
from intestinal immune cells, in response to the pathogen 
challenge. Monoamine concentrations and cytokine production 
in the small intestine were not investigated in that study. Future 
research should focus more on the connection between 
neurobiology and the gut microbiome in models of heat- and 
pathogen-induced intestinal dysfunction.

ALLEVIATING THE ADVERSE EFFECTS 
OF HEAT STRESS

A multitude of strategies have been employed to alleviate heat 
stress in chickens, from improvements in housing management 
to nutritional interventions, such as varying macronutrient 
composition and supplementing prebiotics, probiotics, and their 
combination known as synbiotics (Lara and Rostagno, 2013).

Probiotics, such as live yeasts and/or Lactobacillus and 
Bifidobacterium, are usually the dominant beneficial bacteria 
in the GIT. Exogenous supplementation contributes to 
maintenance of a healthy gut via ensuring their continued 
establishment and proliferation, which in turn affects the HPA 
axis and chicken behavior or physiology via immunomodulation, 
metabolic homeostasis, and neuroendocrine loops (Wang et al., 
2018). The most effective probiotics are usually commensal 
bacteria belonging to the host (Dogi and Perdigón, 2006). 
Bacillus subtilis, for example, when supplied in the broiler diet, 
competed with pathogens (i.e., Eimeria spp. and Clostridium 
perfringens) for colonizing sites and nutrients, thus protecting 
the gut from their colonization and invasion (Lee et  al., 2015). 
B. subtilis was reported to inhibit bacterial pathogenic 
reproduction and promotes feed utilization by increasing 
microbiota diversity and promoting the proliferation of the 
beneficial Lactobacillus (Knap et  al., 2011). Additionally, B. 
subtilis can stimulate the secretion of intestinal digestive enzymes 
to speed up nutrient metabolism when the activities of those 
enzymes were suppressed by chronic heat stress (Chen et  al., 
2009). Longer villi and larger surface areas were observed in 
probiotic-supplemented chickens and protected the bird against 
heat exposure-induced gut dysfunction (Deng et al., 2012; Song 
et  al., 2014).

Prebiotics are generally defined as food ingredients, usually 
a saccharide, that are not digested (or absorbed) by the host 
but benefit the host by encouraging the growth of certain species 
of bacteria for which they serve as fermentative substrates. 
Common examples include fructo-oligosaccarides (FOS), mannan-
oligosaccharides (MOS), and inulin. Mannan-oligosaccharide is 
harvested from the yeast cell wall and is one of the most common 
prebiotics used in the poultry industry. Synbiotics are synergistic 
combinations of prebiotics and probiotics (Schrezenmeir and 
de Vrese, 2001). Both prebiotics and probiotics exert beneficial 
effects on animal health when supplemented into the diet (Sohail 
et  al., 2012; Sugiharto et  al., 2017; Awad et  al., 2021). However, 
their combination as synbiotics may lead to synergistic and 
additive effects. Synbiotics not only favor the colonization and 
thriving of commensal microorganisms, but also activate signaling 
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in the microbiome-gut-brain axis and microbiome-gut-immune 
axis to mediate systemic and local functions, which further 
influences host physiology and behavior (Rooks and Garrett, 
2016). In one study, broilers were fed a normal diet or synbiotic-
supplied diet and exposed to normal or high temperatures. 
Synbiotic supplementation not only attenuated heat stress-induced 
anorexia and body weight loss but was also associated with 
increased preening and decreased panting and wing lifting 
(Mohammed et al., 2018). Because of the diverse array of probiotic 
species and prebiotic saccharides and resulting combinatorial 
possibilities in a synbiotic, synbiotics can have differing effects 
on the gut microbiome depending on the composition. For 
instance, when MOS, but not FOS, was used in a synbiotic 
mixture, different commensal microorganisms were selectively 
promoted, and MOS was associated with a binding to and 
elimination of pathogenic bacteria from the GIT (Spring et  al., 
2000; Sohail et  al., 2012).

CONCLUSION AND IMPLICATIONS

In summary, heat stress induces various physiological alterations 
that directly or indirectly regulate the intestinal microbiome 
community. These alterations induce changes in environmental 
and nutritional conditions in the gut, leading to a breach in 
the intestinal epithelium or barrier integrity, inflammatory 
states, and activation of the HPA axis and autonomic nervous 
system. Although growing evidence links heat stress to changes 
in the host brain (e.g., monoamine concentrations) and gut 
that are influenced by alterations in the intestinal microbiota, 
there are still many gaps in knowledge. For example, most 
studies focused on the association between heat stress and the 
chicken gut microbiota, but few confirmed the exact 

compositional changes of microbiota under different heat stress 
conditions (such as acute or chronic, one time, or repetitive) 
or in response to different probiotic and prebiotic interventions 
in different types, breeds, and ages of chickens. In addition, 
various metabolites (e.g., SCFAs) and neuroactive molecules 
(e.g., 5-HT) produced by gut microbiota under different heat 
stress conditions also require consideration and further 
exploration. Future studies should focus on utilizing more 
combinations of probiotics and prebiotics to improve chicken 
performance under heat exposure and to determine effects on 
microbiome composition. While it is clear that heat stress 
influences host and microbial physiology, it is unclear the 
extent to which the former is driven by the latter and vice-
versa. Thus, elucidating the mechanisms that shape the physiology 
of the GIT and microbiome and how the host and microbial 
cells interact to drive physiology and behavior will facilitate 
holistic strategies to ameliorate the effects of heat stress in 
animals and humans.
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