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ABSTRACT: Cell membranes contain a large variety of lipid types and are crowded
with proteins, endowing them with the plasticity needed to fulfill their key roles in cell
functioning. The compositional complexity of cellular membranes gives rise to a
heterogeneous lateral organization, which is still poorly understood. Computational
models, in particular molecular dynamics simulations and related techniques, have
provided important insight into the organizational principles of cell membranes over
the past decades. Now, we are witnessing a transition from simulations of simpler
membrane models to multicomponent systems, culminating in realistic models of an
increasing variety of cell types and organelles. Here, we review the state of the art in the
field of realistic membrane simulations and discuss the current limitations and
challenges ahead.
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1. INTRODUCTION
Membranes are essential components of every cell, providing
the cell’s identity as well as defining a large variety of internal
compartments. Typical cell membranes may contain hundreds
of different lipids, asymmetrically distributed between the two
bilayer leaflets and are crowded with proteins covering an
estimated membrane area as large as 30%.1−3 The composi-
tional heterogeneity of cellular membranes is now well
recognized, leading to a nonuniform lateral distribution of
the components.4−6 Together, lipids and proteins form distinct
nanodomains with important implications for many cellular
processes such as membrane fusion, protein trafficking, and
signal transduction. Lipids move proteins, and proteins move
lipids in a fascinating protein−lipid interplay.7

Experimental techniques are getting more and more
sophisticated to reveal lateral membrane organization and
the principles driving it. Experimental advances include
improved methods for single-particle tracking, fluorescence
correlation spectroscopy, super-resolved imaging, scattering,
solid-state NMR, and mass spectrometry, as well as methods to
prepare asymmetric model membranes and real cell membrane
extracts.8−14 However, the detailed membrane organization
proves difficult to probe at the molecular level, despite progress
in experimental techniques that can directly probe living
cells.15 Computer simulations, in principle, can provide this
detail. Techniques such as molecular dynamics (MD) are
capable of describing the interactions between all the
components in the system at atomic resolution, acting like a
“computational microscope”.16,17 Given enough computer
power, the behavior of a system can be followed in time
long enough to observe the process of interest.
The first MD simulations of surfactants and lipids appeared

in the 1980s, shortly after the first published protein
simulations,18 at a time when there were only a handful of
super computers available for academic research. Complexity
in lipid and surfactant systems rapidly increased from
simplified ordered decanoate bilayers tethered harmonically
to the average position of all headgroup particles19 to a smectic
liquid crystal made of decanol, decanoate, water, and sodium
ions,20 a micelle,21 and a liquid crystalline DPPC bilayer.22 In
the early 1990s several groups published simulation papers on
phospholipids with explicit water, including the infamous
Berger lipid model23 that, although parametrized on erroneous
data, became one of the leading lipid force fields until quite
recently. These early papers already targeted a set of diverse
problems, including lipid bilayer structure,24−26 transport of
small molecules through bilayers,27 effect of cholesterol,28 the
hydration force between bilayers,29 and interactions with
membrane-active peptides,30 all of which continue to be
studied. The first simulations of complete membrane proteins
in a lipid environment studied gramicidin A,31 bacteriorhodop-
sin,32 OmpF porin,33 and phospholipase A.34 An early example
of protein-induced bilayer perturbation is found in the work of
Tieleman et al.35 Simulations of membrane proteins have since
grown immensely in importance and are now widely used.
Comprehensive reviews of these pioneering studies are
available in the literature.36,37

As computer power grew and became more universally
available, lively technical discussions appeared in the literature.
Significant matters of debate included the use of cutoffs,39

appropriate boundary conditions for membrane simulations,40

as well as concerns with sampling and questions related to
linking experiment and simulation. The latter two are not
specific to membrane systems and, not surprisingly, continue
to be major topics of both concern and continued research. In
addition, during the first decade of the new millennium, we
witnessed a growing range of applications of simulations
involving collective lipid motion. Key pioneering examples
include accessing bilayer undulatory modes,41 spontaneous
self-assembly of lipids into a bilayer,42 pore formation by
antimicrobial peptides or electrical fields,43−45 lipid flip-flop,46

collective lipid flows,47 domain formation,48 membrane
fusion,49 and many more. For an in-depth discussion on
these developments, now more than 10 years ago, we refer the
reader to a number of earlier reviews.50−52

If we express the scope of a simulation as a combination of
system size and simulation length, there has always been a large
(maybe even up to 2−3 orders of magnitude) difference
between a “typical” simulation and the largest ones in the
literature. A typical scope in the early 1990s would be a bilayer
model of 72−128 lipids (or 4000−15000 atoms) and
simulation times of the order of a hundred picoseconds. For
comparison, at the moment, early 2018, a typical simulation
study might involve a combination of dozens of simulations on
the order of microseconds, where a simulation system might
contain 150000 atoms, an increase of at least 5 orders of
magnitude. At these time and length scales, many interesting
biochemical and biophysical questions can be addressed by
simulations on relatively commonly available computer
resources. Leadership-category machines allow access to 2−3
orders of magnitude more elaborate studies and coarse-grained
models describe similar systems at a computational cost that is
2−3 orders of magnitude lower than a corresponding atomistic
model. This massive increase in accessible scope, which now
includes a large number of applications, has led to an explosive
growth in the use of simulations to study membranes, as well
as to the use of simulations in general.53−56

Thanks to the ongoing increase in computer power, sparked
by the efficient use of GPUs, together with the development of
accurate atomistic and coarse-grain (CG) models and the
community-based development of tools to automate setup and
analysis of membrane simulations, we are now witnessing a
transition from simulations of simplified, model membranes
toward multicomponent realistic membranes.57,58 This tran-
sition is essential to unravel protein−lipid interplay in the
crowded and complex environment of real cell membranes,
where experimental detection is difficult and theoretical
models fall short. In this review, we focus on this transition,
which is becoming apparent during the past five years (Figure
1). We restrict ourselves to particle-based simulation methods,
mostly MD, and to simulation studies addressing the lateral
and spatial organizational principles of membranes. For a
discussion of related topics, not covered in the current review,
we refer the reader to a number of other recent reviews, for
example, on membrane proteins functioning and activity,59−62

binding of membrane active peptides,63,64 nanoparticle
uptake,65−67 drug-membrane interactions,68,69 ionic-liquids
and membranes,70 pore formation,71 lipid flip-flop,72 and
lipid nanodisks.73

The rest of this review is organized as follows. We first give
an overview of the tools comprising the computational
microscope, organized by the level of resolution obtained:
from all-atom models via CG models to supra-CG models.
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Then we provide a comprehensive overview of the current
state of the art in modeling membrane systems of increasing
complexity, with sections on multicomponent systems, realistic
cell membranes, and the current avenues toward full cell
models. A short outlook section concludes this review.

2. COMPUTATIONAL TOOLS
At the heart of the computational “microscope” lies the
simulation algorithm, for which MD is most widely used. MD
simulations, in their most basic form, involve numerically
solving classical equations of motion for a set of particles over a
given time period. The resulting time series, called trajectory,
can subsequently be visualized and analyzed in detail. MD
simulation algorithms, as well as related algorithms such as
Brownian Dynamics, Langevin Dynamics, and Dissipative
Particle Dynamics (DPD) have been implemented in a number
of simulation software packages; the most widely used in the
field of membrane modeling include AMBER,74,75

CHARMM,76 NAMD,77 OpenMM,78 LAMMPS,79 ESPRes-
So,80 and GROMACS,81,82 as well as the special purpose
machine ANTON with the DESMOND software.83 A major
limitation of simulations is the limited amount of sampling that

can be performed, even when using the largest super
computers available today. To more efficiently explore phase
space, various enhanced sampling and biasing methods are
available, with replica exchange MD (REMD), metadynamics,
milestoning, and umbrella sampling (US) among the most
popular methods in the field of biomembranes. Noteworthy
are recent attempts to adopt these methods specifically in the
field of membrane simulations.84−91

Central to the success of an MD simulation is the quality of
the force field (FF) (i.e., the set of parameters dictating how
the particles interact). In biomolecular simulation in general,
there is a variety of FFs, although they fall in a handful of
families that continue to be developed and are broadly similar
in terms of their potential function and main approxima-
tions.92,93 An important distinction between the FFs is the
level of resolution considered (Figure 2). Traditionally, full
atomistic detail is the highest level of resolution for classical
MD simulations (i.e., when quantum degrees of freedom or
electronic polarizability are not considered explicitly).
However, to increase the spatiotemporal range of simulations,
lower resolution level FFs have been developed. These range
from CG models that still contain chemical detail to supra-CG

Figure 1. Growth of complexity of membrane models. From the pioneering stage 30 years ago, basic properties of one and two component
membranes were explored around the millennium. From then on, complexity of simulated membrane systems was gradually increased, culminating
in the current era of more and more realistic membrane models. POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; DPPC, 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine; POPE, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine;
Chol, cholesterol; CLs, cardiolipins; PPPE, 1-palmitoyl-2-palmitoleoyl-phosphatidylethanolamine; PVPG, 1-palmitoyl-2-vacenoyl-phosphatidyl-
glycerol; PVCL2, 1,10-palmitoyl-2,20-vacenoyl cardiolipin; Lps5, E. coli R1 lipopolysaccharide core with repeating units of O6-antigen. From left to
right: Reprinted with permission from ref 20. Copyright 1988 AIP Publishing. Adapted from ref 26. Copyright 1993 American Chemical Society.
Adapted from ref 42. Copyright 2001 American Chemical Society. Adapted with permission from ref 38. Copyright 2004 American Society for
Biochemistry and Molecular Biology. Adapted from ref 311. Copyright 2014 American Chemical Society. Adapted from ref 382. Copyright 2013
American Chemical Society. Adapted from ref 593. Copyright 2014 American Chemical Society. Adapted with permission from ref 643. Copyright
2016 Elsevier.

Figure 2. Different resolutions in particle-based simulation models of lipid membranes. At the all-atom (AA) level, all atoms are considered
explicitly. Upon coarse-graining, small groups of atoms and associated hydrogens are represented by coarse-grain (CG) beads. Moving down in
resolution to the supra-CG level, lipids and proteins are represented only qualitative by few-bead models, and solvent is considered implicitly.
Further reduction in resolution is achieved by integrating out also the lipid particles by mean-field approaches.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.8b00460
Chem. Rev. 2019, 119, 6184−6226

6186

http://dx.doi.org/10.1021/acs.chemrev.8b00460


models that are more generic in nature and can form a bridge
to the continuum level of description. Below, we discuss the
current state of the FFs in each of these categories in detail,
restricting ourselves to the most popular FFs in lipid
membrane simulations.

2.1. All-Atom Models

Generally speaking, detailed atomistic lipid parameters have
been developed with the same philosophy as protein FFs and
in practice in most cases are related to or part of a small
number of widely used more general FFs. Although there are
many FFs for lipids, and many modifications have been
proposed for specific cases, there is only a handful of FFs that
aims to be general enough for complex membrane simulations.
In the current literature, these can be divided in four families
that are still being developed: CHARMM, AMBER, Slipids,
and GROMOS. Given the staggering variety of lipid types,
developing and testing consistent parameter sets poses
significant challenges. Below we describe some of these
challenges, followed by a brief description of the most widely
used atomistic FFs, setup tools to build complex membrane
models, and limitations of atomistic simulations. For an in-
depth discussion and comparison of current atomistic FFs, see,
for instance, refs 94−97.
2.1.1. Challenge of Atomistic Force Fields. First, the

properties of lipid bilayers are determined by the sum of a large
number of interactions, some of which are weak but add up to
significant contributions. An example is the strong effect of
pressure on the structure of lipid bilayers, but pressure has
significant contributions from long-range Lennard-Jones
interactions. This makes lipid simulations quite sensitive to
small variations in parameters, in particular standard schemes
used to mitigate cutoff errors routinely used in molecular
dynamics simulations and the related treatment of electrostatic
interactions.
Second, it has only recently become practical to routinely

carry out simulations on a time scale of hundreds of
nanoseconds, which is required to get equilibrated properties
on a bilayer of ca. 250 lipids of one type of lipid. Thus, any
change in parameters requires a large amount of computer
time to investigate. For binary mixtures in liquid crystalline
phases or their cholesterol-containing analogues (liquid
disordered), equilibration times increase to microseconds
and much more in the presence of ordered domains. A related
problem is that periodic boundary conditions affect the
properties of lipids in simulations. Some of the first simulations
of bilayers used 32−100 lipids per leaflet, but this amounts to
5−10 lipids in each of the x and y dimension and an artificially
constrained length scale compared to the characteristic length
scale of lipid interactions in experimental systems.
Third, biological membranes contain a large number of lipid

components, which are made of a combination of a limited
number of different head groups, linkages, and a limited
number of different tails.3 In principle these components
should be transferable in FFs, but this requires an additional,
large, amount of testing. For mixtures, the number of possible
combinations explode. In practice, these components are not
reliably transferable and might be considered a reasonable
initial model.
Fourth, detailed experimental structural data, primarily from

neutron and X-ray scattering and from NMR, have been
available for a growing number of lipids, starting with
phosphatidylcholine (PC) lipids, but is insufficient to validate

models of all biologically interesting lipids. Force field
development and detailed experiments these days often go
hand-in-hand, as simulations augment the interpretation of
experimental results and in some cases drive experiments to
parametrize new lipids and more complex systems. Recent
reviews on comparing atomistic simulations and experiments
include refs 98 and 99. In simulations, PC lipids have generally
been the easiest to model, but the resulting parameters have
not reliably transferred to other lipid types. More recently, a
wider range of model lipids has been studied experimentally,
primarily by scattering, including phosphatidylserine (PS),
phoshatidylethanolamine (PE), phosphatidylglycerol (PG),
and phosphatidylcholine lipids (PC) lipids,100,101 the structure
of polyunsaturated lipids,102 and elements of cholesterol.103

These studies provide essential detail for the validation of
simulations, but still only span a small subset of all lipids, and
have been subject to several reinterpretations, while key
elements like sphingomyelins have received less attention.
They have also been largely limited to single-component
systems, whereas more detailed experimental structural data on
mixtures would be very useful for the development of
simulation parameters.
Next to scattering, a second major experimental technique is

deuterium NMR, which measures the average orientation of
C−D bonds in deuterated lipids and can measure dynamics on
relevant simulation time scales.104 Since both bond orienta-
tions and detailed dynamics can be directly calculated from
simulations, they are powerful validation tools.105 By
selectively labeling one component in lipid mixtures, details
on mixtures can also be obtained. A second major application
of deuterium NMR has been the measurement of phase
diagrams for simple mixtures.106 Since deuterium, unlike
fluorescent probes, barely changes the chemistry of lipids, this
is very important data. It remains challenging to calculate
phase diagrams for computer models, but this has become
feasible for CG simulations (see below) and will soon be more
feasible for atomistic simulations.

2.1.2. CHARMM. The most elaborate effort has been put in
CHARMM36, an updated lipid FF consistent with the most
recent version of the more general CHARMM FF for
biomolecular simulation, which includes protein, nucleic acid,
and small molecule parameters.107−109 This work is based on
extensive parametrization for tails, headgroup components, and
specific lipids, and has additional advantages in the large set of
parametrized and tested lipids as well as the powerful setup
tool CHARMM-GUI (see below).110,111 The CHARMM lipid
FF was initially developed for PC lipids but has been massively
extended. It includes most common lipids used in biophysical
experiments, the main families of lipids found in higher
organisms, bacterial lipids specific to extremophiles including
ring-containing and branched lipids and hopanoids, a library of
LPS from the outer membrane of Gram-negative bacteria, and
yeast lipids including sterols. The main repository for lipid
parameters is CHARMM-GUI, as no comprehensive review or
paper describing the current CHARMM lipidome is available,
although individual components have been described in more
detail.112−115 The present issue has a detailed review by
Leonard et al. with a comprehensive description as of 2018.97

CHARMM lipid parameters are typically used with the
CHARMM protein FF, which is implemented in most of the
widely used MD programs.

2.1.3. AMBER. AMBER is a widely used FF for proteins,
nucleic acids, and small (druglike) molecules, similar to
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CHARMM. Several groups have attempted to develop
AMBER lipid parameters for use with the rest of the
AMBER FF, initially based on GAFF, the generalized
AMBER FF.116,117 This was tested on a limited set of lipids118

and has not been widely used. The most recent published
AMBER-based parameters set is Lipid14.119 Lipid14 appeared
in 2014 and has not been widely used yet either. It initially had
parameters for six different PC lipids with either saturated or
monounsaturated chains. Lipid14 also has updated cholesterol
parameters.120 A Lipid17 version with an expanded library is
under development and available for testing at the time of
writing of this review but has not been formally published yet.
Compatible parameters for LPS are also available for
AMBER.121 A major advantage of AMBER parameters for
simulating complex membranes is the advanced state of the
rest of the FF, but a significant amount of development is
required to make the FF easily applicable to a variety of lipids
and lipid mixtures.
2.1.4. Slipids. Another promising set of FF parameters has

been developed by Ja ̈mbeck et al., called Slipids (for
Stockholm Lipids).122 These have been parametrized to be
consistent with AMBER, although this consistency is primarily
based on the same charge derivation method as AMBER uses,
and the standard for Lennard-Jones parameters is derived from
CHARMM.122 The initial paper described DLPC, DMPC, and
DPPC, which has been expanded to include monounsaturated
PC and PE lipids,123 as well as sphingomyelin, PG, PS, and
cholesterol,124 and most recently a set of poly unsaturated PC
lipids.125 The protocol for parametrization is sufficiently well-
defined that there is a clear path for adding new lipids. This set
has not been used as widely as the CHARMM lipids and is still
relatively new but so far appears a viable choice that has been
used both with AMBER and CHARMM protein FFs. A recent
paper derived parameters for a large set of steroids to be
consistent with Slipids, which are currently not available for
other force fields.126

2.1.5. GROMOS. The GROMOS parameter set is based on
the united-atom FF GROMOS 54A7.127 Mark and colleagues
developed parameters for a number of lipid types that are
consistent with GROMOS 54A7. Computationally, these have
an advantage because in most software implementation united-
atom lipids are substantially more efficient than all-atom lipids,
in contrast to protein FFs where the extra hydrogens have
much less impact. As for other FFs, the first lipids to be
parametrized were saturated128 and monounsaturated PC
lipids.129 In addition, parameters for bacterial lipids with
branched fatty acids in their lipid chains,130 with cyclo-propane
moieties,131 LPS,132 and for hopanoids and sterols133 are
available. The parametrization is consistent in approach and
atom types with GROMOS 54A7, which enables lipid−protein
simulations, but the number of different lipids that is available
and has been tested for this FF is rather limited.
2.1.6. Polarizable Models. Although the further improve-

ment of standard atomistic FFs has arguably been the most
important recent development, together with increased time
scales accessible with newer computers and GPUs, in the
slightly longer term recent work on polarizable lipid FFs may
become very important. In standard atomistic FFs, we assume
that the details of electronic motion are averaged out. The
main consequence of this is that the partial charge of atoms
cannot respond to the environment, although this is an
important effect in some cases. Classical FFs that address this
are called polarizable or nonadditive FFs, essentially with

charges that will respond to the environment.134 Such FFs
were routinely forecast as the next step even more than 30
years ago, but in practice their cost and the effort required to
develop consistent FFs has made progress slow. In the past few
years, two different approaches have been applied to
membrane simulations, while a third, more detailed and
expensive method has been used in other biomolecular systems
but not yet on membranes to our knowledge. In the Drude
oscillator model,135 small charges on springs attached to the
nucleus (the standard atomistic atom) are able to move around
in response to the local electric field, thus changing the charge
distribution. In the FlexQ method,136 charges equilibrate
locally. Both methods have been applied to model systems,
including PC lipids, peptides, and nucleic acids.137−141

Simulations of mixed polarizable/standard systems have also
been used, as in principle the most polarizable atoms could be
treated as polarizable. Examples are systems with the lipid
chains as polarizable142 or simulations with a permeating
molecule as polarizable.143 A third model, AMOEBA, is
considerably more complicated but is now used in
biomolecular simulation144,145 and would be interesting to
test in membranes.
At the current state of the art, it is clear that there are viable

polarizable models for membranes. They have been tested on
relatively limited cases so far, primarily PC lipids. Probably the
most striking difference between standard atomistic and
polarizable models is a large difference in the dipole potential
across the water/lipid interface. Unfortunately, this property is
not easy to measure or interpret. Other properties appear less
critical, and it remains to be seen in more detail where the
strengths and weaknesses of these more complicated models
lie.

2.1.7. Limitations/Developments of AA Models. Lipid
FFs do not divide readily into neat categories, but broadly
speaking, there are recognizable families in addition to a large
number of more ad-hoc modifications with generally more
limited reach. Such modifications allow optimizations for a
specific purpose, but in the context of complex membranes,
they do not generalize sufficiently to be useful. For complex
membranes, a consistent set of lipid parameters, including all
relevant types for the problem at hand, which may include
sterols or unusual bacterial, mitochondrial, or endosomal
lipids, and a consistent set of protein parameters is essential.
We argue that this requirement is currently not met by any set
of parameters, although CHARMM comes closest.
An additional complexity is the reliance of all FFs on very

specific cutoff values for Lennard-Jones interactions and
corresponding shift functions to deal with cutoff artifacts.
One consequence of this is that it is not trivial to exactly match
the results of simulations with the CHARMM FF in NAMD,
AMBER, or GROMACS when attempting to match the
original parametrization conditions in the CHARMM simu-
lation software. Anecdotally, results have been dramatically
different as lipids undergo phase transitions to the gel phase at
the wrong temperatures, although recent updates to simulation
algorithms in different software packages offer significant
improvements, tested in, for example, ref 146. One thorough
solution for this would be to reparametrize entire FFs to not
use cut-offs at all, which has become more realistic in recent
years with the development of efficient lattice sum methods.
Unfortunately, it is hard to see where the resources for the
effort would come from to reparametrize the most widely used,
and most complex, FFs. This is an effort that would have a
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wide impact on the field, making lipid force fields more
transferrable and, therefore, ought to be funded. An interesting
initiative uses a form of crowdsourcing to collect validation
data on a variety of lipids in an open science format. The
project identified a number of issues with the headgroups and
glycerol backbones of PC lipids and provides an important
database of simulation data.98,147 A more technical consid-
eration is that changes in algorithms, often coupled to changes
in computer hardware that favor one type of optimization over
another, do affect simulation results.148 This will continue to
be a concern and require simple test systems for regression
testing as actual research systems become increasingly
complex.
In addition, there are intrinsic limitations in the use of finite

systems with periodic boundaries. This has been documented
for the calculation of electrostatic properties, but more recently
it was shown by Camley et al. that the diffusion coefficients of
membrane-embedded objects have a nontrivial dependence on
both the box shape and box size, and in particular show a
strong dependence on the normal direction to the
membrane.149 This is perhaps counterintuitive, but the water
layer surrounding the membrane couples hydrodynamically to
the membrane and diffusion coefficients do not converge with
increasing size of the membrane patch. Subsequent large-scale
simulations confirmed this behavior, and analytical expressions
to correct for these artifacts have recently been intro-
duced.150−152 Such considerations become increasingly
important as simulations model larger and increasingly
complex systems and begin to overlap with direct measure-
ments of diffusion of membrane proteins by spectroscopic
methods.
One additional use of deuterium NMR that could be

expanded is the measurement of order parameters of a
“reporter” lipid like DMPC or POPC, which are readily
available in deuterated form, as a function of concentration in
mixtures. More generally, deuterium NMR has not been widely
applied to mixtures, except for investigations involving
cholesterol, and it is challenging to obtain funding for this,
but this would be important data to validate simulations of
lipid mixtures.
In addition to lipids, sterols play an important biological role

and require careful parametrization. Lipid−protein interactions
introduce additional complexities. A lack of useful exper-
imental data to validate simulations is a limiting factor in
model improvement in many cases. Finally, improved
parameters for ions, in particular their tendency to adsorb to
the membrane/water interface, remains an ongoing and
important area of research.153−156

2.1.8. Setup Tools. Historically, great effort was spent on
creating starting structures for simulations that were as close as
possible to equilibrium, because limited simulation time scales
(nanoseconds) compared to phospholipid diffusion and other
motions (tens of nanoseconds or more) meant that poor
starting structures completely biased the simulation re-
sults.157−161 As computers became faster, starting structures
for relatively simple systems became less problematic, as even
starting from random mixtures in solution resulted in
equilibrated bilayers.42,162 However, for complex membranes
of the type described here, or even basic mixtures or
membrane proteins in basic mixtures, we are now in a
situation again that it takes microseconds or much longer to
equilibrate starting structures, a key prerequisite for useful
simulations. A second problem is that finding errors in initial

structures is almost impossible in very large simulations, which
puts stringent demands on useful setup methods. This will
continue to be an area of development for the foreseeable
future. Here we will discuss some widely used tools.
Perhaps the most widely used tool is CHARMM-GUI, a

graphical interface developed by Im and co-workers to set up a
broad range of biomolecular simulations, for most of the major
molecular dynamics packages. One of its uses is the conversion
of CHARMM FFs to input formats that can be used in
GROMACS, NAMD, OpenMM, and other software.163 For
membranes, it can build structures based on a desired
composition using an extensive library of lipids, including
bacterial lipids, a large library of lipopolysaccharides for outer
membranes from Gram-negative bacteria, and a library of
yeast-specific lipids. One major problem with these systems is
the slow equilibration time. A related tool has recently been
developed by de Fabritis and co-workers, coined HTMD
(High Throughput MD).164 HTMD offers a platform for
preparation of MD simulations in general, including mem-
brane/protein systems. Starting from PDB structures, the
platform assists in building the system using well-known force
fields, and in applying standardized protocols for running the
simulations.
Two other methods try to use simpler model descriptions to

initially equilibrate a system, after which the systems are
converted to atomistic detail. The insane (INSert membrANE)
method uses the Martini FF and command-line tools to create
arbitrary membranes at the coarse-grained level, which can be
equilibrated and then converted to atomistic simulations.165,166

This is a potentially powerful approach, but there is no
guarantee at the moment that Martini and atomistic FFs (or
indeed different atomistic FFs) give the same equilibrium
distribution of lipids in a mixture, insane is specific to
GROMACS,167 and backmapping of very complex systems
from Martini to atomistic is not always straightforward.
A second way of speeding up the equilibration of membrane

simulations has been put forward by the Tajkhorshid group,
called the Highly Mobile Membrane Mimetic (HMMM)
approach.168 In this approach, the aim is to speed up lipid
diffusion as it is often found to be the rate-limiting factor in
membrane dynamics. Increased lipid mobility is achieved by
separating the lipid heads from the tails; in fact, the HMMM
bilayer consists of two monolayers of very short tail lipids with
a bulk organic (or imaginary, as it does not have to actually
exist as chemical) solvent in between to represent the
membrane interior. The performance of the model was tested
by comparing side chain free energy profiles between HMMM
and full lipid representations, showing very good agreement in
the interfacial part but less accuracy in the membrane
interior.169 So far, the model has been mainly applied to
study binding of peripheral proteins and has been shown to be
an efficient tool to predict their membrane bound state.170

2.2. CG Models

The large time and length scales over which cellular processes
operate has spurred the development of a large number of CG
lipid FFs, following the pioneering work of Smit et al.171 and
Goetz and Lipowsky172 in the 90s. Today, CG lipid models
span all the way from a generic, supra-CG level of resolution to
near-atomistic models. Here we focus on models that retain
chemical specificity and are therefore able to distinguish
specific lipid types. These kinds of models usually group 3−6
heavy atoms per CG bead, reducing a typical lipid to around

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.8b00460
Chem. Rev. 2019, 119, 6184−6226

6189

http://dx.doi.org/10.1021/acs.chemrev.8b00460


8−14 beads. Below we discuss the overall parametrization
strategy for CG models (top down versus bottom up) and
describe recent progress in some of the more popular CG lipid
models used for cell membranes, namely the Martini, Shinoda/
Devane/Klein (SDK), the SIRAH, and ELBA FFs, as well as a
number of solvent-free models. The growing number of tools
to automate the simulation workflow and the limitations
inherent to CGing are also discussed. For a broader overview,
we direct the reader to a number of other reviews on CG
membrane simulations.173−176

2.2.1. Top Down versus Bottom Up. Parameterization of
CG models may follow either a bottom-up strategy (also
denoted structure-based coarse-graining) or a top-down
strategy (thermodynamic-based coarse-graining). In the
bottom-up approach, effective CG interactions are extracted
from reference data, such as atomistically detailed simulations
or structural databanks, aiming at a faithful reproduction of the
structural features of the reference data. In the top-down
approach, the focus lies on reproducing experimental data,
especially thermodynamic properties such as density, heat of
vaporization, and partitioning data. Both approaches have their
own advantages and disadvantages. Focusing on reproducing
structural details often leads to highly accurate CG models;
however, the accuracy is usually limited to the state point at
which the parameters were derived. Besides, the resulting CG
potentials typically contain detailed features that limit the
integration time step and are not always straightforward to
interpret from a physicochemical point of view. Relying on
thermodynamic data comes at the price of limited structural
accuracy but with the benefit of reproducing global partitioning
of the CG molecules over a wider range of state points. In
practice, many CG FFs use a combination of these two
approaches to maximize accuracy on the one hand and
transferability on the other. Note that, inherent to the nature of
coarse graining, it is impossible to obtain fully transferable
models nor to represent all features of the underlying
compound at the same time (the “representability prob-
lem”177,178). There is no unique method to construct CG
potentials from higher resolution data. A full representation of
higher-order correlations requires multibody potentials, which
are impractical and computationally expensive, thereby defeat-
ing the purpose of coarse graining. Even when the pair
correlations are well-described, other system properties such as
the pressure or energy cannot be matched at the same time
unless higher-order terms are included in the force field. The
art of coarse graining is in the compromise of assessing which
level of detail needs to be included. The best choice of CG
model, in the end, will depend on the application at hand. For
in depth reviews on this topic, see, for example, Brini et al.,179

Ingoĺfsson et al.,180 and Noid.181

2.2.2. Martini Model. The Martini FF,182,183 developed
jointly in the laboratories of Marrink and Tieleman, is currently
the most widely applied CG FF for biomembranes. The
philosophy behind Martini is to present an extendable CG
model based on simple modular building blocks, using few
parameters and standard interaction potentials to maximize
applicability and transferability. Martini uses an approximate
4:1 mapping and combines top-down and bottom-up para-
metrization strategies. Due to the modularity of Martini, a large
set of different lipid types have been parametrized, covering all
common lipid heads that can be straightforwardly combined
with tails of varying length and degree of saturation.165 More
specialized lipids, such as glycolipids,184,185 PEGylated

lipids,186,187 cardiolipins,188,189,114 tetraether lipids,190 lip-
opolysaccharides (LPS),191−194 and a variety of sterols and
sterol-like compounds (cholesterol, ergosterol, hopanoids)195

are available as well, enabling simulation of complex
membranes with realistic lipid compositions (see section
3.2). The Martini model is implemented in a number of major
simulation packages, including GROMACS NAMD,
LAMMPS, as well as in the Materials Science Suite.196

In addition to lipids, Martini has been extended to the most
important classes of biomolecules (proteins,197,198 carbohy-
drates,199 nucleotides200,201), as well as a large variety of
polymers202 and nanoparticles.203 This variety makes the
Martini model ideally suited to study a wide range of
membrane-related processes, including interaction with non-
biological particles such as polymer-induced formation of
nanodisks204 or penetration of gold particles.205 For processes
for which long-range electrostatic interactions are deemed
important, polarizable water and ion models have been
developed.206−208 A major limitation of the Martini FF is the
inability to model protein folding events. The use of isotropic
interaction potentials cannot capture the directionality of
hydrogen-bonding patterns that underlie protein conforma-
tional stability. Instead, an elastic network is used to constrain
proteins, as well as nucleotides, to a reference (e.g., X-ray)
structure.209 A recently introduced combination of Martini
with Go models allows sampling also of unfolded protein states
and is a promising method to further extend the range of
applications.210 Another limitation, that also affects all-atom
FFs, is the stickiness of larger biomolecules including proteins.
Although this problem can be alleviated by ad-hoc approaches,
for example, by downscaling protein−protein interactions or
increasing protein hydration strength,211−213 the origin of the
problem appears to reside in the different CG mapping
densities of these biomolecules compared to the surrounding
solvent. In the forthcoming new version of the model (Martini
3.0), these interactions have been balanced more carefully,
resolving this issue. More background on Martini is provided
in a perspective paper by the main developers214 and on the
Martini webportal http://cgmartini.nl.

2.2.3. SDK Model. Klein and co-workers are among the
pioneers in developing CG lipid models. Their model is based
on a 3:1 mapping and therefore somewhat more detailed than
the Martini model. Besides, the model uses softer interaction
potentials, allowing for a better reproduction of heats of
vaporization and surface tensions. The latest version of the
model, the SDK FF (Shinoda, Devane, Klein215) also
combines bottom-up and top-down parametrization and has
resulted in improved transferability. Applications of the SDK
model include studies of the phase behavior of lipid
monolayers, vesicle fusion, and membrane partitioning of
fullerenes (reviewed in Shinoda et al.,216). Recently the model
has been extended to include triglycerides, allowing the study
of formation of lipid droplets.217 A drawback of the SDK
model is that only a limited number of lipid parameters are
available currently, and no compatible protein model has been
developed. Furthermore, the SDK model is only implemented
in the LAMMPS software package, and no active development
site is maintained. A recent extension of the SDK model, called
the SPICA (Surface Property fitting Coarse graining) force
field, includes improved parameters for cholesterol and
different lipid types allowing realistic simulations of domain
formation.218
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2.2.4. ELBA Model. The ELBA (electrostatics-based) CG
lipid FF developed by Orsi and co-workers,219 focuses on
modeling lipid−water interactions and capturing important
electrostatic contributions. The model uses a 3:1 mapping but
represents each water molecule individually using soft sticky
dipole potentials and incorporates electrostatics in the CG
lipid beads as point charges or point dipoles. A few lipid types
have been parametrized by matching lipid properties, such as
volume and area per lipid, average segmental tail order
parameter, spontaneous curvature, and dipole potential. Most
recently, an ELBA model for cholesterol has been developed
that matches experimental phase behavior for binary DPPC/
cholesterol mixtures.220 Applications of the ELBA FF have thus
far been focused on permeation of drugs and other compounds
across bilayers but only using some standard lipid types.
Compared to Martini, the major advantage of the ELBA
models lies in the more accurate description of the electrostatic
interactions. As with the SDK model, however, only few lipid
types have been parametrized, and the model is only available
within LAMMPS. More information is available on the Web
site http://www.orsi.sems.qmul.ac.uk/elba/.
2.2.5. SIRAH Force Field. SIRAH (South-American

initiative for a rapid and accurate Hamiltonian) is a top-
down CG FF developed by Pantano and co-workers to model
proteins and DNA.221,222 The SIRAH model has a similar
mapping as the Martini model and also treats solvent and ions
explicitly. Interestingly, the SIRAH FF has recently been
extended to include lipids.223 So far, only parameters for
DMPC lipids have been published, but the ability to model
lipids opens the way to a broad range of applications involving
cell membranes in the future. The FF is available for both
GROMACS and AMBER. An important aspect of SIRAH is
that it allows sampling of conformational changes of proteins,
due to a higher resolution of the peptide backbone. More
details of the FF can be found at the Web site http://www.
sirahff.com/.
2.2.6. Solvent-Free Models. A number of other models

should be mentioned, in particular, recent attempts to
parametrize solvent-free lipid models that retain chemical
detail. Implicit solvent models considerably reduce computa-
tional cost but do need to incorporate the excluded solvent
interactions into the effective potentials between the CG
beads. In the pioneering work of the Voth group,224,225 a
bottom-up strategy based on force matching between CG and
AA systems is used to derive detailed solvent-free models for a
number of different lipid mixtures. Hills and co-workers used
this strategy also for development of a solvent-free protein
model, CgProt,226 which was recently combined with a lipid
FF parametrized using the same strategy.227 Lyubartsev and
co-workers228 used another bottom-up strategy, the Newton
inversion method, to capture the fine details of the AA lipid
models into CG potentials. Wang and Deserno229 and Sodt
and Head-Gordon230 followed a more pragmatic top-down
approach, adding long-range attractive interactions in the lipid
tails to mimic the hydrophobic effect, tuned to fit experimental
data. The model of Wang and Deserno has also been
successfully combined with a CG protein model and coined
the PLUM model.231,232 Curtis and Hall,233 in their LIME
(lipid intermediate resolution model) FF, use hard-sphere and
square-well potentials in order to use discontinuous molecular
dynamics and gain even greater speedup. An implicit solvent
version of the Martini FF has also been developed by the
Marrink group, coined Dry Martini,234 using a rescaled

interaction matrix that accounts for the hydrophobic and
solvation effects. The Dry Martini model can also be combined
with stochastic rotational dynamics to incorporate hydro-
dynamics (denoted STRD Martini).235 Wan, Gao, and Fang
developed a DPD model based on Martini type mapping that
can be used for both lipids and peptides.236 In a recent
extension of the popular CG protein model PRIMO,
developed by Feig and co-workers, an implicit membrane
environment has been added to study membrane protein
folding and aggregation.237

2.2.7. Limitations/Developments of CG Models. As
discussed above, parametrization and validation of CG models
relies either on experimental data (top-down) or higher
resolution data (bottom-up). Experimental data on suitable
reference systems, however, is not always available or not easy
to interpret. For instance, dimerization free energies of TM
peptides in model lipid membranes form a perfect test system
to validate CG simulations. The free energy of this process can
be easily obtained from CG simulations with the help of
advanced sampling and biasing techniques. In principle, this
allows comparing to the same quantity derived from
association constants measured using FRET assays. However,
the bound and unbound states are ill-defined, hampering a
straightforward comparison. Relying on all-atom reference
simulations, on the other hand, is also problematic, for two
reasons. First, sampling issues at the all-atom level prevent
careful validation of most processes involving protein−lipid or
protein−protein binding. Second, shortcomings of the all-atom
models are inherited by the CG models. In this regard, it is
helpful to calibrate CG models not on a single reference FF but
to use multiple ones in the absence of clearly validated targets.
Naturally, limitations of CG models arise from the reduced

level of resolution. As discussed above, most CG models face
limitations in the extent to which protein structural transitions
can be captured, owing to the absence of directional hydrogen
bonds or alternative potentials that introduce directionality.
One avenue to improve the accuracy of CG models is through
multiscaling, combining the sampling speed of CG models
with the accuracy of atomistic models. This can be achieved in
a static way, in which part of the system is modeled at high
resolution and surrounded by a CG environment or in a
dynamic way in which molecules can change their resolution
on the fly. Despite the progress in multiscale method
development, applications of such methods to lipid membranes
have been very limited. In a proof of principle application,238 a
multiscale method was used to simulate an atomistic protein
channel in a CG Martini bilayer. Proper coupling of the
electrostatic interactions between the two levels of resolution,
however, remained problematic due to the poor short-range
screening behavior of the CG solvent. To achieve a
quantitatively more accurate method, cross optimization of
the interactions between CG and the atomistic FF is probably
necessary as has been attempted in the PACE FF in which
Martini lipids are combined with a near-atomistic protein
model.239 The ELBA FF has also been used in a multiscale
setup, in particular to study permeation of AA drugs across CG
membranes.240 The level of detail retained in the ELBA model
is high enough that the AA-CG cross interactions can be based
on standard combination rules. Multiscale simulations with the
SIRAH FF have also been reported241 but not (yet) involving
lipid membranes. In an implicit membrane environment, the
PRIMO FF can be combined with CHARMM.242
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At the moment, more powerful are so-called serial
multiscaling schemes that are used to reconstruct all-atom
detail from a given CG configuration (“backmapping”). Most
commonly applied backmapping tools for lipid systems include
fragment-based approaches,243,244 simulated annealing,245 and
usage of geometrical rules.166,246,247 There is also a promising
new multiscale tool GADDLE maps which is based on a
Monte Carlo sampling algorithm.248 Typically, backmapping is
used either to validate specific interactions observed in CG
simulations or to focus on some atomic details of the system of
interest. Note, however, that the amount of sampling that can
be performed at the atomistic level is usually limited.
Therefore, finding that a CG configuration is also stable at
the atomistic level, albeit encouraging, is not a proof of the
validity of the CG model. The opposite, for example, observing
that the CG configuration is unstable at the all-atom level, may
however point to a limitation of the CG model.
Milano and co-workers have developed an interesting hybrid

particle-field scheme, combining molecular dynamics with self-
consistent field theory (the hybrid MD-SCF).249,250 The main
difference of the hybrid MD-SCF method in relation to other
CG approaches is that the calculation of the nonbonded
interactions between the CG particles is replaced by an
evaluation of an external potential on the local density. With
this scheme, the hybrid MD-SCF method allows the usage of
mapping and bonded parameters commonly used in other CG
approaches in combination with an efficient parallelization for
the calculation of interaction forces, obtained via an average
density field.251 Lipid applications are still limited, which
includes simulations of phospholipids in bilayer and non-
lamellar phases, with lipids mapping and bonded parameters
based in the Martini scheme.252,253 More recently, a flexible
CG model for protein has been introduced, allowing studies of
conformational changes, even in a lipid environment.254 The
hybrid SCF-MD is available in a dedicated software package
called OCCAM. More details of the method are available at
the Web site http://www.occammd.org/.
2.2.8. High-Throughput Tools. One of the advantages of

CG models is that they provide easy access to high-throughput
applications. Hundreds or thousands of simulations can be
performed, systematically exploring, for example, lipid
membrane composition or protein mutant libraries. A nice
example is the membrane protein database MemProtMD,
developed by Sansom and co-workers: based on self-assembly
simulations, configurations of all classes of membrane proteins
embedded in a natural lipid environment are provided.255,256

To facilitate high-throughput applications, many new and
improved methods have been developed to help set up initial
simulation configurations. A key example is the CHARMM-
GUI framework (see also discussion above), which currently
supports also the CG Martini FF.257,258 A drawback of
CHARMM-GUI is that it is not command-line-based and
therefore cannot be integrated into automated workflows. An
example of a command-line-based tool is Moltemplate (http://
www.moltemplate.org/), a generic molecular builder for
LAMMPS, with support for the CG models Martini and
SDK. Another command-line based tool called insane is a
popular membrane-building tool associated with the Martini
FF and allows for on the fly generation of new lipid
templates.165 A number of programs have also been developed
that automatically setup and run CG simulations for high-
throughput screening of protein−protein interactions, such as
Sidekick259 and Docking Assay For Transmembrane compo-

nents (DAFT).260 To further automize the simulation
workflow, current efforts are also being directed toward
automated CG topology builders.261−264 Here, one of the
main challenges is to automate the mapping of the underlying
atomistic structure to the CG representation, a nontrivial
problem. The power of such a tool is illustrated in a recent
paper from Bereau and co-workers,265 who established linear
relations between bulk membrane partitioning and the
potential of mean force covering more than 400000 drug
compounds.

2.3. Supra-CG Models

A longer-term aim of simulation of complex biological
membranes is to enable us to relate molecular structures of
their lipids and protein components to cellular phenotypes.
This requires us to be able to compare the behavior of
membrane simulations more directly to experiments at the
cellular level, for example, via various super-resolution imaging
modalities. The CG models described above all have a similar
level of granularity, whereby each CG particle corresponds to
3−4 heavy (i.e., not hydrogen) atoms, such that, for example, a
phospholipid molecule is represented by 10−15 CG beads.
The advantage of this level of granularity is that it allows
retention of chemical specificity of, for example, lipid
headgroups in their interactions with proteins. The disadvant-
age is that it restricts practical applications to systems of ∼2 M
particles (i.e., ∼8 M heavy atoms), equivalent to a length scale
of <100 nm, on time scales up to the millisecond range. We
need to move beyond these limitations in order to address
dynamic events in membrane cell biology. For example, at the
lower scale of cell membrane events, a clathrin-coated vesicle
has a diameter of 100 nm and is formed by budding on a time
scale of 20 s.266 Here we discuss current approaches to
simulate such large-scale collective phenomena, requiring a
further reduction in resolution denoted supra-CGing. For
other reviews in this field, see, for example, refs 267 and 268.

2.3.1. Supra CGing Approaches. In order to address
events on these larger scales, supra-CGing approaches are
needed. A number of approaches may be adopted in order to
reach the desired meso and micro scales. At a simple level, one
can employ CG models with fewer particles, for example, just a
few particles per lipid molecule (e.g., the model by Ayton and
Voth269) or even a few particles to represent a protein
molecule or domain (e.g., models by Zhang et al.270,271).
Alternatively, one may both reduce the number of particles and
use modified interactions that smoothen the energy surface (as
in DPD models, e.g., Venturoli et al.272). A more radical level
of simplification (to reach even larger scales) may be to
integrate out lipids (and water) altogether, such that proteins
are represented as particles interacting in a continuum
membrane environment. For all of these approaches, para-
metrization is a challenge, especially if one wishes to retain a
degree of chemical specificity in these higher-level models,
which is essential if they are to be used to address genuinely
biological questions. Voth and co-workers have developed a
theoretical framework for obtaining and interpreting such
supra-CG models.273,274

2.3.2. Few-Bead Lipids. A number of groups have
explored CG models in which only a small number of particles
are used to represent each lipid molecule.275,276 For example,
Voth and colleagues have developed a framework for
“aggressive” CGing of lipids in which, for example, two or
three particles can represent each lipid molecule in a (solvent
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free) model. This can be used to simulate, for example, 200 nm
diameter lipid vesicles containing ∼500000 lipids.269 A related
model has also been developed for charged lipids to capture
the electrostatic interactions of their headgroups in a “broad
brush” fashion which has been used to model both mixed lipid
vesicles and (peripheral) protein/charged lipid bilayer
interactions.277 A key feature of these models is to combine
analytical potentials (e.g., Gay-Berne models) to describe the
generic anisotropic behavior of the lipids with more detailed
force-matched potentials that provide an element of chemical
specificity.
A similar level of granularity to that in “standard” CG

representations is employed in DPD models,272 which smooth
the energy surface for interactions between lipid molecules.
The advantage of the soft potential employed is to enhance
diffusion, although it may result in, for example, unphysical
lipid overlaps. DPD models have been used, for example, to
examine the effects of cholesterol on lipid bilayer structure.278

Comparable models have also been applied to examine
mechanisms of fusion between lipid bilayer and vesicles.279 A
supra CG model for lipids based on soft interactions has also
been developed by Laradji and co-workers and applied to study
a variety of phase transitions and membrane remodeling
processes.280

2.3.3. Reduced Protein Models. There are two broad
approaches to the representation of proteins in supraCG
simulations. One approach relies on idealizing/simplifying the
representation of proteins in a fashion which (it is hoped) will
retain the essence (but not the specific chemical details) of
protein/protein and protein/lipid interactions. The other relies
on simplified models of proteins comprising just a few
particles, the interactions between which are parametrized on
the basis of more detailed CG and/or atomistic simulations.
The former approach has been used extensively within a DPD
framework to study protein/lipid and protein/protein
interactions in simplified models of biomembranes. The latter
approach has been applied to much larger and more complex
biological membrane systems in order to capture their
emergent behavior on a meso scale.
In a series of DPD simulation studies, Smit et al. have

modeled membrane proteins as, for example, rodlike structures
with hydrophobic cores and polar caps and have used these to
explore protein/membrane interactions and also the free
energy landscapes of protein−protein interactions within
membranes.281,282 Protein/protein interaction potentials of
mean force (PMFs) computed from DPD simulations have
been used to develop larger scale 2D models in which proteins
are treated as disks interacting through those PMFs.283 This
provides an interesting route to capturing protein/protein
interactions in very large-scale simulations. Weiss and
colleagues have also used comparable DPD models of
membrane proteins to explore, in a generalized fashion, the
influence of membrane protein structure on, for example,
diffusion.284−286 DPD simulations in which membrane binding
proteins were represented as highly simplified Janus-like
particles have been used to propose models of large-scale
dynamic events such as membrane vesiculation.287 Again, this
provides an interesting supraCG route to large-scale
biomembrane behavior, but parametrization will be challenging
if biologically realistic specificity and complexity is to be
preserved in such models.
A promising route to supraCG models of membrane

proteins that retain a degree of specificity, in terms of the

irregular shapes and dynamics of those proteins, is provided by
the work of, for example, Voth and colleagues in which protein
domains are represented by a small number of particles.270,271

The supraCG mapping in these ED-CG models is achieved by
matching the dynamics of the CG model to a more detailed
essential dynamics (ED) description derived either from
atomistic simulations combined with PCA270 or by an elastic
network model (ENM) of the protein.271 These models have
been used in, for example, studies of membrane remodelling288

(see below).
An even coarser level of granularity, in terms of

representation of membrane proteins, has been explored in a
DPD study of the organization of membrane protein
complexes in simple models of photosynthetic membranes.
In this study, the protein complexes were represented by a
model in which a protein (or protein oligomer) is represented
by a single particle, combined with a two particle per lipid
molecule model. The protein particles were parametrized
phenomenologically on the basis of experimental (electron
microscopy) data for their supercomplexes.289 Such a model
allows large-scale (500 nm) organization of membranes to be
explored, although the parametrization does rely on appro-
priate experimental data being available.

2.3.4. Meso Models. One approach to developing very
large-scale models of, for example, membrane protein
cluserting in a bilayer environment is to ignore the lipids and
model protein/protein interactions using data derived from
CG simulations of protein interactions in a bilayer model. A
possible approach to this is sketched out by, for example,
Yiannourakou et al.283,290 using PMFs from DPD simulations
of simple model membrane protein−protein interactions (see
above) as parameters for 2D MC simulations of clustering of
proteins. More recently, a comparable approach has been
employed in which membrane proteins were modeled as 2D
disks with “sticky patches” for interactions based on analysis of
protein−protein contacts in large-scale CG-MD simulations291

(see below). It is also feasible to derive knowledge-based
potentials from protein databases to represent the interactions
of proteins with the implicit membrane environment, as in the
recent work of Wang et al.292 All of these models currently
ignore the complexities of the lipid bilayer, but in the longer
term, it may be possible to combine them with continuum
representations of multicomponent lipid bilayers, for example,
Hu et al.293 and Nepal et al.294

An alternative approach is provided by the MesM-P
(mesoscopic membrane with proteins) model of Voth and
colleagues which allows, for example, membrane vesicle
geometry to be explored as a function of the protein density
and properties.295 There are also various mesoscale cell models
representing the membrane by a triangulated surface296−299

and mesoscale models of proteins based on finite element
models.300 Indeed, it would be timely for a systematic
exploration of the “zoo” of existing and potential mesoscopic
models301,302 to establish which classes of these may be
successfully linked to underlying CG models of biological
specificity in order to successfully enable quantitative
predictive cellular level membrane dynamics.

3. INCREASING COMPLEXITY
The complexity of cellular membrane is really staggering.
There exists more than a thousand different lipid types that are
found in biological membranes, with, in some cases, hundreds
present in the same membrane.3 Embedded in this complex
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lipid mixture is a plethora of membrane proteins, either
transmembrane or peripherally bound. On top of this, many
cell membranes are highly curved, and interact with
components of the surrounding medium such as the
cytoskeleton or neighboring organelles or cells. And all of
this happens under, constantly changing, nonequilibrium
conditions. To capture this complexity, it is evident that we
need to move beyond modeling highly simplified model
membrane systems containing one or two lipid components
only and being surrounded by excess aqueous solvent,
notwithstanding the continued usefulness of studying
simplified systems.
Below, we describe our current ability to increase the level of

complexity, making use of the improvements of lipid FFs as
discussed in the preceding section. We first describe simulation
studies that thoroughly explore the basic behavior of
multicomponent lipid and lipid protein mixtures (section
3.1), followed by the ongoing efforts to model specific
membranes in realistic detail (section 3.2), on our way to
full cell models (section 3.3).

3.1. Multicomponent Membranes

In this section. we provide an overview of the growing body of
simulation studies that consider multicomponent membranes
to understand the organizational principles of membranes at a
fundamental level, including formation and structure of lipid
domains, binding of specific lipids to membrane proteins,
membrane-mediated protein−protein interactions, and lipid-
or protein-induced membrane curvature.
3.1.1. Lipid Domains. Given the diversity of lipid types in

cell membranes, a nonuniform distribution of lipids in the
lateral plane of the membrane is rather likely. In fact, the
heterogeneous nature of the cell membrane is underlying the
raft concept,4,5 which, in its current form, states that specific
lipids together with proteins can cluster into nanodomains.
These nanodomains may be transient and too small to be
detected by experimental means but may also grow into more
stable functional platforms when needed.303,304 The propensity
to form distinct phases is already found in model membranes
composed of ternary mixtures of saturated lipids, unsaturated
lipids, and cholesterol, capable of forming coexisting liquid-

ordered (Lo) and liquid-disordered (Ld) domains. In fact,
ternary and quaternary mixtures display a rich behavior of
domain formation processes ranging from critical fluctuations,
modulated phases, all the way to macroscopic phase
separation. Interestingly, extracts from real cells show similar
phase behavior,305,306 pointing to the possible biological
relevance of this fundamental aspect of multicomponent lipid
membranes.
Although mean field theories describe these phenomena in a

qualitative way,307−309 MD simulations prove essential in
providing the molecular details of both the structural and
kinetic aspects of lipid nanodomains. Important insight into
the structure of the Lo phase has been obtained by recent all-
atom models of the groups of Vattulainen310 and Lyman,311,312

revealing the presence of substructures within these domains.
Still, with all-atom models, spontaneous segregation into
coexisting Lo/Ld domains is proving difficult to observe,
likely hampered by the slow kinetics of phase separation. Only
the onset of the process has thus far been captured with
atomistic models.313,314

Here, CG models have proven very valuable. An important
breakthrough was reported by Risselada and Marrink,48 who
simulated the spontaneous formation of Lo and Ld domains in
ternary mixtures of saturated and unsaturated lipids together
with cholesterol based on the Martini model. Follow up studies
have further explored the properties of these domains as a
function of lipid composition,315−322 including the effect of
hybrid lipids (lipids with one saturated and one unsaturated
tail) that act as linactants (i.e., decrease the line tension
between the domains).323−327 Making use of high-throughput
simulation strategies, complete lipid phase diagrams can
nowadays be established, for example, for binary lipid/
cholesterol systems as a function of temperature,328,329 as
well as ternary and even quaternary mixtures.330−334 Figure 3
provides an example of a ternary phase diagram from
Carpenter et al.335 based on the Martini model, in comparison
to the experimental phase diagram.336 In the study of
Ackerman and Feigenson,330 concentrations of DPPC and
cholesterol are fixed, whereas the nanodomain-inducing lipid
16:0,18:2-PC (PUPC) is incrementally replaced by the
macrodomain-inducing lipid 18:2,18:2-PC (DUPC). Extensive

Figure 3. Example of a multicomponent membrane phase diagram. The ternary lipid mixture dioleoyl phosphocholine (DOPC), DPPC, and
cholesterol exhibits a range of interesting phase behavior. Experimental phase diagram is shown on the left, and a simulated diagram using further
optimized Martini parameters for DOPC and DPPC on the right. Inserts show snapshots of four of the different simulations illustrating the phase
separation. The lipids are colored red, blue, and green for DOPC, DPPC, and cholesterol, respectivly. Adapted from ref 335. Copyright 2018
American Chemical Society.
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simulations of this four-component system reveal that lipid
demixing increases as the amount of DUPC increases, in
agreement with the experimental phase diagram. Furthermore,
domain size and interleaflet alignment change sharply over a
narrow range of replacement of PUPC by DUPC, indicating
that intraleaflet and interleaflet behaviors are coupled. It turns
out to be not always trivial to assign phases in these mixtures,
due to the challenge of identifying a phase based on local
physical properties, in addition to challenges due to finite size
and hysteresis effects.328,331,337

An interesting and ongoing topic of discussion is the extent
to which the domains in opposing leaflets are registered (i.e.,
occupy the same lateral position as a result of an inter leaflet
coupling mechanism). In principle, domains can be both
registered or antiregistered, or anything in between. Theoret-
ically, driving forces that govern the extent of registration
include minimization of the line tension at the domain
boundaries, minimization of the interleaflet surface tension,
release of curvature frustration, electrostatic coupling, lipid or
cholesterol tail interdigitation, and flip-flopping of additives or
cholesterol.338−340 Currently, simulation studies in support of
each of these mechanisms can be found,48,341−349 probably
pointing to a subtle interplay of all of these effects occurring in
realistic membranes.
To add another layer of complexity, the organization of the

nanodomains can be tuned by a number of additional factors,
as evidenced by simulation studies on the effect of stress350 and
immobilization,351,352 as well as the addition of other additives
such as hydrophobic compounds,353,354 sugars,355,356 or
ions.357 However, predictions from simulations are not always
in agreement with experiments,358 pointing to differences
between experimental and computational time and length
scales (notably, the contribution of the domain boundaries is
much more dominant in simulation studies359) and/or
deficiencies in the nature of the FFs, and/or challenges in
the interpretation of experimental data.
Due to the different nature of the Lo and Ld domains, the

former being enriched in cholesterol and saturated lipids and
more densely packed, one naturally expects a nonequal
distribution of membrane proteins between these phases.
Experiments confirm this expectation, showing a common
preference for proteins to reside in the Ld domains, unless
specific lipid anchors, commonly post-translationally attached
to membrane proteins in vivo, are present.360 A number of
recent MD studies have addressed the driving forces
underlying this sorting process. A pioneering study was
performed by Scha ̈fer et al.,361 revealing the molecular
mechanism behind the generic preference for peptide and
proteins to reside in Ld domains. In accordance with the
authors, inclusions disturb the tight packing of saturated lipids
and cholesterol in the Lo domain, providing an enthalpic
driving force for sorting into Ld domains. In a subsequent
work, De Jong et al.362 demonstrated that lipid anchors can
indeed provide a counter-force to steer proteins toward the
more ordered Lo domains. The importance of lipid anchors in
dictating sorting behavior is also clearly demonstrated in the
work of Gorfe and co-workers363−365,359 as well as
others.362,366 One highlight is the study showing that different
Ras variants (H-Ras, N-Ras, K-Ras) have different propensities
to segregate into Lo or Ld domains, driven by the opposite
preference of palmitoyl and farnesyl anchors for ordered and
disordered membrane domains.363 Localization of Ras clusters
at the domain boundaries may further lead to a reduction in

line tension and destabilization of the domains. Parton et al.367

show that influenza hemagglutinin, a TM protein containing a
number of palmitoyl anchors, also resides in proximity of Lo
regions.
Apart from lipid anchors, simulation studies have revealed a

number of other mechanisms that effect sorting. Restriction of
tilt, for instance as a consequence of protein anchoring to the
cytoskeleton, is important as it prevents release of lipid
mismatch through sorting.368 Likewise, fixed membrane
curvature may lead to sorting of TM peptides.369 In addition,
specific lipids can mediate the sorting behavior. A striking
example is the sorting of peptides into Lo domains under the
influence of gangliosides.362,370 Another example is the
observation of cholesterol mediated sorting in a joint
experimental-computational framework.371 Here it is shown
that cholesterol may constrain the structural adaptations at the
peptide-lipid interface under mismatch, resulting in a sorting
potential.
For more in depth discussion on the topic of lipid domain

simulations, please consult recent reviews from Bennett and
Tieleman372 and Roǵ and Vattulainen,373 as well as the
comprehensive review of Hof and co-workers covering both
experimental and computational studies on membrane nano-
domains.374

3.1.2. Protein−Lipid Binding Sites. Identifying lipid
binding sites on membrane proteins is a rapidly growing area.
Experimentally more and more lipid binding sites are being
discovered,375 thanks to an increasing number of techniques.
Traditionally, X-ray techniques may reveal tightly bound,
cocrystallized lipids, but advanced mutagenesis studies or
chemical cross-linking techniques are used to probe also
weaker bound lipids that are washed away under the harsh
crystallization conditions. New techniques such as the use of
lipid nanodisks to isolate membrane proteins with their native
lipid environment,376 as well as mass-spectrometry (MS),377

hold a lot of promise to further this development. On the basis
of the strength of binding, two classes of lipid binding sites can
be differentiated, namely specific and nonspecific binding sites.
The former involves tightly bound lipids that occupy specific
sites inside or at the protein surface. The latter refers to lipids
only showing a weak protein affinity, occupying the annular
shell around the protein. The ability of membrane proteins to
recruit and bind specific lipid types is of functional importance.
For instance, lipid binding may dictate the sorting behavior of
proteins between different membrane domains and may
facilitate protein insertion by lowering the cost of hydrophobic
mismatch;378 bound lipids may either protect proteins against
aggregation (locking mechanism) or bridge proteins together
into functional supercomplexes (bridging mechanism); specific
binding sites may be involved in enzymatic reactions (e.g.,
donating protons or electrons) or more generally provide
structural stability and stabilize specific protein conformations.
Computational studies are entering this field at a rapid pace.

Both all-atom and CG simulations have proven useful to look
at both specific and nonspecific lipid binding. In a typical
setup, a membrane protein is embedded in a bilayer composed
of two or three components, including the putative binding
lipids. Binding sites are then identified by constructing density
maps (“heat” maps) and some user defined density threshold.
In principle, MD simulations also allow for quantification of
the strength of lipid binding, through computation of a
PMF.379,401,85,380 In AA simulations, strongly bound lipids can
usually be distinguished from weak or nonbinding lipids, but

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.8b00460
Chem. Rev. 2019, 119, 6184−6226

6195

http://dx.doi.org/10.1021/acs.chemrev.8b00460


equilibration remains problematic. In particular, lipid exchange
rates may become prohibitively large. Even nonbinding lipids
can occupy a given site for hundreds of nanoseconds.
Currently, the best strategy is to use multiple runs from
different starting configurations to get a handle on the
reproducibility of the results. For instance, Rogaski and
Klauda381 generated five different orientations of a peripheral
membrane protein to study its binding to a lipid bilayer and
found consistent interaction modes requiring the presence of
anionic lipids. Alternatively, CG models can be used. At CG
resolution, reversible lipid−protein binding events can be
observed on time scales of 10−100s of microseconds. In a
state-of-the-art example, Arnarez et al.382 identified six
cardiolipin (CL) binding sites on the respiratory chain
complex cytochrome bc1. To provide a fully atomistic view
of these binding sites, the CG configurations were backmapped
to AA resolution, a procedure also frequently used by the
group of Sansom.383,384 AA simulations can also serve to refine
X-ray data, as shown by Aponte-Santamaria et al.385,386 in the
case of cocrystallized DMPC lipids around aquaporin-0.
The full power of simulation models in this area is best

demonstrated by a fast-growing number of studies that can
reproduce experimental binding sites. An impressive example is
the specific binding of C18-SM to a binding pocket in the TM
domain of the COPI machinery protein.387 In this joint
computational-experimental study, MD simulations reveal a
close interaction between C18-SM and the transmembrane
domain, as suggested by mutagenesis data. Interestingly, the
interaction is found to be very specific, depending on both the
headgroup and the backbone of the sphingolipid, as well as on
a signature sequence of the protein. The verification of
experimental cholesterol binding sites of GPCRs is another hot
topic. Successful validations have now been made in case of the
human A(2A) adenosine receptor,388−390 the β2-adrenergic
receptor,391,392 and rhodopsin,393 recently reviewed by
Sengupta et al.394 (Figure 4). Simulations of sterol binding

to the known sterol binding sites of the oxysterol binding
protein osh4395 and the mitochondrial voltage gated anion
channel VDAC1,396 cholesterol binding to the family of
monoamine transporters,397 as well as a study of binding of
cholesteryl esters to their binding pocket in the cholesteryl
ester transfer protein398 are also worth mentioning. An

increasing number of examples exist also for anionic lipids,
which are key regulators of membrane protein behavior. For
instance, simulations of the Sansom group identify phospha-
tidylinositol-triphosphate (PIP3) binding sites on the
pleckstrin homology domain399 and PIP2 binding sites on
the inwardly rectifying potassium (Kir) channels400,383 in line
with X-ray and mutagenesis data. Other examples include
binding sites for CL on the respiratory chain complexes
cytochrome c oxidase and cytochrome bc1,382,401 reproducing
sites known from earlier structural studies and buried into
protein cavities, as well as validation of CL binding sites on the
mitochondrial ADP/ATP carrier402,403 and reproduction of
known DPPG binding sites of potassium channels KcsA and
chimeric KcsA-Kv1.3.404

Given the ability of current simulation studies to reproduce
known lipid binding sites, the prediction of novel binding sites
becomes interesting. A number of studies on respiratory chain
complexes reveal hitherto unknown CL binding sites on the
membrane-exposed surfaces of these proteins.382,401,405−408

Surface-bound CLs could play an important role in, for
example, proton uptake or by providing structural integrity of
the complexes and supercomplexes. CL binding sites are also
predicted for a number of other bacterial proteins.409−412

Likewise, simulation studies on GPCRs are pointing at novel
cholesterol binding sites, for instance, in case of the
serotonin(1A) receptor413 the A(2A) adenosine receptor,414

and the Smoothened receptor,380 and on the importance of
PIP2 in regulating conformational states.415 Cholesterol
binding sites are also found on the Kir2.2 channel, depending
on the open/close state of the channel.416 In a study on
nicotinic acetylcholine receptors (nAChR), cholesterol com-
petes with PUFA containing lipids to occupy binding sites.417

The list of predicted lipid binding sites keeps growing. Other
examples are the discovery of a PE binding site, stabilized by a
lipid-mediated salt bridge, on lactose permease,418 and of
numerous PG binding sites on the ammonium transporter
AmtB.419 Binding sites for PI lipids were found in a combined
experimental and computational study of the eukaryotic purine
symporter UapA.420 Their presence at the dimer interface
suggests a role in structural stability of the complex. A similar
study revealed PIP2 binding to mammalian two pore channels,
forming a cross-link between two parts of the channel and
enabling their coordinated movement during channel gat-
ing.421 The power of combining modeling and experimental
studies is further illustrated by the discovery of ceramide
binding sites on one of the TM helices of Late Endosomal
Protein LAPTM4B.422 Although quite often overlooked, the
absence of lipid binding sites is also useful information that can
be extracted from simulations. For instance, in a multiscale
study, Stansfeld et al. report no specific DPPC binding sites for
various members of the aquaporin family.384

Noteworthy are also an increasing number of studies that
reveal pathways for protein-mediated lipid flip-flop, a
mechanism that has been hypothesized already a while ago
but not been observed directly (Figure 5). Khelashvili et al.
identified the existence of a series of weak lipid binding spots
along the surface of Opsin, allowing flip-flopping of POPC
lipids423 (Figure 5A). Spontaneous penetration of lipid head
groups into the membrane interior along the aqueduct
nhTMEM16, a fungal scramblase, was observed during a
simulation of Tajkhorshid and co-workers424 (also noted
earlier244), resulting in a continuous file of lipids connecting
the outer and inner leaflets (Figure 5C). Full permeation of a

Figure 4. Example of protein−lipid binding modes. Cholesterol
binding to a GPCR with indications of fast and slow exchange
dynamics, obtained from MD simulations by Sengupta and co-
workers.394
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POPC lipid from the inner leaflet to the outer leaflet of the
membrane was captured during the simulation. Additional full
translocations of lipids, including the charged lipid POPS, took
place when a transmembrane voltage was applied. Further
details of the translocation pathway of nhTMEM16 were
revealed in a similar study by Lee et al.425 and in a study on the
TMEM16K member of the family.426 In another study, Koch
et al.427 discovered a potential flippase activity of the SecYEG
channel. They found the presence of a single binding site for
DOPG lipids that can be reached from both membrane leaflets
and thus allows spontaneous flip-flop of an anionic lipid
(Figure 5B). Transfer of lipids between different protein
complexes is observed in the study of Huber et al.428 Here,
extensive simulations were used to show a downhill pathway of
transfer of lipid A from bacterial outer membrane models
through CD14 to the terminal TLR4/MD-2 complex.
Aksimentiev and co-workers429 reported a synthetic DNA
nanopore specialized in flipping lipids, by stabilizing a toroidal
(i.e., lipid lined) pore. MD simulations show indeed
spontaneous lipid scrambling to occur on a submicrosecond
time scale.
Furthermore, MD simulations are frequently used to study

nonspecific lipid binding. Key papers in this area are from
Vattulainen and co-workers,430,431 in which they show strong
correlations between the lateral diffusion of membrane
proteins and a shell of 50−100 annular lipids. This kind of
protein−lipid binding is observed even in lipid membranes
composed of a single lipid type and therefore clearly
nonspecific. On the basis of CG simulations of a large variety
of membrane proteins, Sturgis and collaborators show that
even simple mixtures of nonspecifically bound lipids already
give rise to a complex perturbation pattern around the protein
that is not easily described by elastic membrane deformations
and can be long-range in nature.432 In multicomponent
membranes, nonspecific lipid binding will lead to an
inhomogeneous distribution of lipids around the protein in
general. One of the first examples in this respect is the study of
Grossfield et al. on the enrichment of polyunsaturated lipid
chains around rhodopsin433 in mixed SDPC/SDPE/Chol
bilayers. A recent extension of this work points at a
dependence of these interactions on the conformational state
of the protein.434 Other examples of nonspecific lipid binding
include the recruitment of short-tail lipids around OmpA,435 of
anionic (POPA) lipids at the gap junction hemichannel
connexion-26,436 the nonspecific binding of POPS to TM and

juxtamembrane domains of cytokines437 and to integrin,438

weak binding of annular PC/PE lipids to MsbA flippase,439

accumulation of cholesterol at the C-terminal helix of a
phospholipase scramblase,440 accumulation of GM1 around
WALP peptides362 and aquaporin,185 preferential binding of
PE over PC lipids in secondary transporters441 and VDAC,442

and redistribution of PC lipids around the gramicidin A
channel dependent on tail length and unsaturation.443

A related topic is the membrane binding of peripheral
proteins, which often requires the presence of specific lipids
that provide the necessary driving force for stable protein−
membrane interactions. Simulation studies in this category
reveal the CL mediated membrane binding of creatine kinase
(MtCK),444 the enrichment of phosphatidic acid (PA) and
PIP2 at the membrane binding spot of actin capping protein
(CP),445 the increased propensity of negative lipids to interact
with a glycosyltransferase,446 and PAs clustering around the
acylated pleckstrin homology domain-containing protein
(APH).447 The signaling lipids PI and PIPs seem to play a
particularly important role. Many examples can be found in the
recent simulation literature in which PIs or PIPs drive the
protein binding and orientation, for example, the phox-
homology domain (PX),448 auxilin,449 BIN1/M-Amphiphy-
sin2,450 MIM I-BAR,451 GTPases,452 KIdney- and BRAin-
expressed protein (KIBRA),453 the HIV-1 matrix protein,454 as
well as a variety of actin binding proteins.455−457 Other
examples of lipid-mediated membrane binding are the
ganglioside mediated binding of cholera toxin,458 competitive
binding of bis(monoacylglycero)phosphate and SM to
Niemann-Pick Protein C2,459 the role of cation-pi interactions
in stabilizing the binding of phospholipases,460 and the
modulating effect of cholesterol on the depth, orientation,
and conformation of the membrane binding fragment caveolin-
1.461

Nonspecific clustering as well as specific binding of lipids by
membrane active peptides is another area where simulation
studies are increasingly being used.462−464 Simulations
addressing lipid-peptide interplay in case of amyloid peptides
also remains a hot topic, in particular with respect to
membrane-mediated fiber formation.465−468 For a more
elaborate description of modeling of protein and peptide-
lipid interactions, we refer to previous reviews by Hedger and
Sansom,469 Grouleff et al.,470 Wen et al.,471 as well as to
Corradi et al. in this issue.472

3.1.3. Lipid-Mediated Protein Oligomerization. Lipid-
mediated interactions are of key importance in driving the
clustering of membrane proteins. Clustering forces of this kind
include release of membrane curvature stress, capillary
condensation, lipid depletion effects, and Casimir type forces
(arising from perturbed fluctuations in, for example, lipid
density or thickness). Depending on the system details, such
lipid-mediated effects can dominate direct protein−protein
interactions and can be long-range in nature.473−475 Under-
standing the molecular driving forces that are ultimately
responsible for the sorting and clustering of membrane
proteins is currently an active field of research in which
simulation studies play a key role.476

To systematically study clustering of membrane proteins,
basically two approaches are followed: spontaneous self-
assembly, which allows also for the formation of higher-order
oligomers, or biased simulations to determine the protein−
protein dimerization free energy. In self-assembly simulations,
the complexation of proteins is simply followed over time. Self-

Figure 5. Protein-induced lipid flip-flop. (A) Overlay of POPC lipids
bound to Opsin at intermediate stages of the flip-flop pathway.423 (B)
CG trajectory of a DOPG lipid during a (partial) flip-flop mediated by
the SecYEG complex.427 (C) Overlay of POPC configurations bound
to a fungal scamblase, defining a flip-flop pathway.424 In all snapshots,
the lipid phosphate groups are represented by red spheres. The tails
are colored from yellow to green to visualize the flip-flop pathway.
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assembly simulations are typically performed using many
independent replicas to probe the reproducibility of the
interfaces formed. The behavior of WT and mutant proteins
can be compared, providing additional insights into the
packing motifs. In the case of single TM helices, a growing
number of studies demonstrate that the experimentally
determined interfaces can be reproduced, even when using
CG models to speed up the sampling (reviewed by Psachoulia
et al.477). Such approaches require a high-throughput approach
to obtain statistically relevant results.478,479 The ability to
predict packing of TM helices has paved the way for CG
modeling studies of self-assembly of larger protein complexes,
in particular, protein complexes in which the interface is
formed by single TM helices.480−482 For instance, in a joint
experimental/modeling effort, van den Boogaart et al.483

revealed the molecular organization of syntaxin clusters and
showed that syntaxin clustering is mediated by electrostatic
interactions with the strongly anionic lipid phosphatidylinosi-
tol-4,5-bisphosphate (PIP2). The mediating role of PIP2 is
also apparent from a simulation study of the binding of FERM
to L-selectin.457 Not only is PIP2 required for efficient binding
of FERM to the plasma membrane but also PIP2 induces a
conformational change of L-selectin which allows the
formation of the heterocomplex. Computational evidence for
the role of PIP2 in activating integrin, by stabilizing an
integrin-talin heterocomplex, has also been obtained,484 as well
as revealing the role of PIPs in modulating EphA2, a receptor
tyrosine kinase.485 As another example of lipid-mediated
protein complex formation, PS lipids are found to steer the
formation of the RAS/RAF complex in a multiscale study by
Travers et al.486

Self-assembly studies of polytopic membrane proteins are
still hampered by slow kinetics, but the onset of protein
oligomer formation can be simulated. Following the pioneering
studies of Periole et al.,487 the oligomerization tendency of
GPCRs as well as other membrane proteins has been simulated
through self-assembly by a number of groups.488−492 These
studies, mostly based on the Martini FF, often indicate
formation of stringlike clusters of proteins with preferred
protein−protein interfaces. A clear effect of cholesterol was
reported in steering the dimer interface formation in case of
the beta2-adrenergic receptor493 and chemokine recep-
tors.494,495 Similarly, both cholesterol and PIP2 lipids were
found to affect the interfaces formed in large-scale self-
assembly simulations of human serotonin transporters.496 Self-
assembly simulations of respiratory chain complexes by
Arnarez et al.382 show complexation between cytochrome bc1
and cytochrome c oxidase and point toward a specific role for
CL in bridging the proteins together. Clustering of
mitochondrial translocases was also shown to depend on the
presence of CL in large-scale CG MD simulations.402 In
another recent example, gangliosides were observed to bridge
tetraspanin CD81 proteins into higher-order aggregates497

(Figure 6). However, on the multimicrosecond time scale
accessible with current simulations, equilibration of the
protein−protein interfaces of polytopic membrane proteins
has not yet been achieved. Reversible sampling of protein−
protein binding/unbinding events is extremely challenging for
models that retain chemical specificity, the more so in the
crowded environment of real cells (see below).
In addition to affecting the kinetics, protein crowding can

also impact the thermodynamic behavior of the system.
Domanski et al.498 found that, at lipid/protein ratios

characteristic of real membranes, TM peptides can induce
coalescence of their annular lipid shells triggering large-scale
domain segregation. This is reminiscent of capillary con-
densation, predicted by Mouritsen and co-workers already in
the late nineties based on MC simulations using a highly
simplified membrane model.499 Likewise, Ackerman and
Feigenson500 observed growth of nanodomains induced by
WALP TM peptides, in agreement with the experiment. They
furthermore showed that WALPs can induce registration of
domains. Lipid-mediated protein crowding was also observed
in the study of Guixa-̀Gonzaĺez et al.501 Here, the presence of
lipids containing omega-3 polyunsaturated fatty acids (PUFA)
drives the oligomerization of adenosine A2A and dopamine D2
receptors, again via coalescence of the annular protein shells
enriched in the PUFA containing lipids (Figure 7).
In addition to self-assembly approaches, biased simulations

can be used to predict binding interfaces and obtain insight
into the thermodynamic driving forces for protein−protein
aggregation by computation of the PMF. Although in certain

Figure 6. Example of lipid-mediated protein−protein oligomerization.
The snapshots show how gangliosides mediate cluster formation of
tetraspanin CD81 proteins. Reproduced from ref 497. Copyright 2014
American Chemical Society.

Figure 7. Example of lipid-mediated protein clustering. Snapshots of
clustering of GPCRs in a healthy membrane (left), containing DHA,
and a nonhealthy membrane (right) depleted of DHA. In the healthy
case, higher order oligomers, stabilized by DHA, are more present.
Reproduced with permission from ref 501. Copyright 2016 Nature
(http://creativecommons.org/licenses/by/4.0/).
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cases protein−protein PMFs can be extracted from self-
assembly simulations (when multiple binding/unbinding
events are spontaneously observed),502 in most cases
calculation of the PMF requires forced unbinding using, for
example, umbrella sampling or metadynamics type approaches.
Like soluble proteins, the large number of possible interfaces
still poses a major sampling problem. On the one hand, due to
the two-dimensional nature of the membrane, prediction of
membrane protein interfaces is easier. On the other hand,
sampling of the desolvation of the protein−protein interface is
problematic due to trapping of lipids. Even between simple
TM helices convergence of the PMF requires sampling on the
microsecond time scale, often necessitating the use of CG
models.503−507 These studies provide important insights on the
driving forces for helix−helix association and, in particular, the
contribution of lipid-mediated effects versus direct protein
contacts. In a systematic study on the dimerization of WALP
peptides under different mismatch conditions, Castillo et al.504

concluded helix−helix association to be enthalpically favorable
in all cases, while the entropic contribution appears favorable
only in the presence of significant positive hydrophobic
mismatch. The interpretation of this requires care given the
coarse-grained nature of these simulations, but the sign of the
thermodynamic quantities agrees with experimental measure-
ments on dimerization of (AALALAA)3 peptides, and the
observed association free energies are within the experimental
range. The work of Benjamini and Smit is also noteworthy.508

The authors use a CG DPD model to challenge the notion that
packing of TM helices is determined by specific interactions.
Instead, the authors show that hydrophobic mismatch, through
its effect on helix tilt, can explain many experimental cross-
angle distribution features. This notion is supported by all-
atom simulations of glycophorin A dimers embedded in
different membrane environments, showing robust packing
motifs despite the poor hydrophobic match, using mechanisms
based on dimer tilting or local membrane thickness
perturbations.509 In a combined experimental/computational
study, Cybulski et al. show that mismatch-induced tilting of
TM helices forms the basis for the thermosensing mechanism
of DesK in bacterial membranes.510

Due to the sampling issues mentioned above, calculation of
PMFs between polytopic membrane proteins has thusfar been
limited to specific interfaces only. The first PMFs between fully
solvated polytopic membrane proteins, GPCRs, was reported
by Periole et al.488 The authors show that sampling times
exceeding 1 ms are required to obtain converged profiles for
specific binding interfaces. Remarkably, it was found that the
amount of protein burial (i.e., number of protein−protein
contacts not exposed to lipids) does not correlate with the
binding strength of the interface. This finding challenges the
potential utility of buried accessible surface area as a predictor
of the strength of membrane-embedded protein−protein
interfaces, a strategy that works well for soluble proteins.
This view was not confirmed, however, in the case of another
membrane protein, NanC.511 Here, the strength of binding was
found to be proportional to the number of protein−protein
contacts. Clearly, more work is needed in this area. In general,
the above, and other recent studies on GPCRs by Filizola and
co-workers,512,513 on the dopamine transporters by the group
of Stockner514 and on the human serotonin transporter496

reveal specific, favorable, association interfaces stabilized by
energies of the order of 30−60 kJ mol−1. Considering the
quantitative predictive capability of CG models, a warning is in

place, however. Overstabilization of TM helix dimer formation
has been reported for the widely used Martini model with
respect to the all-atom OPLS FF,515 as well as compared to
experimental data.211 On the contrary, other studies show a
much better match, either with atomistic data516 or in
comparison to available experimental data.504 Given the high
sensitivity of dimerization free energies to the exact mismatch
conditions (see for instance the work of Benjamini and
Smit508), and the importance of a proper choice of reaction
coordinates,85 more systematic studies are needed to solve this
controversy. Further progress in the use of enhanced sampling
techniques will be very valuable in this respect. For instance,
Lelimousin et al. recently showed that metadynamics can be
used to induce reversible binding/unbinding of the TM
domain of EGFR to obtain free energy landscapes directly.84

Domanski et al.85 used replica exchange umbrella sampling to
speed up convergence of the PMF between glycophorin TM
domains. Application of these methods to polytopic membrane
proteins should, in principle, be possible. Another example is
the combination of MD with Markov state models, as used in
the study of Filizola and co-workers to elucidate the
association kinetics of μ-opioid receptors.513 Advanced
protein−protein docking tools such as HADDOCK are
currently being extended into the realm of membrane proteins
and could provide an alternative route toward prediction of
protein−protein complexes.517

For more detailed information on the topic of membrane
protein oligomerization, see for instance the general review on
protein−protein interactions by Baaden and Marrink,518

reviews on GPCRs by Periole,519 Gabhauer and Böckmann,520

and Meng et al.,521 and a review focusing on driving forces by
Johannes et al.522

3.1.4. Membrane Curvature Generation and Sensing.
Curvature generation and sensing is important for many
cellular processes that involve membrane remodeling, such as
fusion and fission, and shaping of internal cellular compart-
ments.523−525 In general, membrane curvature may result from
the presence of nonlamellar forming lipids (e.g., DOPE) or
arise from any asymmetry between the membrane monolayers.
In vivo, generation of large curvatures typically requires the
action of specialized proteins. Protein-induced membrane
curvature could be an activated process, for example, making
use of molecular motors or polymerizing actin filaments but
also arise from direct protein−lipid interplay. In the latter case,
three mechanisms can be distinguished: scaffolding, crowding,
and insertion.523 In scaffolding, the proteins adhere to the
bilayer and induce curvature through their curved interaction
interface. In crowding, proteins located at the membrane
surface generate a pressure that produces a bending moment
acting on the membrane. In the insertion mechanism, proteins
generate a curvature stress by asymmetric insertion of
hydrophobic or amphipatic domains in the membrane. The
three mechanisms are not mutually exclusive, however, and
may act together. The number of simulation studies that
address these mechanisms is steadily growing, following the
pioneering simulations of Reynwar et al.287 on large-scale
membrane remodeling using a generic CG model, the all-atom
simulation by Blood and Voth,526 showing membrane
curvature generation by a BAR domain, and the four-scale
description of membrane sculpting of BAR domains by
Arkhipov et al.527

A recent example in this area is the work of Davies and co-
workers,528,529 probing the role of F1F0-ATP synthase dimers
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in shaping the mitochondrial cristae. On the basis of large-scale
CG MD simulations, the authors propose that the assembly of
ATP synthase dimer rows is driven by the reduction in the
membrane elastic energy, rather than by direct protein
contacts, and that the dimer rows enable the formation of
highly curved ridges in mitochondrial cristae. De Oliveira Dos
Santos Soares et al.530 used all-atom and CG MD simulations
to investigate membrane-bending forces in the Dengue virus
envelope. The structural organization of three heterotetramers
EM proteins (EM3 unit) serves as an anisotropic bending unit
for the Dengue virus envelope because it is able to locally
decrease the thickness of the membrane with its short
transmembrane helices. The simulations show that the specific
arrangement of the EM membrane proteins inflict a curvature
stress on the membrane. The resulting elastic energy is
minimized by the systematic migration of lipids from the lower
into the upper layer. Membrane undulations induced by the
NS4A domain of Dengue virus have also been reported531 and
were linked to the U-shape of this membrane spanning protein.
Simulations of the curvature field induced by α-synuclein, by
Sachs and co-workers,532,533 are also good examples of the
power of near-atomistic membrane modeling in this field. On
the basis of simulations involving 48 copies of the N-terminal
membrane-binding domain of α-synuclein, together with more
than 85000 lipids, the onset of membrane tubulation could be
observed due to the collective action of the proteins (Figure
8). Another recent example of curvature generation due to

surface-bound proteins is a simulation study of Li and Gorfe
on asymmetrically bound H-ras proteins.534 Imposing
curvature stress on membranes is not limited to proteins;
small amphipatic peptides that adsorb at the membrane/water
interface potentially have the same effect. Buckling of model
bilayers can, for instance, be induced by antimicrobial peptides
(AMPs) as is shown in simulations of Woo and Wallqvist.535

Sodt and Pastor have quantified the curvature stress generated
by a model amphipatic peptide,536 showing that the peptide
induces positive curvature in line with the conclusions from a
simulation study on fusion peptides.537 The extent of curvature
induction was found to depend sensitively on the molecular
interactions and cannot be explained using simple shape-based
concepts. Pannuzzo et al.538 proposed an efficient approach to
simulate the bending power of peptides based on the use of
lipid bicelles that are stabilized by short-chain lipids.
As mentioned before, membrane curvature may also arise

from an asymmetric distribution of lipids between the leaflets.
MD simulations of multicomponent membranes show, for
example, that the ganglioside GM1 induces curvature.539,540

Conversely, curvature leads to lipid sorting as is demonstrated
in a number of simulation studies.369,350,352,541 Again, simple
shape-based concepts do not suffice to explain lipid-induced
curvatures and sorting effects, in particular in multicomponent
systems where effects are nonadditive.542−544 Noteworthy are
also simulations that show how electrostatic fields can induce
membrane curvature (flexoelectric effect).545

In addition to curvature generation, an important question is
how proteins may sense different curvatures. Cui et al.546 used
the concept of membrane-packing defects547,548 as measure for
curvature sensing. The idea is that curved membranes expose a
larger fraction of hydrophobic defects to which the hydro-
phobic domains of proteins can bind. Indeed, the authors
demonstrate, based on all-atom MD simulations, an increasing
number of defects with increasing curvature. Another study
showed that the ability of lipid tails to backfold to the
membrane/water interface also increases with curvature.549

Vamparys et al.550 furthermore show that the size and number
of such defects increase with the number of monounsaturated
acyl chains and with the introduction of conical lipids.
Moreover, the size and probability of the defects promoted
by conical lipids resembled those induced by positive
curvature, thus explaining why conical lipids and positive
curvature can both drive the adsorption of surface active
peptides and proteins. This hypothesis was confirmed by
subsequent studies in which experimental data and simulation
data were combined to explain the binding affinity of
peripheral proteins as a function of lipid composition and
curvature551 as well as membrane tension as another
determining factor.552 A simulation study of a buckled
membrane demonstrated differences in sensing characteristics
between different AMPs.553 Thus, proteins can sense
curvature, and induce curvature, but can also undergo
conformational changes in response to curvature. A number
of MD studies have demonstrated that membrane curvature
can indeed shift the conformational equilibrium in pep-
tides,554−556 as well as affect peptide folding kinetics.546

Fusion and fission are key cellular processes that involve
extensive membrane curvatures. The main question remains to
what extent fusion and fission are lipid-driven or protein-
mediated. Simulation studies have contributed significantly in
this area, and protein-free fusion pathways between lamellar
membranes and between vesicles are now quite well-
established (reviewed in refs 557 and 558). Current efforts
are directed to calculate the energetics and kinetics of the
various intermediates,559−567 the importance of hydration
forces in the initial approach,568−572 stalk formation between
multicomponent phase separated membranes,573 the role of
calcium and PEG in mediating fusion,574,575 and carbon
nanotube-mediated fusion.576 Computational modeling of
peptide and protein-induced fusion or fission is still in its
pioneering phase. A number of researchers537,577−579 inves-
tigated the ability of small amphipatic peptides, including HA
fusion peptides, to stabilize cubic phases and stalk/pore
complexes that are relevant as fusion intermediates. Moiset et
al.580 found that certain AMPs, that are traditionally associated
with forming transmembrane pores, can also induce stalk
formation between juxtaposed membranes. Stalk formation in
this case is initiated by the ability of multiple lysine residues to
form a bridge between the apposing bilayers and trigger the
flipping of lipid tails between the proximal leaflets. A similar
mechanism was recently observed in all-atom simulations of
stalk formation in the presence of arginin-rich cell penetrating

Figure 8. Membrane curvature generation by proteins. Onset of
membrane tubulation induced by 48 copies of α-Syn100 (yellow)
interacting with a membrane composed of 85296 POPG lipids (blue
tails, red headgroups). Water is not shown for clarity. Snapshot is
obtained at 300 ns simulation time with the Martini model. The
budding tubule extends ∼25 nm above the bulk lipid bilayer. Adapted
from ref 533. Copyright 2014 American Chemical Society.
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peptides.581 Baoukina and Tieleman582 simulated the fusion of
small unilamellar vesicles mediated by lung surfactant protein
B (SP-B). They found SP-B monomers capable of triggering
fusion events by anchoring two vesicles, facilitating the
formation of a lipid bridge between the proximal leaflets. In
a series of breakthrough papers, Risselada et al.583−586

simulated neuronal SNARE-mediated membrane fusion. The
simulations reveal that SNARE complexes operate in a
cooperative and synchronized way. In the postfusion state,
zipping of the SNAREs extends into the membrane region, in
agreement with the recently resolved X-ray structure of the
fully assembled state. Additional details of the fusion pathway
were resolved in simulations of SNARE mediated fusion
between bilayers and nanodisks.587 In the work of Pinot et
al.,588 a combination of in vivo, in vitro, and in silico
experiments were used to show the combined effect of lipids
and proteins in shaping membranes during fission. In
particular, the role of polyunsaturated lipids in membrane
vesiculation by dynamin and endophilin was revealed. The
simulations provided the molecular mechanism: polyunsatu-
rated lipids can backfold in the membrane and thereby adapt
their conformation to the change in membrane curvature
during vesiculation. This plasticity of polyunsaturated lipids
was already noted in earlier simulations of small liposomes.589

3.2. Realistic Cell Membranes

Recent advances in computation and molecular FFs have
allowed for more faithful modeling of realistic biological cell
membranes. Focusing on the lipid component only, recent
models are approaching realistic complexity of biological

bilayers with respect to the number of different lipid types,
bilayer asymmetry, and geometry. Marked differences are
found in the lipid composition and dynamics of bilayers from
different organisms, cell and tissue types, organelle, as well as
dependent on environmental factors and cell cycle,3,590,591

therefore, a diverse set of bilayer models is needed. Here we
list some of the different types of membrane models that have
been developed.

3.2.1. Plasma Membranes. In cells, the plasma membrane
(PM) defines the boundary, separating the cell interior from
the outside environment. A typical PM contains hundreds, if
not thousands, of different lipid species that are actively
regulated by the cell and nonuniformly distributed in the
membrane plane.3,4 Eukaryotic cell PMs typically contain a
significant fraction of cholesterol and have an asymmetric
leaflet composition. The outer leaflet is composed of more
saturated lipids and enriched in SM and glycolipids (GM). The
inner leaflet has more unsaturated lipids and most of the
charged lipids (PS, PA, PI, PIP’s). The extent to which
cholesterol is enriched in the outer or inner leaflet is still
debated, for example, see a recent review by Steck and
Lange.592

In earlier simulation studies, eukaryotic PMs were often
approximated as a pure POPC bilayer (POPC, being the most
common PM phospholipid) or a pure DOPC bilayer (were
DOPC average bilayer properties can be closer to those of a
PM, although DOPC itself is not prevalent in eukaryotic cells).
When a specific lipid type is known to be of importance, it is
then simply added to the pure mixture and for cases when

Figure 9. An example of a complex plasma membrane model. Corradi et al.603 simulated ten different membrane proteins in a 63 lipid PM mixture.
Each protein’s different TM shape and lipid−protein interactions resulted in a unique lipid fingerprint (a). Here AQP1 is depicted showing the
simulation setup, snapshot of the (b) outer membrane as well as lipid enrichment/depletion and bilayer properties around the (c) protein. Adapted
from ref 603. Copyright 2018 American Chemical Society.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.8b00460
Chem. Rev. 2019, 119, 6184−6226

6201

http://dx.doi.org/10.1021/acs.chemrev.8b00460


phase separation is believed to be important, a three-
component mixture is often used (with a high and low melting
temperature phospholipid and cholesterol, see above).
Recently, however, models attempting to approximate realistic
PMs have emerged,593−600 some of which we will discuss here.
In terms of lipid composition, Ingoĺfsson et al. average

mammalian PM model593 is the most complex simulation to
date. The model is Martini-based and contains 63 different
lipid types, with 14 different types of lipid headgroups and 11
different tails that are asymmetrically distributed across the
leaflets. A large-scale simulation of the model membrane,
∼20000 lipids and simulated for 80 μs,593,596 gives a high-
resolution view of the dynamic interplay of all lipid species and
overall organization. PM nonideal lipid mixing, membrane
properties, lipid flip-flop dynamics, leaflet coupling, and
domain formation were explored. At the microsecond time
scale cholesterol, ceramide and diacylglycerol lipids flip-flop
between the leaflets. Due to cholesterol’s preferred interactions
with the more saturated outer-leaflet, the cholesterol
distribution equilibrates to a slight enrichment in the outer
leaflet (∼54%). Globally, neither leaflet phase separates, but
the lipids are heterogeneously mixed and show nonideal
mixing of different lipid species at different spatiotemporal
scales. Both leaflets contain domains that are continuously
changing in size and composition. The domain sizes range
from small, only a few lipids big, to larger, spanning the
simulation box. The smaller domains are transient, while the
larger are more persistent and are coupled between the leaflets.
GM lipids form small clusters in the outer leaflet, whereas in
the inner leaflet, dimers and trimers of PIP lipids form more
frequently than would be expected based on their concen-
tration. It should be noted that the extent to which GMs are
observed to cluster in these simulations might be over-
estimated. Recently retuned parameters for gangliosides in the
Martini model show a reduced clustering propensity, in line
with atomistic simulations.185 Additionally, MD simulations
provide evidence that GM clusters depend on sterol
concentration.601

The PM model was used to explore curvature-based lipids
sorting by pulling tethers, pulling from the outer or the inner
leaflet.602 Spatially varying lipid redistribution was observed,
dependent on pulling direction, as well as a softening of the
tethers due to the sorting of the lipids. Vögele et al.152 used a
number of systems to show how hydrodynamics can explain
the finite-size effects of lipid diffusion, including patches of the
complex PM model with a size up to 286 × 286 nm. Corradi et
al.603 simulated ten different membrane proteins in the
complex PM mixture. The simulations showed how each
protein uniquely modulated its local lipid environment. At
different spatial locations around the proteins local enrichment
or depletion of specific lipids resulted in bilayer thickness and
curvature gradients, together forming unique lipid fingerprints
(Figure 9).
In a seven component PM Martini mixture, Koldsø et al.594

capture many of the same properties as the complex mixture
above, including nanodomains of GM lipids on the outer
leaflet and PIPs on the inner leaflet. Additionally, they explore
the effects of curvature and the addition of membrane proteins.
Curvature was found to affect lipid organization and sorting
with GM and PE lipids enriched in concave deflections of the
outer leaflet, while PIPs and cholesterol are enriched in
concave deflections of the inner leaflet. Model α-helical
transmembrane domains were inserted in the PM mixture

and found to cocluster with a number of lipid species,
including anionic lipids, as well as slow down lipid diffusion.
The model, or variants of, has been used in a number of
studies, including large-scale simulations to explore protein
crowding and clustering,604 the effect of cytoskeletal
immobilization on protein and lipid mobility,605 how loading
with model transmembrane helixes or GPCRs effect membrane
dynamics (such as bilayer undulation and lipid diffusion),606

and lipid binding to receptor tyrosine kinases (RTKs)607 and
the epidermal growth factor receptor (EGFR).608

A number of other average or specific tissue type PM models
have been developed. Jeevan et al. made an average PM model
using Martini that is asymmetric and has six lipid
components.609 The model has been used to explore Ebola
virus protein VP40 PM binding.609 Hedger et al. explored the
cholesterol interaction of the Class F G protein-coupled
receptor Smoothened in a number of bilayers, including an
asymmetric five-component Martini lipid bilayer containing
PC, PE, PS, PIP2, and cholesterol.380 Kalli et al. constructed an
asymmetrical five lipid type PM model using Martini to explore
integrin receptor dynamics, showing how the receptor altered
lipid organization especially that of cholesterol and PS.610

Domicevica, Koldsø, and Biggin constructed a five-component
asymmetrical epithelial brain PM to explore the lipid
interaction of P-glycoprotein.597 They used both CG Martini
and atomistic Slipid models and found enrichment of charged
PS lipids next to the protein and specific cholesterol interaction
sites. A five-component Slipid model was also used to explore
the effect of curvature on PM properties by Yesylevskyy et
al.611 Yesylevskyy and co-workers recently made a variant of
the model to mimic a cancerogenic PM.612 Klaḧn and
Zacharias build asymmetric five component PM models
representing a cancerogenic and normal eukaryotic PM and
simulated them using the atomistic CHARMM FF.613

Ueoka and co-workers made compositionally complex
asymmetrical PM models of normal and cancerogenic
thymocyte membranes using the CHARMM FF and
containing 23 and 25 different lipid types, respectively.600

Flinner and Schleiff constructed an asymmetrical ten
component Martini bilayer model of the red blood cell
(RBC) PM to explore the dynamics of glycophorin A
dimers.595 Characteristic of RBC PMs, the model mixture is
high in cholesterol and contains PE plasmalogen lipids. Kalli
and Reithmeier constructed asymmetric six component RBC
PMs both using Martini and GROMOS to study the
interactions between the Band 3 and glycophorin A proteins
and the lipids.614 Kadri et al. constructed symmetric epithelial
cell membrane models with 10 different Martini PC lipids to
study how the increased tail saturation associated with lipo-
intoxication effects bilayer properties.615 Ingoĺfsson, Carpenter,
and co-workers assembled a human neuronal PM model, based
on Martini, with an asymmetric lipid distribution and 58
different lipid types.596 Compared to the 63-lipid type average
PM model the bilayer properties of the neuronal PM are
overall strikingly similar, despite significant difference in lipid
composition. The effects of the higher cholesterol content of
the neuronal bilayer are somewhat compensated by the higher
tail unsaturation. Interestingly, the domain sizes fluctuations in
both the neuronal brain and average PM mixtures were
sensitive to the level of bilayer undulation. Guixa-̀Gonzaĺez et
al. constructed two six component symmetrical brain models
with high and low docosahexaenoic acid (DHA) concentration
to explore DHA role in GPCR oligomerization.501
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Klauda and co-workers created PM models of the soybean
hypocotyl (the stem of the germinating seedling) and root
using the atomistic CHARMM FF; the models are symmetrical
and contain 9 and 10 lipid types, respectively.598 Soybeans
lipid composition differs significantly from eukaryotic mem-
branes, containing different sterols (sitosterol and stigmasterol
instead of cholesterol) as well as a large fraction of di- and
tripolyunsaturated fatty acid tails. Jo et al. made a six-lipid type
symmetric average yeast membrane using CHARMM and
characterized its properties with more tail saturation, less sterol
content, and imposed surface tension.599

3.2.2. Organelle Membranes. The lipid composition
varies widely between organelles,1−3 requiring a large set of
membrane models, which to date is significantly under-
represented. One of the more studied organelles are
mitochondria, the “powerhouse” of the cell, generating most
of the ATP that the cell uses. Cardiolipin (CL) is the signature
lipid of mitochondria. It is anionic, with two phosphate groups
and four acyl tails. Cardiolipin is present at a high
concentration in the inner membrane of mitochondria (up to
20%)616 and is required to stabilize the respiratory chain
supercomplexes.617 Mitochondrial membranes have mostly
been modeled as symmetric binary or ternary mixtures
consisting of PC or PC/PE with cardiolipin. At the CG
Martini level, inner mitochondrial mixtures have been used to
explore cardiolipin protein binding for the respiratory chain
supercomplexes,382,401,618 the rotor of the metazoan ATP
synthases,619 and the adenine nucleotide translocase
(ANT).402 Vaḧaḧeikkila ̈ et al. explored the inner mitochondrial
bilayer properties using the atomistic OPLS FF with different
cardiolipin variants and levels of cardiolipin tail peroxida-
tion.620

Thylakoid compartments are the sites of lipid-dependent
photosynthetic reactions in chloroplasts and cyanobacteria.
The thylakoid membranes are rich in galactolipids, their lipids
have a high fraction of polyunsaturated tails, and many of their
lipids are nonlamellar phase lipids. Van Eerden et al. created
two thylakoid membrane models: a five-lipid type cyanobacte-
rial model and a seven-lipid type plant model, both at the CG
Martini level and atomistic GROMOS level.621 The bilayer
properties of both membrane models were evaluated as well as
the dynamics of two photosynthesis cofactors (plastoquinone
and plastoquionol) inserted in the membranes. Later studies
have used thylakoid membranes to explore the dynamics of the
Photosystem II (PSII) complex, focusing on the protein lipid
interaction and the entry and exit of membrane embedded
cofactors to the protein,622−624 as well the membrane
interaction of the cold-regulated (COR) protein COR15A.625

Ray et al. constructed symmetric four to six component
membrane models for the endoplasmic reticulum (ER), Golgi
apparatus, and mitochondria using the CHARMM FF and
analyzed the distribution of forces within the membranes.626

Su et al. modeled a peroxisomal membrane from the yeast
Pichia pastoris, as a symmetrical five component mixture using
the Martini model, which they used to explore the lipid
association and aggregation of the N-terminal helix of the
peroxisome elongation protein.627 Monje-Galvan and Klauda
modeled the PM, ER, and trans-Golgi Network (TGN)
bilayers of yeast628 and compared their properties with the
previously constructed average yeast membrane model.599 The
models were built using the atomistic CHARMM FF. The
membrane is kept symmetric, with 6−11 different lipid types,
and for each organelle, two models were made with different

levels of tail unsaturation. Simulations of the model
membranes highlight differences in bilayer properties (e.g.,
thickness, area per lipid, compressibility) between the different
organellar membranes.628

3.2.3. Bacterial Membranes. The lipid composition of
different bacteria is quite diverse. Gram-negative bacteria, such
as E. coli and S. aureus, have an inner and outer cell membrane,
separated by a viscous periplasm.629 The outer leaflet of the
outer membrane is mainly composed of lipopolysaccharide
(LPS) lipids. LPS consist of Lipid A, with 4−7 fatty acid tails
attached to a sugar backbone and a polysaccharide forming an
inner and outer core and a variable length O-antigen.630,631

The different constituents of LPS can vary significantly both
within and between bacterial species. A range of different LPS
variants and fragments have been parametrized. For
CHARMM, the CHARMM-GUI web portal now has an LPS
Modeler that as of May 2018 has “15 bacteria species, 37 lipid
A types, 52 core oligosaccharide types, and 304 O-antigen
polysaccharide types”.632

A number of models of the outer bacterial membrane has
been constructed, both at the CG and atomistic level of
resolution.115,132,121,192−194,633−638,631,639−641 Typically, these
models contain 2−5 lipid species and are asymmetric, with the
outer leaflet consisting mostly of different variants of LPS, and
the inner leaflet either DPPE or a mixture of PE, PG, and
sometimes cardiolipin. The models have been used to explore
and characterize different basic properties of the outer bacterial
membrane such as density, packing, average area per lipid,
diffusion, and divalent cation binding. In addition, partitioning
and permeation of molecules into and through the
membrane,194,638,642 the influence and packing of membrane
proteins,635,636,639−641,643−646 and the effects of Lipid A
structural variations from different pathogenic bacterial
species631,647 and within species (S. enterica)648,647 have been
explored.
Other bacterial membranes have also been modeled. Models

for chlamydia’s (C. trachomatis) two main life cycles, the
elementary body and reticular body, have been developed
within the CHARMM FF.649 Both simulated membranes are
symmetrical and contain nine different lipid types, correspond-
ing to the most prevalent lipids of the different life cycles,
including three lipid types with methyl branched tails. Klauda
and co-workers constructed a cytoplasmic E. coli membrane in
the CHARMM atomistic FF. The membrane model is
symmetrical, containing the six most prominent lipid types in
the inner membrane, including a lipid containing a cyclo-
propane ring within the acyl chain tail that they para-
metrized.650 In a later study, they modeled the E. coli inner
membrane at different stages along the growth cycle, showing
significant differences in average area per lipid and rigidity.651

Hwang et al. also used the CHARMM FF to study the effect of
stress on the E. coli cell envelope, modeling both the outer and
inner membrane as well as the cell wall.652 Berglund et al.
explored the interaction of the antimicrobial peptide
polymyxin B1 with both the outer and inner E. coli membranes,
using the GROMOS atomistic FF; their inner membrane
model was a symmetric three component mixture of mostly PE
with some PG and cardiolipin.637 Hsu et al. also modeled both
membranes using the Martini model and simulated them with
various native membrane proteins embedded, including the
outer/inner membrane spanning AcrABZ-TolC complex653

(Figure 10). For a review focusing on simulations of bacterial
membrane channels, see ref 654.
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3.2.4. Skin Models. The outer layer of the skin (stratum
corneum, SC) consists of dead cells (corneocytes). The lipid
“structure” of the stratum corneum is a mixture of long-chain
saturated ceramides, free fatty acids, and cholesterol, in a 1:1:1
ratio.655 Due to their relevance for skin barrier properties,
numerous simulation efforts have studied the properties of
these lipid mixtures. Here, we mention a few of the more
recent studies.
McCabe and co-workers have modeled the SC using

mixtures of ceramides and fatty acids as well as ceramides,
fatty acids, and cholesterol, using both the CHARMM FF with
modified ceramide parameters and the Berger lipid FF as well
as a customized CG FF for lipid self-assembly.656−659 Wang
and Klauda characterized bilayer properties of pure ceramide
bilayers and SC ternary models using the CHARMM FF at
different temperatures and ceramide tail length.660 Höltje et al.
modeled the SC with a combination of fatty acids and
cholesterol using the GROMOS FF.661 Das et al. constructed a
SC model containing 15 ceramide variants as well as a fatty
acid and cholesterol using the atomistic Berger lipid FF and
found a preference for the inverse micellar phase.662 Del Regno
and Notman modeled SC at two different lipid concentrations
and two levels of hydrations using the Berger FF.663 They
suggest a permeation path for small polar molecules through
the SC lamellae that avoids pockets of water between the
bilayers. Wennberg et al. simulated glycosylceramides and
ceramides at varying levels of hydration using the Martini
FF.664 They showed that glycosylceramides can maintain a
cubiclike bilayer structure while the ceramides collapse into a
stacked lamellar structure, which might be an important step
for SC. In two studies, Gupta and Rai explored fullerene C60
permeation through SC bilayers using the Martini FF,665 and
using an atomistic SC model they studied electroporation by
imposing a varying external electric field.666

3.2.5. Complications of Complexity. Membrane models
need to be complex enough for the question at hand, but

additional complexity comes with a prize. Before adopting a
more realistic, more complex model, the price of doing so
should be carefully evaluated. Here we discuss some of the
caveats that need to be considered.
Bilayer models with more lipid species require longer

sampling times, especially if rare lipid species are included.
Proteins can affect their local lipid environment, promoting
lipid sorting and/or bilayer perturbation, see for example, refs
603, 610, and 667, also extending the required sampling time.
The sampling challenge is even bigger when considering more
realistic conditions characterized by a high protein density.
Domanski et al.,498 Goose and Sansom,668 and Javanainen et
al.669 simulated membranes under such crowded conditions,
with formation of extended clusters and networks of proteins
dramatically slowing down the lateral diffusion rates of the
components. Interested readers are pointed to a recent review
on protein crowding.670 In fact, under crowded conditions,
diffusion becomes anomalous498,671 and may lead to deviations
from the Saffman-Delbruck model at physiological levels.672

Although, in the latter case, these claims are not substantiated
as a proper correction of periodicity artifacts on hydro-
dynamics has not been taken into account.149−152

Many biological membranes are asymmetric; therefore, more
physiologically relevant models of those membranes may need
to include asymmetry. To model an asymmetrical membrane,
first, it is necessary to determine the lipid concentrations in
each leaflet. This is not trival as our current knowledge about
lipid asymmetry is incomplete. For specific lipid classes and
membranes, the asymmetry has been determined, see for
example, ref 3, but for most membranes, many lipid classes,
and most individual lipid types, the asymmetry is not well-
determined or not known at all. Second, including asymmetry
in a periodically constrained system, a primary concern is to
determine the relative number of lipids in each leaflet. Several
different criteria have been proposed to determine what a
“correct” balance of outer/inner leaflet lipids should be, such as
matching the average area per lipid (APL) in both leaflets, the
leaflets surface tension, the lateral pressure profile across the
two leaflets, and the lipid’s chemical potential. Generating a
“well-balanced” asymmetric membrane using one of these
criteria can be quite involved. Recent simulation setup
protocols for asymmetrical bilayers include using prior
estimates of idealized APL110−112 biased self-assembly,673 an
iterative building procedure,593,596 or zeroing bilayer leaflet
tension.674 Additional complexity also arises when including
lipids that can flip-flop between the leaflets at time scales
relevant for the simulation at hand. Cholesterol is a good
example of a fast flip-flopping lipid; it has been shown to flip-
flop on the microsecond time scale.675

Realistic bilayers, depending on lipid mixture, protein
content, and cell attachment, can undulate significantly.
Allowing for larger bilayer undulations is computationally
very expensive. The simulation box has to be large both in the
plane of the bilayer (to reduce undulation dampening due to
periodic image constraints) as well as perpendicular to the
plane, increasing simulation cost. Longer simulations are also
needed to capture the longer length scale bilayer undulation
modes and lipids redistribution, as lipids have been shown to
organize in the plane of the bilayer based on curvature.594,602

All analysis of undulating bilayers also becomes more complex
as the curved bilayer surface needs to be fitted and accounted
for.

Figure 10. Example of a complex bacterial membrane model.
Showing the outer and inner E. coli cell membrane with embedded
membrane proteins including the membrane spanning multidrug
efflux pump AcrABZ-TolC. Adapted from ref 653. Copyright 2017
American Chemical Society.
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With increased model complexity, the sampling required
goes up exponentially. Analysis therefore also becomes a
bottleneck, as the amount of generated data mirrors the
sampling and the number of interactions between components
to analyze also goes up with the square of the number of
species in the model. For the more complex models, they fast
become intractable for manual analysis, requiring reduction in
complexity (e.g., combining lipid species into classes),
automated analysis methods, and/or use of unsupervised
machine learning methods for identifying possible hidden
correlations.

3.3. Toward Full Cell Models

With the use of the CG and multiscale approaches described
above, it is possible to perform very large-scale simulations of
cell membranes, at the level of, for example, the envelope of a
complete virus particle.676,677 While appealing as a tour de
force, one should ask what might be learned from such
simulations. A major motivation is to overcome barriers
between simulations and experiments. Thus, vary large scale
simulations may allow us to approach the length and/or time
scales of experimental studies of biological membranes, which
in turn will enable direct comparison between experiments and
simulation, permitting rigorous molecular interpretations of
mesoscopic observations. This is especially important in
linking molecular structures of membranes and their
components through to cell biological investigations using a
variety of imaging modalities, for example, cryoelectron
tomography and super-resolution optical microscopies.
There are spatial and temporal challenges in matching

mesoscale experimental data while not losing molecular
specificity in the underlying models. How we can address
such challenges is illustrated via a number of examples of
increasing scale: (i) viral envelope membranes via very large-
scale CG simulations; (ii) bacterial outer membrane protein
(OMP) clustering by large scale CG simulations enabling
parametrization of simple mesoscale models; and (iii) CG and
meso scale simulations to study processes of remodeling of
eukaryotic cell membranes.
3.3.1. Viral Envelopes. CG-MD has been used to explore

the membranes of a number of enveloped viruses, providing
examples of very large-scale (ca. 5 million particles)
simulations of biological membrane assemblies. A ground-
breaking study of the membrane envelope of the immature
HIV-1 virion678 combined electron cryotomography data and
multiscale simulations to provide insights into the Gag lattice
assembly process in the immature HIV-1 virion. These
simulations employed a multiscale approach in which multiple
CG parameters were explored in critical regions, with the aim
of identifying those interactions that are critical to maintaining
the structure of the virion. Subsequently, the CG simulation
results were used to guide all-atom MD simulations of selected
regions in order to refine the model.
Simulations of a complete virion envelope model for

influenza A combined X-ray structures and TM domain
models for the hemagglutinin (HA) and neuraminidase (NA)
proteins, an NMR structure for the TM domain of the M2
protein, and a lipid bilayer composition based on the
experimentally determined lipidome of the viral membrane.679

The prevalence of glycolipid headgroups on the outer surface
of the influenza A viral membrane suggested that access of
therapeutic compounds to the M2 proton channel may have to
overcome substantial steric barriers. The influenza A envelope

proteins moved slowly within the cholesterol-rich membrane,
with diffusion constants matching previous NMR measure-
ments. Lipid molecules had reduced diffusion coefficients (D)
and exponents (α) less than 1, the latter indicative of
anomalous diffusion. The spacing between membrane
glycoprotein molecules on the influenza A surface suggested
that polyvalent interactions between HA and/or NA on the
viral surface and sialic acid residues on the host cell membrane
are likely to occur. This would enable strong virus-host
association despite relatively weak (∼2−3 mM affinity) viral
HA-single host receptor interactions in vitro.
The membrane envelope of the dengue virus has been

simulated in two recent studies680,681 using the Martini FF.
Reddy and Sansom681 used a combination of CG modeling
and simulation to “add back” the lipid bilayer to the cryo-EM
structure of the Dengue virus envelope proteins. These
simulations revealed that the crowding of protein TM domains
and the enclosure of the outer leaflet of the lipid bilayer within
a protein shell resulted in lipid diffusive properties similar to
those in the “raftlike” influenza A membrane, despite the
absence of cholesterol from the dengue membrane model.
Bond and colleagues680 used a novel protocol to embed the
cryo-EM structure of the envelope protein complexes of the
DENV-2 icosahedral shell within a spherical lipid vesicle, the
composition of which was guided by lipidomics data.
Microsecond-time scale simulations of the virion envelope
enabled refinement of the lipid/protein complex, assessed by
comparing density maps calculated from simulations with
those determined by cryo-EM. The refined structures revealed
locally induced curvature resulting from specific interactions
with phosphatidylserine molecules. These lipids may facilitate
subsequent fusion of the viral envelope with the host
membrane inside the endosome during infection. A subsequent
study,682 based on targeted MD simulations, provided
evidence that the low pH structures obtained with cryo-EM
are biologically meaningful intermediates of the fusion process
with the endosomal membrane.
A hybrid multiscale approach using the SIRAH FF has been

used to study the envelope of zika virus (ZIKV).683 Those
parts of the system of particular interest were modeled using
atomistic and/or CG resolution, while those of less direct
interest used a supra-CG resolution. This hybrid multiscale
approach allows for efficient simulations of large-scale
biological membrane systems to be run on modest computa-
tional resources, thereby making computational virology
accessible to a wider range of researchers. These and other
studies demonstrate the potential of very large-scale simulation
of viral envelopes. Future challenges for such studies include
development of a full CG model of glycosylation of viral
surface proteins, which will enable more realistic and hence
predictive modeling of virions binding to models of target cell
membranes.

3.3.2. Large-Scale Membrane Organization. Large-
scale simulations can be used to probe the structural and
dynamic consequences of protein−lipid and protein−protein
interactions in complex and crowded cellular membranes. For
example, simulations of a mitochondrial inner membrane
model indicate how cardiolipin may “glue” together respiratory
proteins into supercomplexes.618 Analysis of the free energy
landscape of interactions of the bacterial outer membrane
protein (OMP) NanC have also revealed how intervening
lipids may stabilize a membrane protein dimer.511 Such
protein−lipid−protein interaction may underlie functionally
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important larger scale membrane organization. Earlier work in
this area684,685 provided a theoretical framework for our
understanding of the role of lipids in mediating membrane
protein interactions and for extracting appropriate parameters
from large scale MD simulations. Recently, highly coarse-
grained simulations have been used alongside experiments to
explore the interplay of lipids and proteins which underlie
clustering of the influenza M2 protein and its possible role in
mediating viral budding from infected host cells.686

Large-scale CG-MD simulations can in turn enable more
highly coarse-grained (or mesoscopic) simulation approaches
to be developed for modeling of emergent behaviors in these
complex protein−membrane systems (Figure 11). For

example, the spatiotemporal organization of membrane
proteins is often characterized by the formation of large
protein clusters. In the outer membrane of E. coli, protein
clustering leads to OMP islands, the formation of which
underpins membrane protein turnover and drives organization
across the cell envelope. By combining CG simulations with in
vitro and in vivo experimental studies, it has been possible to
suggest how protein−protein interactions enable formation of
large clusters of bacterial OMPs which may play a key role in
the formation of these membrane protein “islands”.687

However, a detailed mechanistic understanding of how OMP
islands form has been confounded by the difficulties of
simulating very large number of OMPs on experimentally
addressable time scales. To address this limitation, Chavent,
Duncan, and colleagues recently developed a mesoscale model
which they trained on large scale CG-MD simulations.688 In
the meso model, each OMP molecule was represented by a
single particle within a 2D membrane model. The meso model
was used to run simulations of ca. 5000 copies of an OMP on
multimillisecond time scales, thus allowing direct comparison
of simulated and in vitro experimental single tracking

measurements of OMPs. These studies revealed that specific
interaction surfaces between OMPs were the key to formation
of OMP clusters and that mesoscale simulations captured the
restricted diffusion characteristics of OMPs. This agrees well
with recent measurement of the glasslike behavior of crowded
membranes.689 The OMP clusters in turn presented a mesh of
moving barriers that confine newly inserted proteins within
membrane islands. Such “corralling” of newly inserted proteins
is likely to be of importance for OMPs newly inserted by the
BAM machinery. Thus, this type of model enables us to
provide a nanoscale molecular mechanism for mesoscale
experimental observations. Future refinements of this approach
could include using large-scale CG-MD simulations of realistic
models of the lipid composition of E. coli outer mem-
branes258,653 in order to allow meso models to explore the
behavior of OMP islands in vivo.
In addition to providing data for parametrization of

mesoscale models, very large-scale simulations can provide
insights into the emergent behavior of complex and crowded
biological membranes which may in the future be included in
more biorealistic mesoscale models of complex in vivo
membranes. This approach builds upon pioneering work in
large scale simulations of crowding of proteins in models of the
cytoplasm.690,691 These emergent properties include large scale
dynamic fluctuations of membranes which may be used to
derived mesoscale mechanical parameters of membranes such
as the bending rigidity.41,109 Application of such analysis to
large-scale CG simulations has revealed a complex dependence
of the membrane-bending rigidity on both protein contents
and lipid composition.692 Inclusion of simple models of
cytoskeletal tethering of integral membrane proteins also
modulates membrane bending rigidity.605 Large-scale CG
simulations may also be used to explore, for example, the
influence of lipid bilayer composition and of specific protein−
lipid interactions on patterns and dynamics of membrane
protein clustering.604 These and other emergent properties
from CG simulations will need to be included in a next
generation of mesoscale models in order to address the picture
emerging from current dynamic experimental measurements
which are suggesting cell membranes to be heterogeneous and
“scale rich”.8

3.3.3. Membrane Remodeling. In addition to the large-
scale dynamic organization of cell membranes “at rest”, large-
scale molecular simulations have been used to explore dynamic
events including, for example, membrane fusion and
remodeling of membranes.693,694 In particular, Voth and
colleagues have taken a multiscale approach288 to explore the
biologically important question of how BAR domain proteins
interact with lipid bilayers to bring about membrane
remodeling.695 Using a supra-CG model, they demonstrated
how multiple copies of N-BAR domain proteins on a
membrane surface form linear aggregates at high protein
densities can lead to formation of budlike deformations of the
membrane.696 Combining CG simulations with microscopy
data was used to develop a model of a BAR-domain scaffold,
emphasizing the key role of amphipathic helices in the
formation of these scaffolds.697 These CG studies have in
turn fed into mesoscale approaches,288,295 allowing membrane
remodeling to be explored on submicron length and
microsecond time scales. Some other reviews covering
mesoscale modeling of curvature generation can be found
elsewhere.267,698

Figure 11. Developing a mesoscale model for simulation of bacterial
outer membrane protein islands. The top panel shows a schematic
diagram of an E. coli cell, with the areas of outer membrane studied via
CG simulation (yellow square), by mesoscale simulation (blue
square), and by experimental single molecule tracking (green circle)
shown to scale. The lower two panels are snapshots from CG (left)
and meso (right) simulations of OMP clustering (see main text and
ref 688 for details).
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3.3.4. In Silico in Vivo. It is clear that large multiscale
simulations of cell membranes can now be used to simulate
complex dynamic events in cell and organelle membranes. By
integrating such computational approaches with a growing
wealth of cryo-EM and optical microscopy data, there is the
prospect for future “in silico in vivo” studies of the cell biology
of membranes, relating underlying structural and biophysical
properties to cellular level events. A number of computational
tools will facilitate simulation studies of increasingly complex
membrane systems, including tools for semiautomated setup of
complex mixed lipid bilayers.258 On a larger scale, for example,
cellPACK699,700 provides mesoscale packing algorithms to
generate and visualize three-dimensional models of complex
biological environments. This has been evaluated on, for
example, models of synaptic vesicles and of an HIV virion.
Future developments are likely to further integrate a range of
tools for setup, running, visualization, and analysis of larger and
more complex membrane and cellular systems,701−704 in
addition to development of databases for storage and
dissemination of the results of membrane simulations (e.g.,
MemProtMD256 and Limonada705).

4. OUTLOOK
Thirty years of computer modeling of cell membranes have
provided a wealth of information on the lateral organization
principles underlying these fascinating quasi two-dimensional
systems. From the detailed dynamics of individual lipid tails,
via collective processes such as pore formation, protein−lipid
sorting, and membrane remodeling, we have now reached a
stage where the full complexity of real cell membranes is being
captured. Referring back to Figure 1, the obvious question is,
what stage comes next?
On the one hand, the quest for more realism has certainly

not ended (Figure 12). Detailed models for cell envelopes of

most cell types, as well as the many internal organelles, are still
very sparse. A key bottleneck is the availability of experimental
data concerning their exact lipid composition. Although
advanced lipidomics can provide a wealth of data in this
respect, it is often not trivial to isolate specific cell fractions.
Moreover, any information on membrane asymmetry is lost,
hampering realistic modeling efforts. A level up in realism can
be achieved by putting cell membrane models into a more
realistic environment. Addition of the cytoskeleton would be
an obvious example but also the interaction of cell membranes

with the crowded environment of the cytoplasm. In fact, not
only the membrane leaflets are asymmetric but also the solvent
facing both sides, including differences in pH, ionic strength,
and electric potential. This has hardly been considered at all in
current simulations studies. A major challenge of increased
complexity is the increase in required sampling time, as
discussed above. Here, there is a need for enhanced sampling
algorithms that can deal with crowded and very heterogeneous
environments. Data analysis becomes another bottleneck.
Whereas waiting for a simulation to complete used to be the
bottleneck until some ten years ago, nowadays producing
terabytes of data occurs overnight. To make sense of this
source of big data, the use of machine learning techniques is
promising, but still at its infancy.
On the other hand, there will be a continuing demand for

simulations of model membranes containing few components
only. Even simple systems can give rise to rich and complex
behavior; many of the simulation studies discussed in this
review are proof of this. In principle, simplified model bilayers
are ideally suited to connect computational and experimental
data. From the experimental side, it would be helpful to have
more systematic data on some of the basic properties, such as
lipid mixing, the effect of membrane curvature, the effect of
leaflet asymmetry, effect of ions and pH, as well as the behavior
of dyes. Related challenges on the computational side are to
provide high throughput data on, for example, multi-
component lipid phase behavior and protein sorting and
clustering, and to more systematically explore the effect of
curvature gradients. Furthermore, efficient constant-pH
algorithms need to be developed. Enforcing the connection
between experiment and simulation will benefit the ongoing
validation of both existing and novel lipid types, and the careful
calibration of protein−lipid interactions. Machine learning
techniques could also be used to improve the parametrization
of FFs; pioneering efforts are already taking place in this
direction.706−710

Considering the progress not only in complexity but also in
system sizes that can be simulated with particle-based models,
it is not too bold to predict that a full cell simulation at near-
atomic resolution is feasible within the next ten years.
Although such a simulation, featuring many billion atoms,
would certainly be very impressive and aid our understanding
of how cells are structured at the molecular level, this is by no
means the final aim. Real cells, in contrast to equilibrated
pieces of cells in a simulation box, are inherently out-of-
equilibrium. Incorporating the constant energy flow into
nonequilibrium simulations is one of the major challenges
for the future.
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Related, Yet Unique: Distinct Homo- and Heterodimerization
Patterns of G Protein Coupled Chemokine Receptors and Their
Fine-Tuning By Cholesterol. PLoS Comput. Biol. 2018, 14, e1006062.
(496) Periole, X.; Zeppelin, T.; Schiøtt, B. Dimer Interface of The
Human Serotonin Transporter and Effect of The Membrane
Composition. Sci. Rep. 2018, 8, 5080.
(497) Schmidt, T. H.; Homsi, Y.; Lang, T. Oligomerization of The
Tetraspanin CD81 Via The Flexibility of Its D-Loop. Biophys. J. 2016,
110, 2463−2474.
(498) Domanski, J.; Marrink, S. J.; Schaf̈er, L. V. Transmembrane
Helices Can Induce Domain Formation in Crowded Model
Membranes. Biochim. Biophys. Acta, Biomembr. 2012, 1818, 984.
(499) Gil, T.; Sabra, M. C.; Ipsen, J. H.; Mouritsen, O. G. Wetting
and Capillary Condensation As Means of Protein Organization in
Membranes. Biophys. J. 1997, 73, 1728−1741.
(500) Ackerman, D. G.; Feigenson, G. W. Effects of Transmembrane
Α-Helix Length and Concentration on Phase Behavior in Four-
Component Lipid Mixtures: a Molecular Dynamics Study. J. Phys.
Chem. B 2016, 120, 4064−4077.
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Hummer, G. Carbon Nanotubes Mediate Fusion of Lipid Vesicles.
ACS Nano 2017, 11, 1273−1280.
(577) Wu, Z.; Cui, Q.; Yethiraj, A. Why Do Arginine and Lysine
Organize Lipids Differently? Insights From Coarse-Grained and
Atomistic Simulations. J. Phys. Chem. B 2013, 117, 12145−12156.
(578) Risselada, H. J.; Marelli, G.; Fuhrmans, M.; Smirnova, Y. G.;
Grubmüller, H.; Marrink, S. J.; Muller, M. Line-Tension Controlled
Mechanism For Influenza Fusion. PLoS One 2012, 7, e38302.
(579) Larsson, P.; Kasson, P. M. Lipid Tail Protrusion in
Simulations Predicts Fusogenic Activity of Influenza Fusion Peptide
Mutants and Conformational Models. PLoS Comput. Biol. 2013, 9,
e1002950.
(580) Moiset, G.; Cirac, A. D.; Stuart, M. C. A.; Marrink, S. J.;
Sengupta, D.; Poolman, B. Dual Action of BPC194: a Membrane
Active Peptide Killing Bacterial Cells. PLoS One 2013, 8, e61541.
(581) Allolio, C.; Magarkar, A.; Jurkiewicz, P.; Baxova,́ K.;
Javanainen, M.; Mason, P. E.; Šachl, R.; Cebecauer, M.; Hof, M.;
Horinek, D.; Heinz, V.; et al. Arginine-Rich Cell-Penetrating Peptides
Induce Membrane Multilamellarity And Subsequently Enter Via
Formation Of A Fusion Pore. Proc. Natl. Acad. Sci. U. S. A. 2018, 115,
11923−11928.
(582) Baoukina, S.; Tieleman, D. P. Direct Simulation of Protein-
Mediated Vesicle Fusion: Lung Surfactant Protein B. Biophys. J. 2010,
99, 2134.
(583) Risselada, H. J.; Kutzner, C.; Grubmüller, H. Caught in The
Act: Visualization of SNARE-Mediated Fusion Events in Molecular
Detail. ChemBioChem 2011, 12, 1049.
(584) Risselada, H. J.; Grubmüller, H. How SNARE Molecules
Mediate Membrane Fusion: Recent Insights From Molecular
Simulations. Curr. Opin. Struct. Biol. 2012, 22, 187−196.
(585) D’Agostino, M.; Risselada, H. J.; Lürick, A.; Ungermann, C.;
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(602) Baoukina, S.; Ingoĺfsson, H. I.; Marrink, S. J.; Tieleman, D. P.
Curvature-Induced Sorting of Lipids in Plasma Membrane Tethers.
Adv. Theory Sim. 2018, 1, 1800034.
(603) Corradi, V.; Mendez-Villuendas, E.; Ingoĺfsson, H. I.; Gu, R.
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S.; Vattulainen, I. How Cardiolipin Peroxidation Alters The
Properties of the Inner Mitochondrial Membrane? Chem. Phys. Lipids
2018, 214, 15.
(621) Van Eerden, F. J.; De Jong, D. H.; De Vries, A. H.; Wassenaar,
T. A.; Marrink, S. J. Characterization of Thylakoid Lipid Membranes
From Cyanobacteria and Higher Plants by Molecular Dynamics
Simulations. Biochim. Biophys. Acta, Biomembr. 2015, 1848, 1319−
1330.
(622) Van Eerden, F. J.; Melo, M. N.; Frederix, P. W. J. M.; Periole,
X.; Marrink, S. J. Exchange Pathways of Plastoquinone and
Plastoquinol in The Photosystem II Complex. Nat. Commun. 2017,
8, 1−8.
(623) Van Eerden, F. J.; Van Den Berg, T.; Frederix, P W.J.M.; De
Jong, D. H.; Periole, X.; Marrink, S. J. Molecular Dynamics of
Photosystem II Embedded in the Thylakoid Membrane. J. Phys.
Chem. B 2017, 121, 3237−3249.
(624) Van Eerden, F. J.; Melo, M. N.; Frederix, P. W. J. M.; Marrink,
S. J. Prediction of Thylakoid Lipid Binding Sites on Photosystem II.
Biophys. J. 2017, 113, 2669−2681.
(625) Navarro-Retamal, C.; Bremer, A.; Ingoĺfsson, H. I.; Alzate-
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