
A Latent Variable Partial Least Squares Path Modeling
Approach to Regional Association and Polygenic Effect
with Applications to a Human Obesity Study
Fuzhong Xue1,2, Shengxu Li3, Jian’an Luan2, Zhongshang Yuan1, Robert N. Luben4, Kay-Tee Khaw5,

Nicholas J. Wareham2, Ruth J. F. Loos2, Jing Hua Zhao2*

1 Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China, 2 MRC Epidemiology Unit and Institute of Metabolic

Science, Cambridge, United Kingdom, 3 Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United

States of America, 4 Strangeways Research Laboratory, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom, 5 Clinical

Gerontology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom

Abstract

Genetic association studies are now routinely used to identify single nucleotide polymorphisms (SNPs) linked with human
diseases or traits through single SNP-single trait tests. Here we introduced partial least squares path modeling (PLSPM) for
association between single or multiple SNPs and a latent trait that can involve single or multiple correlated measurement(s).
Furthermore, the framework naturally provides estimators of polygenic effect by appropriately weighting trait-attributing
alleles. We conducted computer simulations to assess the performance via multiple SNPs and human obesity-related traits
as measured by body mass index (BMI), waist and hip circumferences. Our results showed that the associate statistics had
type I error rates close to nominal level and were powerful for a range of effect and sample sizes. When applied to 12
candidate regions in data (N = 2,417) from the European Prospective Investigation of Cancer (EPIC)-Norfolk study, a region in
FTO was found to have stronger association (rs7204609,rs9939881 at the first intron P = 4.2961027) than single SNP
analysis (all with P.1024) and a latent quantitative phenotype was obtained using a subset sample of EPIC-Norfolk
(N = 12,559). We believe our method is appropriate for assessment of regional association and polygenic effect on a single
or multiple traits.
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Introduction

Current genetic association studies in humans, including

genome-wide association studies (GWASs) [1], typically involve

association of individual SNPs with a trait of interest. Notable

drawbacks [2] of such an approach include multiple testing and

inability to account for the correlation among SNPs in a region or

treat genes as a functional unit [3]. Many attempts were made to

account for correlations among SNPs, such as haplotype analysis

[4], p-value or odds ratio combination [5–7], principal component

analysis (PCA) [8], cluster [9], canonical correlation [10], data

mining [11–14], and scan (or slide-windows) statistics [14–16].

Regardless the extent to which these approaches have succeeded,

they are not developed for integrating multiple related traits

underlying a condition or disease. For instance, type II diabetes is

linked with fasting glucose, HbA1C, and glucose tolerance, among

others; and obesity is another with body mass index (BMI), waist

and hip circumference. Ideally, liabilities for developing diseases

should be measured on quantitative dimensions [17] with available

measurements [17,18], so as to gain more statistical power and

facilitate derivation of clinically relevant features [17,19]. The case

to combine multiple variants and multiple measurements is

compelling and in line with the fact that an increasing number of

trait-associated SNPs are identified with the challenge to implement

an appropriate weighting scheme for the trait-attributing alleles.

We set to exploit association between multiple SNPs and

multiple traits through a latent variable partial least squares path

modeling (PLSPM) [20,21] in a context analogous to GWAS: for

the discovery sample a set of genetic variants and a latent

quantitative trait are modeled through scan statistics and for the

replication sample small effects of SNPs from different genes (or

genomic regions) are aggregated through polygenic statistics. We

examined the performance of the scan statistics with respect to

type I error rate and statistical power through computer

simulations. Our methods were then applied to 12 regions of

GWAS data [22,23] from the European Prospective Investigation

of Cancer (EPIC)-Norfolk study.

Methods

Study samples
Participants in the EPIC-Norfolk study were men and women

aged between 45 and 74 from Norwich and the surrounding towns
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and rural areas [24,25]. In 2006, a case-cohort study was

conducted in which 3,867 individuals were assayed with

Affymetrix 500 K genechips among whom subcohort (N = 2,566)

was a random sample of the study cohort at baseline and cases

were part of the remaining individuals with BMI$30 kg/m2

(N = 1,301). A total of 2,417 individuals in the subcohort and 1,135

cases with 446,861 SNPs passed quality control and in silico

genotypes were obtained according to HapMap (http://www.

hapmap.org) [22,23]. An additional sample of 12,559 individuals

had complete data on age, sex, BMI, waist and hip circumferences

along with 12 BMI associated SNPs in or near genes NEGR1

(rs3101336), SEC16B (rs10913469), TMEM18 (rs6548238), ETV15

(rs7647305), GNPDA2 (rs10938397), BDNF (rs925646), MTCH2

(rs10838738), SH2B1 (rs7498665), FAIM2 (rs7132908), FTO

(rs1121980), MC4R (rs17782313), and KCTD15 (rs369784).

Anthropometric measurements
The influence of body fat distribution has been linked with body

shape named crudely after the fruits and vegetable(s) they resemble

most [26,27]. Studies have shown that people with a larger waist

have higher risks of hypertension, type 2 diabetes and high

cholesterol than those who carry excess weight on the hips [28,29].

The combination of BMI, waist and hip circumferences is also a

good predictor of cardiovascular risk and mortality [26,29–32]. In

this paper, nine types of body shape have been derived from the

combination (Table S1) and supported by significant differences in

these anthropometric traits by types and sexes. As will soon

become clear, adoption of this combination as an approximate

quantification of ‘‘body shape’’ is furnished through a latent score

from formal statistical modelling. Note that the derivation differs

from other possible definitions, e.g., http://en.wikipedia.org/

wiki/Body_shape.

The modeling framework
As hinted earlier, our framework resembles structural equation

modeling (SEM) with three types of parameters defined: (1) Latent

variable scores (j) as combinations of their manifest variables

obtained iteratively from an ordinary least squares (OLS)-type

algorithm; (2) path coefficients (b’s) between dependent (j2) and

independent latent variable (j1) by OLS or partial least squares

(PLS); (3) loadings (l’s) of each block of manifest variables with its

latent variables by OLS. In this paper, the Lohmäller PLSPM

algorithm was used [24,26]. The relations between these

parameters are shown in Figure 1 and used in two contexts: (1a)

scan statistics are used for the detection of the genomic region (j1)

– body shape (j2) association in initial data analysis; (1b) the

polygenic effect of a set of SNPs (j1) on body shape (j2) is obtained

with the replication sample. More information about SEM and

PLSPM is available as Information S1.

Non-parametric bootstrap
As the distribution of parameters from PLS is unknown,

significant test of path coefficients and loadings were furnished by

Figure 1. PLSPM-based models. (a) Scan statistic model, where j1 represents genomic region containing P SNPs and b21 the regional effect on the
body shape score j1; (b) Polygenic effect model, where j’1 represents polygenic risk score and b’21 the polygenic effect. In both models, l’s are the
loadings while b’s are the path coefficients.
doi:10.1371/journal.pone.0031927.g001
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bootstrap procedures [20,33,34]. A large, pre-specified number of

bootstrap samples (5,000), each with the same number of cases as

the original sample, were generated. Parameter estimation was

done for each bootstrap sample, whose path coefficients or

loadings can be viewed as an approximation of the sampling

distribution. All bootstrap samples together provided estimators

for mean and standard error of each parameter. Significance of a

parameter (w) under the null hypothesis: H0:w~0 and the

alternative HA:w=0 was tested via a normal test in the form

U~
w{0j j
se(w)

(e.g., U~
b21{0j j
se(b21)

) where se(w) is the bootstrapped

standard error [20,21].

Interpretation
Let bij = the path coefficient between the i-th and the j-th latent

variable and lij = loading between the i-th manifest variable and the

j-th latent variable. The interpretation can then be facilitated

according to Figure 1: (1) path coefficient (b21) in the structure

(inner) model represents an overall effect of the genome region or

polygenic effect of a SNPs set (j1) on body shape (j2); (2) R2 is the

proportion of variance explained; (3) With path coefficients and

loading obtained from the standardized variables, their product in a

given path is a measure of the effect of a specific SNP on a single

trait or body shape (j2). For example, the effect of SNP2 on body

shape (j2) is l21
:b21, and that on BMI is l21

:b21
:l32; (4) Body shape

score (BSS), as a combination of waist, hip and BMI with weights

l12, l22, and l32, represents a latent quantitative phenotype of body

shape such that waiŝtt~wais�ttzl12swaist
:j2, hip̂p~hi�ppzl22ship

:j2,

BMÎI~BM�IIzl32sBMI
:j2 with the body type determined by

(BM�IIzl32sBMI ) and (WHR̂R~(wais�ttzl12swaist)=(hi�ppzl22ship)
according to their thresholds (Table S1), and (5) the latent polygenic

liability (j1) aggregated by small effects of DNA variants in different

genome regions with their weights l11, l21, …, lp1 is the polygenic

risk score (PRS) of the SNP set (Figure 1b).

Simulation
Simulations were conducted as follows: (1) HapMap phase II CEU

data at the brain-derived neurotrophic factor (BDNF) region (Chr

11:27633610..27692970 with 24 SNPs) were used to generate the

simulated genotypic data; (2) Based on (1), a large sample of 500,000

individuals was obtained via software gs 2.0 [35] with the 6th SNP

being the causal variant; (3) Quantitative genetic data was generated

according to a trivariate normal distribution X~N(m,S), where

X~ x1,x2,x3ð Þ is the random vector (waist, hip, BMI) for ‘‘apple-

shaped’’ types (N = 355) in EPIC-Norfolk GWAS subcohort with

their sample mean X~(105:2746, 106:0051, 29:2172) and covari-

ance S~

52:1991 36:8688 16:9545
36:8688 37:1419 13:7969

16:9545 13:7969 8:3859

0
@

1
A

. Assume that the causal

SNP had no effect on body shape (H0), m~

(105:2746, 106:0051, 29:2172) for all three genotypes (GG, GA,

and AA) and that the causal SNP effects on waist not on hip, and the

single allele effect size on BMI is d kg/m2 (H1), m~

(105:2746, 106:0051, 29:2172zid), where i = 0,1,2 for GG, GA

and AA, respectively. The range of d~ (0.10, 0.15, 0.20, 0.25, 0.30)

was estimated by published data on genetic predisposition score [18].

Given the increment d on BMI, estimation of waist under fixed hip

was obtained by waiŝtt~10:20345z0:62138:hipz0:99947:BMI

(F~568:25, Pv0:0001, R2~0:7635) established by the same

‘‘apple-shaped’’ data in the EPIC-Norfolk GWAS; (4) Genotypic

data were simulated under various sample sizes from the simulated

CEU population (500,000 individuals), and quantitative genetics

models with the given d were created by the R mvtnorm package.

The window size had 10 SNPs from the 3th to the 12th SNP. Under

H0, 10,000 simulations given various sample sizes were conducted to

assess the type I error. Under H1, for each model and a given d,

10,000 simulations were conducted under various sample sizes to

assess power. The procedures were implemented with Linux and the

R plspm package. Both mvtnorm and plspm packages are

available from CRAN. (http://cran.r-project.org/)

Analysis of the EPIC-Norfolk data
Scan statistics were built through the subcohort for association

between the 12 regions and body shape, and to contrast with a

SNP-wise single trait test performed by linear regressions

(waist~b0zb1SNPizei, hip~b0zb1SNPizei, BMI~b0z
b1SNPizei) according to sizes of sliding windows of 1 to 15 SNPs,

and the a-level was defined as 1|10{5 according to the literature [4]

for region-based analysis. Polygenic effects on single or latent traits

with the PLSPM polygenic statistics were obtained and compared

with unweighted sum of BMI-increasing alleles [18] and we also

assessed whether j2 is an appropriate latent quantitative measure-

ment.

Results

Simulation
As shown in Figure 2, the type I error rates of the scan statistics

were close to nominal levels (0.01, 0.05) as a function of sample

sizes (2a, 2b). Power monotonically increases with sample size,

effect size (d), or nominal level (a) (2c–2f). Even with a very small a,

for effect size greater than 0.15 and the sample size of up to 4,500,

the scan statistics remained to have .80% power (2e, 2f).

Analysis of the EPIC Norfolk data
Single trait results. The model provided the usual

association results for single trait adjusted for sex and age

including effect size estimate, proportion of variance explained

and statistical significance. Results on BMI, waist and hip

circumferences were also similar for PRS. Shown in Figure S1

and Table S2 are SEM and results of the 12 SNPs in the 12 gene

regions adjusted for sex and age for single trait (a1,b1,c1) as with

distribution of their PRS and cumulative effects of these variants

(a2,b2 c2). More details can be found in Information S2.

Multi-trait results. As shown in Figure 3, none of the SNPs

were significant at 1024 level according to single-SNP –single-trait

tests nor according to sliding window sizes of 1–4 SNPs at the 1025

level, but smaller p values were obtained for window sizes of 5–11

and 12–15 SNPs. Of particular interest was rs720-

4609,rs9939881 at the first intron of FTO with b21~{0:091,

P = 4.2961027 for a sliding window of size 10; its model structure

is shown in Figure 4. The standardized overall effect (95% CI) of

the genome region on body shape was 20.100 (2014- 20.08)

without adjustment for sex and age, and 20.09 (20.13- 20.07)

with adjustment. The effect (95%CI) of a specific SNP on body

shape or on a single trait are available 20.09 (20.08- 20.08) and

0.07 (20.06- 20.05) after adjusting for sex and age, respectively

for rs58044769. These results suggest that the location of the

causal variant in the 10-SNP loading vector is likely between the

rs58044769 and rs11642841 (the sixth SNP).

Figure 5a and Table 1 show models and results of the 12 SNPs

in the 12 gene regions adjusted for sex and age, where the

standardized effect (lSNP?b21) (95%CI) per allele on body shape

was 0.08 (0.07–0.10, P = 7.91610224). The proportion of variance

explained was 0.8% by PRS. All genetic variants showed

associations with body shape, though some loadings of the SNPs

were not significant at a = 0.05 (Table 1). There were substantial
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variations in standardized effects of each SNP with the largest

being rs1121980 (FTO) and rs925646 (BDNF) for all the four traits,

followed by rs6538238 (TMEM18), rs17782313 (MC4R) for BMI

and hip; rs17782313 (MC4R), rs7132908 (FAIM2) for waist and

body shape. Non-standardized effect sizes were largest with

rs1121980 (FTO) (0.39), but smallest with rs7647305 (ETV5)

(0.05) (see also Figures 5 and S1).

Shown in Figure 5b is the distribution of PRS and cumulative

effects of these variants, from which we made the following

observations: (1) PRS was normally distributed, with ranges of

0.05–1.69 for body shape, with the majority (68.27%) of

individuals ( �XX+S) also showing similar patterns of PRS

(0.8660.21); (2) for each level of PRS the distribution of body

shape had similar pattern according to boxplots, generally

normally distributed with range 0.4–1.3 for PRS but skewed with

,0.4 or .1.3; (3) The means of body shape score increased

linearly with PRS, with on average each additional unit associated

with increments (P) of 2.28 (7.91610224).

Shown in Table 2 and Figure 6 are the distribution of body shape

types and characteristics of body shape score in the EPIC-Norfolk

replication samples, from which several observations can be made.

(1) types (men%, women%) were predominantly 1 (29.30%,

33.87%), 4 (31.58%, 19.35%) and 5 (16.55%, 11.61%). There

was significant sex difference of overall body shape types

(x2 = 1556.8, P,.0001), especially in types 4, 5, 6, 9, 2, 3; (2) for

both men and women, along with the risk of obesity, body shape

score was seen to be monotonically increasing from types 1 to 9

(Table 2 and Figures 6c, 6d), with significant differences between

given two types (F = 1994.80, P,0.0001 for men, F = 2468.78,

P,0.0001 for women, both with p,0.05 according to SNK test).

Figure 2. Simulation results of type I error and power for scan statistic model.
doi:10.1371/journal.pone.0031927.g002
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Linear regression between the scores and types had good fit for men

(F = 15214.2, P,0.0001, R2 = 0.71) and women (F = 17574.2,

P,0.0001, R2 = 0.74) (Figures 6c, 6d), suggesting body shape score

is an excellent measure; (3) BSS follows an approximate normal

distribution (see Figure S2); (4) The estimated BMIs and waist-hip

ratios (WHRs) were 29.52 and 0.97 for men, 30.25 and 0.83 for

women, respectively. Polygenic effects of the 12 SNPs contributed to

type 5 on the basis of the nine (Table S1) in both men and women.

Discussion

A latent variable PLSPM framework is outlined for association

of multiple SNPs with multiple traits, the behavior of such an

association was investigated by simulation study through type I

error rate and power. Meanwhile, a polygenic statistic was

developed for quantification of a polygenic effect by appropriately

weighting trait-attributing alleles. These methods were applied to

the study of obesity-related variables in the EPIC-Norfolk study for

which a latent score was obtained. Below we compare these with

available methods, discuss implications of our findings as with

other issues involved and indicate some further work.

Compared to SEM, PLSPM is robust to multicollinearity

commonly encountered in GWAS data (such as strong linkage

disequilibrium between SNPs and high correlation between traits). It

is a ‘‘soft modelling’’ approach requiring very few distributional

assumptions, variables can be numerical, ordinal or nominal, and no

need for normality assumptions, while covariance-based SEM is a

‘‘hard modeling’’ with heavy distributional assumptions [20,21].

Through simulation, the scan statistics gave a good approximation of

the type I error rate and proved powerful for novel region-based

latent quantitative traits analysis, even with very high significant level

and a modest single SNP effect size. Our result also agreed with the

Figure 3. Manhattan plot for single and multiple traits in the 12 gene regions.
doi:10.1371/journal.pone.0031927.g003
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Figure 4. Fitted models for the specific region within the first intron 1 of FTO gene without (a) and with (b) adjustment for
covariates.
doi:10.1371/journal.pone.0031927.g004

Figure 5. Fitted model for the 12 SNPs from the 12 gene regions with adjustment for sex and age for multiple traits (a) as with
distribution of its PRS and cumulative effects of these variants (b).
doi:10.1371/journal.pone.0031927.g005
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literature regarding the optimality of a 10-SNP window [4]. Our

scan statistics are embedded with the ‘‘thinking quantitatively

framework’’ [17] such that there is a theoretical quantitative trait for

each qualitative trait and normally distributed polygenic liabilities.

Their advantages are as follows: First, it can capture the association

between a genomic region and a latent quantitative phenotype of

disorder (or trait) all in continuous quantitative dimensions. Second,

the model structure provides abundant information for interpreta-

tion. Third, fine region of the causal SNP can be located by the

loading vector of SNPs in the window (the potential causal variant is

probably located between rs58044769 and rs11642841). The latent

score of obesity-related variables is a synthetic quantitative

phenotype which effectively combines waist, hip and BMI to reflect

the risk of obesity in accordance with increasing WHR given

increasing BMI. Its derivation is a motivating example for many

other disorders and traits, such as diabetes, heart disease and

metabolic syndrome.

Analysis of the EPIC-Norfolk discovery sample involving 12 gene

regions suggested that the scan statistics are more powerful than

single SNP – single trait tests with the size 10 providing the strongest

evidence. In particular, the region (rs7204609,rs9939811) within

the first intron 1 of FTO gene is of interest, as with some of the

reported obesity-susceptibility SNPs near or in the 12 genes [18]. We

would like to highlight the utility of PRS. It refers to a set of DNA

variants in different genome regions associated with a trait, termed

previously as polygenic susceptibility score [36], genomic profiles

[37], SNP set [38], aggregate risk scores [39] or genetic

predisposition score [18]. Their apparent drawback is the lack of

an appropriate scheme for weighting. PRS not only weights the

individual risk alleles by the loading vector of the SNP set but also

Table 1. Loadings, p values, indirect and overall effects of 12 SNPs, PRS on body shape with adjustment for sex and age.

SNP/PRS or measurements Gene Body shape (b21 = 0.0816, P = 7.91610224)

Loading (l) P value Indirect effect (l?b21) Overall effect

rs3101336 NEGR1 0.1939 0.0635 0.0158 0.1362

rs10913469 SEC16B 0.2386 0.0198 0.0195 0.2033

rs6548238 TMEM18 0.2097 0.0406 0.0171 0.1892

rs7647305 ETV5 0.0622 0.5452 0.0051 0.0515

rs10938397 GNPDA2 0.2217 0.0309 0.0181 0.1513

rs925946 BDNF 0.4080 1.07E-05 0.0333 0.3004

rs10838738 MTCH2 0.0987 0.3221 0.0081 0.0699

rs7132908 FAIM2 0.3305 0.0017 0.0270 0.2302

rs7498665 SH2B1 0.1684 0.1084 0.0137 0.1168

rs1121980 FTO 0.5714 1.08E-10 0.0466 0.3908

rs17782313 MC4R 0.3466 0.0005 0.0283 0.2788

rs368794 KCTD15 0.2117 0.0352 0.0173 0.1538

PRS 7.91E-24 0.0816 2.2798

waist 0.9817 0.00E+00

Hip 0.7525 0.00E+00

BMI 0.8443 0.00E+00

doi:10.1371/journal.pone.0031927.t001

Table 2. Distribution of body shape types and characteristics of body shape score (BSS) by sex in the EPIC-Norfolk study.

Body shape types Symbol Men (F = 1916.50, P,0.0001) Women (F = 2457.32, P,0.0001)

n % Mean ± SD 95% CI n % Mean ± SD 95% CI

Chilli A (1) 1825 29.30 55.2562.57 (55.13,55.37) 2144 33.87 51.5762.69 (51.47,51.68)

Chilli pear-apple B (2) 196 3.15 57.1362.11 (56.83,57.43) 455 7.19 53.1762.58 (52.93,53.41)

Chilli apple C (3) 46 0.74 57.4562.21 (56.82,58.08) 209 3.30 54.3362.51 (53.99,54.67)

Pear D (4) 1967 31.58 60.3162.31 (60.21,60.41) 1225 19.35 57.6962.56 (57.55,57.83)

Pear-apple E (5) 1037 16.65 61.8762.31 (61.73,62.01) 735 11.61 58.8862.51 (58.70,59.06)

Apple F (6) 348 5.59 62.6062.66 (62.32,62.88) 552 8.72 60.1662.67 (59.94,60.38)

Big pear G (7) 210 3.37 67.4163.94 (66.87,67.94) 288 4.55 66.4665.37 (65.84,67.08)

Big pear-apple H (8) 334 5.36 68.4363.65 (68.04,68.82) 325 5.13 67.6765.13 (67.11,68.23)

Big apple I (9) 266 4.27 69.5064.19 (69.00,70.00) 397 6.27 69.3165.50 (68.77,69.85)

Total 6229 100.00 60.1664.94 (60.04,60.28) 6330 100.00 57.1766.51 (57.01,57.33)

doi:10.1371/journal.pone.0031927.t002
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furnishes association analysis between PRS and a latent quantitative

phenotype (BSS). Our data showed that PRS was normally

distributed, which is consistent with the notion that a theoretical

quantitative trait correspond to normally distributed polygenic

liabilities (see Figure 5b, Figure S1-(a2,b2,c2)) [17]. Unlike the

unweighted estimator, it is also coherent and accurate. For instance,

total effects of PRS or a specific SNP on the single trait (BMI, waist

or hip circumferences) and on the latent quantitative phenotype

(body shape) can be compared by the standardized path coefficient

or the product of loading and path coefficients along the path,

respectively. The non-standardized path coefficient or the product of

loading and path coefficients, total effects of a specific SNP on a

single trait and on the latent quantitative phenotype can also be

obtained. The mean BMI, waist circumference, hip circumference

and body shape score increased in a linear fashion as the PRS

increases. The effect of PRS on body shape type can be derived.

A reviewer has indicated previous work on multiple linked

quantitative trait loci (QTLs) [40,41] that bear some spirit to our

use of multiple SNPs. Together with the academic editor they have

expressed concerns over the possible impact of population

stratification. Fortunately, with availability of genomic data such

a concern can be relieved with multiple markers directly [42] or

via summary statistics from principal components analysis [43].

The EPIC-Norfolk GWAS has contributed to a variety of

consortia, for which the inflation factor derived from per SNP

association statistics is always close to one. This is likely to be the

result of both homogenous sample and exclusion of outliers at the

quality control stage. We believe the analysis as conducted in this

Figure 6. SEM of body shape score in the EPIC-Norfolk replication samples (a,b), the linear regression between BSS and body shape
types (c,d).
doi:10.1371/journal.pone.0031927.g006
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report will not be affected. However, in general, it may be

necessary to include summary statistics such as principal

components as covariates in the model.

A reviewer has questioned the adequacy of body shape as with

PLS with a view that body share should be supported by various

other measurements such as limb lengths, shoulder widths, etc.

However, our interest lies more in utilizing the anthropometric traits

from a population study for investigation of health risks. Indeed our

results showed that BSS is approximately normal (Figure S2) and

serves as an excellent measurement of body shape types (Figures 6c,

6d). The use of latent trait is also consistent with Fisher’s derivation

of polygenic effect [17]. At the time the paper was submitted for

publication, a form of PLS has appeared for multiple markers [44].

There will be several lines of further research. Firstly, there is an

important need to examine the precise nature of regional or

polygenic effect on a single trait or a collection of traits, as it may

involve both polygenic and pleiotropic effects. This is also the case

with GWAS. Long before this work when we reported work using

SEM to differentiate pleiotropic effect on obesity-related traits in a

GIANT consortium (http://www.broadinstitute.org/collaboration/

giant/index.php/Main_Page) teleconference, a colleague instantly

questioned the feasibility across the whole consortium. Secondly, the

scan statistics seemed slightly anticonservative and a parametric

counterpart is preferable. Thirdly, it will be desirable to catch both

linear and nonlinear effects between genome region and latent

quantitative trait.

Supporting Information

Figure S1 SEM of the 12 SNPs in the 12 gene regions adjusted

for sex and age for single trait (a1,b1,c1) as with distribution of

their PRS and cumulative effects of these variants (a2,b2 c2).

(TIF)

Figure S2 The distribution of body shape score (BSS).

(TIF)

Table S1 Nine types of human body shape defined by BMI

combination with WHR.

(DOC)

Table S2 Loadings, P values, indirect and overall effects of 12

SNPs and PRS on BMI, waist and hip with adjustment for sex and

age.

(DOC)

Information S1 Some theoretical results.

(DOC)

Information S2 Single trait results from the EPIC-Norfolk

replication sample.

(DOC)
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