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Connectome mapping using techniques such as functional magnetic resonance imaging (fMRI) has become a
focus of systems neuroscience. There remain many statistical challenges in analysis of functional connectivity
and network architecture from BOLD fMRI multivariate time series. One key statistic for any time series is its
(effective) degrees of freedom, df, whichwill generally be less than the number of timepoints (or nominaldegrees
of freedom, N). If we know the df, then probabilistic inference on other fMRI statistics, such as the correlation
between two voxel or regional time series, is feasible. However, we currently lack good estimators of df in
fMRI time series, especially after the degrees of freedom of the “raw” data have been modified substantially by
denoising algorithms for head movement. Here, we used a wavelet-based method both to denoise fMRI data
and to estimate the (effective) df of the denoised process. We show that seed voxel correlations corrected for lo-
cally variable df could be tested for false positive connectivity with better control over Type I error and greater
specificity of anatomical mapping than probabilistic connectivity maps using the nominal degrees of freedom.
We also show that wavelet despiked statistics can be used to estimate all pairwise correlations between a set
of regional nodes, assign a P value to each edge, and then iteratively add edges to the graph in order of increasing
P. These probabilistically thresholded graphs are likely more robust to regional variation in head movement
effects than comparable graphs constructed by thresholding correlations. Finally, we show that time-
windowed estimates of df can be used for probabilistic connectivity testing or dynamic network analysis so
that apparent changes in the functional connectome are appropriately corrected for the effects of transient
noise bursts. Wavelet despiking is both an algorithm for fMRI time series denoising and an estimator of the
(effective) df of denoised fMRI time series. Accurate estimation of df offers many potential advantages for proba-
bilistically thresholding functional connectivity and network statistics tested in the context of spatially variant
and non-stationary noise. Code forwavelet despiking, seed correlational testing and probabilistic graph construc-
tion is freely available to download as part of the BrainWavelet Toolbox at www.brainwavelet.org.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Connectome mapping has become a major focus of neuroscience
research in the last few years. Functional mapping techniques, such as
functional MRI (fMRI), are among themost commonly used tools for in-
vestigating the network architecture of the brain. Yet we are currently
somewhat limited in our ability to use probabilistic reasoning to test es-
timates of functional connectivity – such as the correlation between two
fMRI times series – against an appropriate null hypothesis with good
control over Type I error rates. One obvious reason why probabilistic
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inference is difficult in the context of fMRI connectivity and network
analysis is that the “raw” multivariate time series data have a complex
distribution that is spatially anisotropic or heterogeneous. A functional
MRI time series is not “white”, meaning that the time points are inde-
pendent of each other, it is “colored”, meaning that low frequencies or
positive autocorrelations exist and the time points are not independent
of each other (Weisskoff et al., 1993; Friston et al., 1994, 1995; Boynton
et al., 1996; Bullmore et al., 1996; Zarahn et al., 1997). A corollary of the
non-white nature of fMRI time series is that the effective degrees of
freedom (df) will generally be less than the nominal degrees of freedom
or simply the number of time points in the series, N.

It is now beyond doubt that a large proportion of the variance and
covariance of a resting state fMRI run is not generated by blood oxygen-
ation level dependent (BOLD) mechanisms, and does not reliably
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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represent neurovascular activity. All raw data must therefore be exten-
sively pre-processed to eliminate, as far as possible, non-specific sources
of variance such as respiration and headmovement. In particular, recent
developments in pre-processing have focused on methods to achieve
control over the pernicious effects on connectivity estimators of even
a few brief bursts of low amplitude head movement (so-called micro-
movements ~0.1 mm). The denoising pipelines for resting-state fMRI
that have evolved over the last 5 years have been progressive in recog-
nizing and controlling the effects of micro-movements. But all of these
denoising methods necessarily imply some loss of the degrees of
freedom in the time series. For example, if the “raw” time series had
N = 100 nominal degrees of freedom and this was reduced to N = 68
by “scrubbing” or censoring of micro-movement-contaminated time
points, then the (effective) df of the denoised time series is not immedi-
ately known but it is expected to be less than 68.

It is potentially important to know the df of a time series because if
we know df, then we can do parametric inference on other simple
time series statistics. For example, we can test the null hypothesis that
the correlation coefficient r between two voxels is zero by a transforma-
tion of r to a standard Normal Z score that involves df as a factor. If we
don't know df, we can't use Fisher's r-to-Z transform for valid inference
on correlations between fMRI time series. Absent a better estimate of df,
we might assume that df = N: but then hypothesis testing based on
simple parametric statistics like the Fisher r-to-Z transform will be
biased and there will be (many) more false positive tests than would
be expected given the probability of Type I error, e.g. P = 0.05, and
the number of tests conducted, or search volume.

A good general strategy for estimating df is to somehow whiten or
decorrelate the pre-processed fMRI time series. In a previous paper
(Patel et al., 2014), we described a new wavelet-based method for
denoising motion artifacts from resting-state fMRI time series, which
we called “wavelet despiking”. This data-driven method characterizes
motion artifacts as large non-stationary events across multiple frequen-
cies, using the prior assumption that the underlying signal of interest is
more stationary than the artifacts, and removes them in an unsuper-
vised and spatially adaptive way. Here we demonstrate that this same
algorithm can be used to estimate the df of the time series at each
voxel, generating df maps for individual subjects, based on the level of
denoising required at each voxel. For each subject, the algorithm takes
into account the number of df that were lost at each voxel in order to
remove the large non-stationary events, and generates an estimate of
the df at each voxel, for each wavelet scale (frequency band). We dem-
onstrate that use of these spatially-variable df maps provides effective
Type I error control for single-subject seed connectivity analysis, thus
validating this approach for single-subject statistical inference. In
addition, we generalize this method to graph theoretic analysis, and in-
troduce a newmethod for generating and building graphs by assigning
P values to edges, still keeping the traditional method of weighting
edges by correlation (or another measure of functional connectivity),
but building the graphs based on the probabilistic properties of each
edge. Applying wavelet despiking to fMRI data thus has two distinct
advantages over other approaches: first, it provides effective motion
artifact removal (Patel et al., 2014), and secondly, it enables robust esti-
mation of the voxel-wise df remaining after removal of such artifacts,
thus enabling robust single-subject statistical inference.

We accompany this article with a new release of the BrainWavelet
Toolbox to include tools for generating single-subject df and statistical
maps for seed-based and graph theoretic analysis, which is freely avail-
able to download from www.brainwavelet.org.

2. Materials and methods

2.1. Subjects and fMRI data acquisition

To illustrate our newmethods for statistical inference, we used 3 co-
horts. Cohort 1 is a previously published cohort of 22 children (Power
et al., 2012) with an average age of 8.5 years. All subjects gave assent
with parental consent as approved by the Washington University
Human Studies Committee. The data were obtained from Washington
University at St. Louis and the surrounding areas. Scans were acquired
on a Siemens MAGNETOM Tim Trio 3.0 T scanner. Each dataset com-
prises a T1-weighted MPRAGE structural image (TE = 3.06 ms, TR
partition= 2.4 s, TI= 1000ms, flip angle= 8°)with a voxel resolution
of 1.0 × 1.0 × 1.0 mm, and a BOLD functional image, acquired using a
whole-brain gradient echo echo-planar (EPI) sequencewith interleaved
slice acquisition (TR = 2.2–2.5 s, TE = 27 ms, flip angle = 90°), and
with voxel dimensions of 4.0 × 4.0 × 4.0 mm. This cohort contains
many subjects with high spatial variability in artifacts, caused by head
movement, and was thus used for analyses in Figs. 1, 2, 3 and 5.

Cohorts 2 and 3 (Lynall et al., 2010) are a group of 13 normal
adults (average age 33.3 years) and a group of 11 people diagnosed
with schizophrenia (average age 32.8 years) as defined by DSM IV
(American Psychiatric Association, 2000). All subjects provided written
informed consent as approved by the Addenbrooke's NHS Trust Local
Research Ethics Committee. The data were collected on a General Elec-
tric Signa 1.5 T scanner at the BUPA Lea Hospital (Cambridge, UK). Each
dataset comprises a T1-weighted MPRAGE structural image with a
voxel resolution of 1.0 × 1.0 × 1.0 mm, and a run of 512 gradient-echo
T2⁎-weighted echo-planar BOLD functional images (TR = 2 s, TE =
40 s, flip angle = 70°). The functional images have voxel dimensions
of 3.05 × 3.05 × 7.00 mm. Subjects from cohort 2 and 3 were used to
demonstrate the methods presented in Figs. 6 and 7. These cohorts
comprise runs of a more typical length, the number of scans is consis-
tent across subjects, andmany subjects in cohort 3 contain high tempo-
ral variability in the presence of artifact and were thus used to
demonstrate the sliding-window methodology in Fig. 7.

2.2. Functional image pre-processing

Functional and structural images were processed as in our previous
paper (Patel et al., 2014), using AFNI (Cox, 1996) and FSL (Smith et al.,
2004) software, and the BrainWavelet Toolbox for denoisingmotion ar-
tifacts (www.brainwavelet.org, Patel et al. (2014)). Pre-processing was
divided into two main modules: Core Image Processing, and Denoising.

Core Image Processing included the following steps: (i) slice ac-
quisition correction; (ii) rigid-body head movement correction to
the first frame of data; (iii) obliquity transform to the structural
image; (iv) affine co-registration to the skull-stripped structural
image using a gray matter mask; (v) standard space transform to the
MNI152 template in MNI space; (v) spatial smoothing (6 mm full
width at half maximum); (vi) a within-run intensity normalization to
a whole-brain median of 1000. All spatial transforms were applied in
one step to avoid incremental blurring of the data that can occur from
multiple independent transforms.

Denoising steps included: (vii) wavelet despiking (performed voxel-
wise with the BrainWavelet Toolbox); (viii) confound signal regression
including the 6 motion parameters estimated in (ii), their first order
temporal derivatives, and ventricular cerebrospinal fluid (CSF) signal;
and (ix) awavelet “band-pass” filter. In this last step, theMaximal Over-
lap DiscreteWavelet Transform (MODWT)was used to produce a set of
scales (frequency bands), and coefficients from scales representing fre-
quency bands of interest were recomposed to produce frequency-
filtered time series.

2.3. Wavelet despiking

This algorithmwasdesigned to remove both high and low frequency
non-stationary events related to subject movement, at a voxel level, in
the wavelet domain (Patel et al., 2014). The key steps in the algorithm's
operation are outlined below.

For each voxel, the wavelet despiking algorithm first computes the
MOWDT of the time series using Mallat's pyramid algorithm (Mallat,

http://www.brainwavelet.org
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Fig. 1. Awavelet-based estimator of the (effective) degrees of freedom, df, in functionalMRI time series. Each voxel time series is processed using thewavelet despiking algorithm. Thefirst
step in this algorithm is computing themaximal overlap discretewavelet transform (MODWT) of the time series. (A) Column (I) shows theMODWT computed using the reflection bound-
ary, and (II) shows the same for the periodic, or circular boundary. This step converts the time series into amatrix of scale ( j) vs. time (t). Denoising is conducted on thismatrix to produce a

final binary matrix indicating coefficients affected by non-stationary events (“noise” coefficients ~Wϕ; j;t shown in white) and unaffected coefficients (“signal” coefficients ~Wα; j;t shown in
blue). For more details on the method, see Section 2.3 and Patel et al. (2014). The df are estimated from the “signal” coefficients as described in Eqs. (5) and (6), for each wavelet scale
(frequency band) taking advantage of the fact that the MODWT is an approximate band-pass filter with pass-bands 1/2j + 1 b | f | ≤ 1/2j. If the periodic boundary condition is used, the
boundary coefficients (shown in red, column II) need to be discounted in order to obtain an unbiased estimate of the df, thus resulting a reduction in the df available at each scale (as de-
scribed in Eq. (6)). The number of boundary coefficients at each scale is dependent on thewaveletfilter used (see Eq. (4)); herewe used theDaubechies L= 8wavelet. (B) Spatial dfmaps
for each wavelet scale ( j), in a randomly selected subject, after the voxel-wise df had been estimated as in panel A, column I.
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1998).We refer to the wavelet transform of each voxel time series Xt as
~WX; j;t , where j represents the scale, or frequency band, t represents
time; and where j = {1, …, J}, t = {0, …, N − 1}, J is the number of
scales, and N is the number of time points. We defined J conservatively
as the largest positive integer satisfying the condition:

J ≤ log2
N

L−1
þ 1

� �
ð1Þ

where J ∈ ℤ+ and L is the filter length, in this case L = 4.
For the MODWT, we used a fourth-order Daubechies wavelet filter

(L = 8), which is an asymmetric filter that has been found to provide
good decorrelation of wavelet detail coefficients for the DiscreteWave-
let Transform (DWT, Bullmore et al. (2001); Laird et al. (2004)), such
that the coefficients are approximately independent. In addition, to
avoid the biasing effects of discontinuities arising from the time series
boundaries, we used a reflection boundarywhich yielded 2N× Jwavelet
coefficients. Use of a periodic (or circular) boundary condition will yield
fewer df for an unbiased estimate due to boundary effects. This is
discussed further below. The only disadvantage of using the reflection
boundary is an increase in computation time and RAM usage (Percival
and Walden, 2006), which we do not find to be a limiting factor with
current computational power. The redundancy of the MODWT is key
to the denoising features of the wavelet despiking algorithm. This is
because the MODWT can isolate transient non-stationary phenome-
na with high temporal precision in all frequencies, with minimal im-
pact on neighboring coefficients.

The wavelet despiking algorithm then identifies coefficients con-
taminated by large non-stationary phenomena (artifacts) as maxima
and minima chains and separates the wavelet detail coefficients ~WX; j;t

for each voxel into two disjoint sets representing those part of maxima
andminima chains (“noise” coefficients, ~Wϕ; j;t), and “signal” coefficients
~Wα; j;t

� �
. These two sets are additive in the wavelet domain.

So, for each voxel,

~WX; j;t ¼ ~Wα; j;t þ ~Wϕ; j;t : ð2Þ

For further details on the methods used to identify these two sets of
coefficients, please see Patel et al. (2014). In the final step of the

Image of Fig. 1
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algorithm, each time series is recomposed from the “signal” coefficients
( ~Wα; j;t) only, using the inverseMODWT(iMODWT) and the inverse pyr-
amid algorithm (Mallat, 1998), to yield a denoised time series.
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Fig. 3. Mean nodal connectivity shows strong linear dependence on the df. Voxel-wise
time series were parcellated into 470 regions and a connectivity matrix was generated
for each wavelet scale (frequency band) by computing the Pearson correlation r on
MODWT wavelet coefficients, between each pairwise combination of nodes. The mean
nodal connectivity represents the average of all non-zero correlations between a given
node and all other nodes in the brain. The voxel-wise df estimate was generated for
each wavelet scale, by wavelet despiking. The nodal df were computed by averaging the
df of all voxels in each region (defined by the 470 region parcellation template), at each
scale. This resulted in an df estimate for each of 470 regions at different wavelet scales.
The mean nodal connectivity (r) was then plotted against the nodal df for the highest
four wavelet scales (j), representing the most commonly analyzed frequency bands:
j = 1, 0.13 b f b 0.25 Hz; j = 2, 0.06 b f b 0.13 Hz; j = 3, 0.03 b f b 0.06 Hz; j = 4,
0.02 b f b 0.03 Hz. The mean nodal connectivity showed strong linear dependence on
the df at all four wavelet scales (P b 0.0001, F test).
2.4. Effective degrees of freedom (df) estimation

The effective degrees of freedom (df) are estimated during thewave-
let despiking step. The MODWT is a modified version of the DWT with
many similar properties, but it is a highly redundant non-orthogonal
transform yieldingN coefficients at each wavelet scale. The redundancy
allows non-stationary events to be located in any scale with high tem-
poral precision, and removed efficiently withminimal impact on neigh-
boring coefficients or time points, in addition to allowing natural
definition for any time series length. Both of these factors make the
transform particularly useful for denoising fMRI time series. However,
these properties also mean that estimation of the df at each scale is
not as trivial as for the DWT, where the df could be simply estimated
as the number of large detail coefficients.

There are a number of well-established methods for computing the
df from the MODWT (Percival and Walden, 2006). If we wish to make
no assumptions about the shape of the Spectral Density Function, and
want to avoid overestimating the df for short runs (simulations in
Percival (1995) suggest that N b 128 is small enough), the simplest,
and most conservative, estimate of the df is the most appropriate
(Percival and Walden (2006), pp. 314). This is the method we imple-
ment. This method takes advantage of the fact that the MODWT is an
approximate band-pass filter with pass-bands 1/2j + 1 b | f | ≤ 1/2j. In
this case, the df η̂ð Þ would be defined as follows:

η̂ j ¼ max
Mj

2 j

� �
;1

� 	
ð3Þ

where Mj refers to the number of non-boundary coefficients at scale j.
For the reflection boundary,Mj=Nj=N, whereNj is simply the number
of coefficients at scale j. For the periodic (or circular) boundary condition,
the number of boundary coefficients are a factor of the filter length, so
for each scale j,

Mj ¼ Nj−min 2 j−1
� �

L−1ð Þ;N
n o

: ð4Þ

Image of Fig. 2
Image of Fig. 3
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We extend the definition of η̂ stated in Eq. (3) above (Percival
and Walden, 2006) to accommodate the denoising performed by
the wavelet despiking algorithm. That is, we simply subtract all

noise coefficients ~Wϕ; j;t

� �
that were removed during the wavelet

despiking process in the estimation of df. Thus, for the reflection
boundary (as we use in this article), we redefine the df η̂ð Þ after
wavelet despiking as:

η̂ j ¼ max
N j−Nϕ; j

2 j

� �
;1

� 	
ð5Þ

and for the periodic (or circular) boundary condition:

η̂ j ¼ max
Mj−Mϕ; j

2 j

� �
;1

� 	
ð6Þ

where Mϕ,j refers to the number of noise coefficients Nϕ,j not in the
range of boundary coefficients, i.e. ∉ ~WX; j;t for t = 0, …, min{Lj −
2, N − 1}.

Assuming approximate independence across scales, the df can be
combined across scales using an additive model and the total df across
scales will, by definition, be ≤N.

2.5. Dynamic window length estimation

For dynamic window length estimation, we first computed the frac-
tion of brain voxels containing a signal coefficient ( ~Wα; j;t, taking account
of all wavelet scales) at each time point t. We call this the signal fraction
(SF).

SFt ¼ 1
n Vð Þ � J �

X
~W j;t∈V

XJ

j¼1

~W j;t

0
@

1
A ð7Þ

where V is the set of all brain voxels.
For a specified target “effective” window length (w), the dynamic

window length D starting at time t was defined as:

Dt ¼
XT
i¼t

SFi; ð8Þ

where T is the largest integer in the range {t+1,…,N} allowingDt to be
in the range {w − 1, w}.

2.6. Micro-movement and transient noise diagnostics

We used two diagnostics for assessing the level of micro head
movements and transient noise present in each dataset. The first
was the framewise displacement (FD, Power et al. (2012)), which is
the sum of the absolute derivatives of the 6 head movement param-
eters (x, y, z, α, β, γ), representing 3 planes of translation and 3
planes of rotation. Rotational parameters (yaw α, pitch β and roll
γ) were converted to distances by computing the arc length dis-
placement on the surface of a sphere with radius 50 mm (as in Power
et al. (2012)). FD at time t = 0 was given the value 0 in order for the
length of FD to equal N. For t = {1, …, N − 1}, where N = the number
of time points,

FDt ¼
X
d∈D

jd t−1ð Þ−dt j þ 50 � π
180

�
X
r∈R

r t−1ð Þ−rt


 



where D ¼ x; y; zf g & R ¼ α;β;γf g:
ð9Þ

The second diagnostic, the spike percentage (SP, Patel et al. (2014)),
was used to assess the level of artifact removal required in each dataset.
For any given time point, SPt was defined as the percentage of voxels
containing a noise coefficient in wavelet scale 1 ~Wϕ;1;t

� �
in that frame

of data. For a run ofN timepoints, the SP is therefore a vector ofN points.
So, for t = {0,…, N − 1},

SPt ¼ 100
n Vð Þ �

X
~Wϕ;1;t∈V

~Wϕ;1;t ð10Þ

where V is the number of voxels.

2.7. Parcellation and graph analysis

For graph analysis, voxels were down-sampled into 470 ap-
proximately same-sized regions. The template was a randomly
subparcellated in-house version of a fusion atlas created based on
the Harvard–Oxford cortical and subcortical atlas (probabilistically
thresholded at 25%) inMNI space, and the Oxford thalamic connectivity
atlas (Behrens et al., 2003). Region sizes were constrained such that no
region was more than twice the size of any other region, and no re-
gions crossed anatomical boundaries or hemispheres defined by these
atlases. This parcellation template has been made free for download at
www.brainwavelet.org. Time serieswithin these regionswere averaged
and the coordinates expressed as centroids.

For regional estimates of df based on the df maps generated by the
wavelet despiking algorithm, the same parcellation template and aver-
aging method were used to down-sample the voxel-wise df maps. We
add that it is possible for the voxel-wise estimates of df to be treated in
the same way as the time series themselves, so if time series weighting
is desired (e.g. to account for gray matter probability of voxels) during
estimation of regional time series, then the samemethod can be applied
to the df maps. This also applies to functional parcellations, in other
words, any functional parcellation template used to parcellate the fMRI
time series can be used to parcellate the df maps.

After definition of regional time series, graph analysis was per-
formed in R using iGraph v.0.6.5.2 (http://cran.r-project.org/web/
packages/igraph/).

2.8. Statistical tests

Statistical tests were performed either at a voxel level using the
voxel-wise df maps produced during wavelet despiking (for seed
connectivity analysis), or on parcellated df maps (for graph analysis).
In each case, the number of df maps produced was equal to J, or the
number of scales (see Eq. (1)). Pearson correlation of time series was
then either estimated in the wavelet domain for each scale separately,
e.g. for graph analysis, (and then analyzed in combination with df
maps produced for each corresponding wavelet scale), or in the time
domain. The latter was used for analysis of wide frequency ranges
spanning multiple scales, such as for the seed correlation analysis
(Fig. 2). In this case, the MODWT was used to “band-pass” the time se-
ries, retaining information from the desired scales, and the recomposed
time serieswere correlated in the time domain. The df corresponding to
each time serieswere combined using an additivemodel across the cor-
responding scales.

The resulting correlation matrices or seed correlation r maps were
then converted to test-statistic Z scores using Fisher's r-to-Z transform,
correcting for the edge or pair-wise df. So, for each correlation r at
scale j,

Z j ¼ 0:5 � ln
1þ r j
1−r j

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffi
η̂ j−3

q
: ð11Þ

We refer to the test-statistic Z score, which is the r-to-Z transformed
correlations (0.5 ⋅ ln(1 + rj/1 − rj)) divided by the standard error

1=
ffiffiffiffiffiffiffiffiffiffiffiffi
η̂ j−3

q� �
, simply as the Z score.

http://www.brainwavelet.org
http://cran.r-project.org/web/packages/igraph/
http://cran.r-project.org/web/packages/igraph/
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These Z scores could then be compared to the standard Normal dis-
tribution and converted to P values. This yielded a P value map for each
correlationmatrix (P values assigned to edges) or seed correlationmap,
which could then be thresholded probabilistically. P value thresholds
were adjusted according to the Benjamini–Hochberg procedure for con-
trolling the false discovery rate (FDR, Benjamini and Hochberg (1995);
Benjamini and Yekutieli (2001); Genovese et al. (2002)). The threshold
was determined as the largest P value Pi (where i represents the voxel,
or edge, index after all P values have been sorted from smallest to
largest) such that,

Pi ≤
i
N
� q
c Nð Þ ; where c Nð Þ ¼

XN
i¼1

1
i

ð12Þ

where N is the number of observations, q is the desired FDR limit, and
c(N) is a constant determined by the harmonic sum of the number of
observations. This definition of c(N) was used as it makes no assump-
tions about the joint distribution of P values (Genovese et al., 2002)
and results in a harsher threshold cut-off. However, it may be relatively
safe to assume a Gaussian distribution of P, giving c(N) = 1 (Genovese
et al., 2002).

2.9. Permutation testing

To test Type I error rates at a single-subject level, time series were
randomized to create a null model, while preserving certain basic prop-
erties of the underlying signal. Under these circumstances the number
of significant observations as a fraction of the total observations at any
given P value should not exceed P (the probability of Type I error) in
order for the statistical test to be meaningful (Bullmore et al., 1999).
Here, time series were scrambled in the Fourier domain to randomize
the phase using white noise, but preserve amplitude information
(Theiler et al., 1992). We note that it is possible to randomize fMRI
time series in the wavelet domain by temporal resampling of wavelet
coefficients (Bullmore et al., 2001, 2004; Breakspear et al., 2003, 2004;
Sendur et al., 2007), a process known as “wavestrapping”, and that
this may produce lower false positive rates than Fourier resampling
(Laird et al., 2004). Wavestrapping has been well characterized for the
DWT (Percival et al., 2000) and applied to fMRI data in the time domain
(Bullmore et al., 2001), and spatiotemporal domain (Breakspear et al.,
2003; Patel et al., 2006), but this transform has time series length
restrictions. Translating this procedure to redundant transforms such
as the MODWT requires further analysis in fMRI data, and may require
block resampling of wavelet coefficients, which is beyond the scope of
this article.

3. Results

3.1. Single-subject probabilistic seed correlation analysis

We began by analyzing seed correlation maps for a single subject. In
order to threshold these maps by a FDR-adjusted P value, we first need-
ed an estimate of the degrees of freedom.We compared two estimates:
the effective degrees of freedom (df) generated by thewavelet despiking
algorithm (see Fig. 1 and Section 2.4 of the Methods), and the nominal
degrees of freedom (df = N), simply the number of time points. As the
wavelet despiking algorithm treats each voxel independently, it gener-
ates an estimate of the df at each voxel and at each scale (see Fig. 1B), ap-
propriately reducing the df in voxelswhere harsher denoising is required.

The MODWT was used to “band-pass” the time series retaining
information in scales 2–4, which represents a commonly analyzed fre-
quency range of 0.02 b f b 0.13 Hz. To obtain an estimate of the df at
each voxel in this frequency range, we combined the df estimated at
each voxel across scales 2–4 using an additive model, to generate one
number per voxel, representing the df at that voxel in the frequency
range 0.02 b f b 0.13 Hz (see Fig. 2A, far left column). The nominal
degrees of freedom across all voxels (assuming df = N) was simply
133, or the number of time points.

We chose 3 seeds (2 × 2 × 3 voxels) each located to elicit a well-
defined resting-state network: (the visual network, the default-mode
network, and the sensorimotor network), and computed the seed corre-
lation (r) maps, using Pearson correlation, between these seeds and all
other voxels in the brain. We defined the df for the correlation r at
each voxel as the minimum df between the seed and the voxel to
which it was correlated. The r map was then transformed to a Z map
by applying Fisher's r-to-Z transform, corrected for the df of each corre-
lation (see Eq. (11)). To compare to the results of assuming that df= N
(i.e. the nominal degrees of freedom), we also estimated Zmaps assum-
ing that df=133 for all voxels. These voxel-wise Z values could then be
simply converted to P values by comparison with the standard Normal
distribution. The P value threshold corresponding to FDR q b 0.01 was
computed using the Benjamini–Hochberg procedure (Benjamini and
Hochberg, 1995) where the constant c(N) (Eq. (12)) was determined
by the harmonic sum of the number of voxels (see Section 2.8 of the
Methods for more information). The probabilistically thresholded r
maps, at q b 0.01, are shown in Fig. 2A.

Thewavelet-based estimator of df appeared to produce substantially
fewer spurious correlations to voxels not known to be associated with
these networks. The probability distribution of Z scores associated
with the voxel-wise r values in the three networks analyzed can be
found in Fig. 2B (upper panel). As the method accounts for spatial vari-
ability in df, different P values were assigned to the same r value accord-
ing to the number of df remaining after denoising.

In order to quantify the false positive rate for hypothesis testing
predicated on the wavelet-based estimator of df, we conducted a series
of permutation tests. For each set of seed correlations, we randomized
the seed and voxel time series using Fourier-based resampling, to
estimate the correlation coefficient between all pairs of randomly per-
muted time series under the null hypothesis that the true correlation
is zero (see Section 2.9 of the Methods, Theiler et al. (1992)). As before,
we estimated the seed correlation rmaps and converted these to P value
maps corrected for locally variable df ≤ N, and estimated the false posi-
tive rate of the test (α) as the number of significant voxels defined by
an arbitrary critical P value, as a fraction of the total search volume or
number of voxels tested (Bullmore et al., 1999). This process of time
series permutation in the Fourier domain followed by probabilistic hy-
pothesis testing over a range of critical P thresholds was repeated 100
times to assess the robustness of the results. For any given nominal P
value, the observed false positive rate α should not exceed P. If the ob-
served false positive rate exceeds the nominal size of the test P, then
the test is invalid; if α is less than or equal to P then the test is valid
and increasingly conservative as α becomes smaller than P. As shown
in Fig. 2B (lower panel), the wavelet-based method provided good
Type I error control where the observed Type I error α was less than
the expected Type I error for all three seeds. Assuming df= N (nominal
degrees of freedom) resulted in very poor Type I error control with
observed error rates in excess of those expected, for all three seeds.
This means that the Normal theory based hypothesis testing of
Z-transformed correlation coefficients is not valid on the assumption
the effective df is simply the number of time points available. Because
the effective df is typically much smaller than the nominal degrees of
freedom (N), significance tests assuming that df= Nwill lead to an ex-
cessive and uncontrolled number of false positive results.

3.2. Probabilistic thresholding of functional connectivity matrices to
construct brain graphs

Graph theoretical analysis of fMRI data typically involves the fol-
lowing key steps. After voxel time series have been down-sampled
(parcellated) into regional time series n, a statistical measure of
functional connectivity is estimated between all pairwise regional
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time series, resulting in an n × n association matrix or functional
connectivity matrix. The pairwise correlations are typically then
individually thresholded so that small correlations are set to zero
and larger correlations that exceed the arbitrary threshold are
represented as edges between regional nodes in an adjacency matrix
or brain graph. Thresholds are usually specified to result in graphs of
variable connection density, where connection density is the number
of non-zero edges divided by the total number of possible edges,
(M × M − M) / 2. As there has been no simple method for assigning
P values to correlations between fMRI time series it has been difficult
to use probabilistic thresholds so that graphs are specified in terms of
an overall or family-wise false positive error rate as well as, or
instead of, a connection density.

One might assume that simply adding edges in decreasing order of
the strength of positive correlation would at least imply that edges
were added to the graph in increasing order of their probability under
the null hypothesis. But, this is only true if the df is consistent across
all voxels ormonotonically decreaseswith decreasing correlation. How-
ever, as the presence andmagnitude of artifacts are spatially inhomoge-
neous (Patel et al., 2014; Satterthwaite et al., 2013; Wilke, 2012), and
therefore removal of these artifacts requires spatially-variable denoising
(Patel et al., 2014), this assumption does not necessarily hold. Indeed,
after wavelet despiking, the mean connectivity in regions that have
been more harshly denoised due to the presence of movement (and
other large non-stationary) artifacts is much lower, as one would pre-
dict (see Fig. 3). In this figure, the mean nodal connectivity represents
the average Pearson correlation (r) between a node and all other
nodes in the network (defined by the 470 region parcellation template,
see Section 2.7 of theMethods formore details), computed in thewave-
let domain, using the MODWT, for each wavelet scale (or frequency
band). The df of each node is the mean effective df of all voxels in the
region. As demonstrated by this analysis, the mean regional connectiv-
ity shows strong linear dependence on the df across the four commonly
analyzed wavelet scales. This is the side effect of denoising artifacts; put
simply, the more denoising required in a region (lower df), the less
signal will remain, and therefore, the expected connectivity of that re-
gion will be lower.

To address these issues,we generalize thewavelet-basedmethod for
estimating df and hypothesis testing of pairwise correlations to the
application of constructing a graph from a correlation matrix (Fig. 4).
As described in the figure legend, this method involves 5 key steps:
(1) obtaining estimates of edge connectivity, such as Pearson corre-
lation; (2) using the df map to produce edge df; (3) performing an
r-to-Z transform of edge weights; (4) assigning P values to edges;
and (5) probabilistically thresholding edges after adjusting for multiple
comparisons.

3.3. Topological properties of probabilistically thresholded graphs

Wenext analyzed the impact of accounting for the df of edges on the
location of the strongest edges. Here we analyzed a subject that exhib-
ited high levels of rotational headmovement, and thus required harsher
denoising by thewavelet despiking algorithm in posterior regions of the
brain.We show the non-spatially-homogeneous distribution of artifacts
by correlating the framewise displacement (see Section 2.6 of the
Methods) with voxel-wise time series (Fig. 5A, left panel). As posterior
regions of the brain had to be despikedmore harshly, these regions had
fewer df. Fig. 5A (right panel) shows the total df remaining, across all
wavelet scales (non-Nyquist frequencies), at each node. Nodal df were
computed by averaging voxel-wise df estimates. We evaluated whether
this method of averaging voxel-wise df to produce nodal df provided
good Type I error control by use of permutation testing (see
Section 2.9 of the Methods). For each node (to be used as a seed), we
permuted its corresponding time series using Fourier resampling (see
Section 2.9 of the Methods), and the time series of all other nodes in
the brain. Next, using the edge df (the minimum df between the pair
of connecting nodes) we estimated the number of significant connec-
tions at a range of P values (expected Type I error rates, see Fig. 5B).
This was repeated 100 times for each node, and the observed Type I
error was calculated as the average of the observed error in each of
the 100 trials. This was repeated for all 470 nodes, resulting in a total
of 47,000 permutations. As we demonstrate in Fig. 5B, the nodal df esti-
mation, based on the wavelet estimator of effective df, provided good
Type I error control, whereas the equivalent analysis using nominal de-
grees of freedom (assuming df = N) did not.

For this individual subject, we next took the P valuematrix and iden-
tified the top 0.5% of edges (the edges with the lowest P values), and
plotted these edges topographically (Fig. 5C). The same was done for
the correlation matrix r, taking the top 0.5% of edges to be those with
the highest Pearson correlation, and we compared the results obtained
by the two methods (see Fig. 5C). As shown in this panel, the two
methods produced somewhat different topologies across the four
most commonly analyzed wavelet scales (j = 1, 0.13–0.25 Hz; j = 2,
0.06–0.13 Hz; j=3, 0.03–0.06 Hz; and j=4, 0.02–0.03 Hz). The differ-
ence was most marked in posterior regions of the brain where the loss
of signal due to the presence of artifacts (which required harsher
denoising to remove) resulted in a significant loss of df, and thus higher
P values. This then resulted in a change in the spatial distribution of the
strongest edges and a change in which nodes had the highest degree.

We also evaluated probabilistic thresholding for graph construction
in a dataset of healthy adult subjects (cohort 2), for a commonly calcu-
lated graphmeasure, the clustering coefficient. For illustrative purposes,
we show the results at wavelet scale j = 2 (0.06–0.13 Hz), as this is a
scale in which group differences have commonly been reported (as
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previously demonstrated for this cohort, Lynall et al. (2010)). For
each subject, edges were ranked according to their P value, and
added incrementally starting with the smallest P. After each addi-
tion, the clustering coefficient was calculated and plotted against
the connection density (see Fig. 6B, upper panel). As shown in this
figure, the cut-off connection density can vary significantly between
subjects. For each subject, this P value cut-off in theory depends on
the intrinsic connectivity, and the level of denoising required. As
we show in Fig. 6B, the maximum connection density does not ap-
pear to depend on the level of denoising in this cohort, as the subject
with the highest df had the lowest connection density cut-off. We an-
alyzed this further by regressing the maximum connection density
(for a maximum network FDR-adjusted P value of 0.05), against the
level of denoising required for each subject (the mean spike percent-
age) in this cohort, for wavelet scales 1 to 4 (spanning the frequency
range of 0.02–0.13 Hz). The linear fit was not predictive of the data
(at P = 0.05, F test), suggesting no significant linear dependence of
themaximum connection density on the level of denoising in this co-
hort (Fig. 6C).

3.4. Probabilistic thresholding for construction of time-varying graphs

Finally, we explored how the wavelet-based estimator of df could be
further generalized to analyze the temporal dynamics of networks
through use of sliding window approaches to time series analysis. One
of the limitations in our interpretation of such information (i.e. of
non-stationary BOLD fluctuations) from resting-state time series is
that artifacts manifest as large non-stationary events (Patel et al.,
2014) and we have no information about the temporal location of
changes in endogenousBOLDfluctuations. Furthermore, as the presence
of artifacts can vary throughout time, harsher denoising may be re-
quired at some time points than others, resulting in a non-uniform dis-
tribution of df throughout time. One of the problems then with using a
fixed window is that time series within windows that have been more
harshly denoised will have fewer df and, as a result, lower detection
power. Here, we address this limitation by demonstrating that window
lengths can be dynamically adjusted according to the dfwithin specific
temporal windows, in order to prevent fluctuations in df between
windows.
We demonstrate application of this method to a patient from cohort
3 with high levels of artifact in the middle of the run. Use of a fixed
length window results in a drop in mean df at high artifact time points
occurring in themiddle of the run (Fig. 7A, middle panel, demonstrated
for a window length of 200 s), whereas use of a dynamic window
(detailed in Section 2.5 of the Methods) which increases in length
upon reaching high artifact (or low df) time points, minimizes varia-
tion inwindowed df through time. Examples of how thewindow length
changes using this dynamic approach, can be found in Fig. 7A (lower
panel) for window lengths of 100, 200, 300, 400 and 500 s. We quanti-
fied the effectiveness of the dynamic window approach at reducing
window-to-window variability in df by measuring the standard devia-
tion of the change in mean df through time (Fig. 7A, middle panel) for
a range of window lengths spanning 100 to 500 s. The variability in df
was significantly lower compared to the fixedwindow length approach
(P b 0.001, 1-tailed T test, Fig. 7B boxplots). In absolute terms, window-
to-window variation in df did not exceed 1 df using the dynamic
approach, at a cost of on average 7.5 fewer windows and on average
10 s difference in window length between the shortest and longest
windows (Fig. 7B, table).

After computing dynamic window lengths to minimize temporal
variability in df, spatial df maps can be generated for each window,
and the time series can be analyzed in the same way as described in
the sections above. After probabilistic thresholding of connectivity
maps or matrices, results from windows can be matched or compared
by P value (as described above), given that variations in df across win-
dows have been minimized.

4. Discussion

Oneof the limitations in the statistical interpretability of fMRI data at
a single-subject level is the estimation of effective degrees of freedom
(df). Here we present a method for estimating df at a voxel level,
using wavelets, which uniquely results in the production of spatially-
variable df maps for individual subjects. This method, based on the
wavelet despiking algorithm we have previously described for the re-
moval of large non-stationary artifacts (Patel et al., 2014), has the addi-
tional advantage of being able to account for signal and df loss as a result
of artifacts (and artifact denoising) present variably in space and time.
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4.1. Type I error controlled single-subject statistical inference for functional
connectivity

Statistical inference at a single-subject level requires both robust ar-
tifact denoising and a method for estimating the df. As artifacts in fMRI
data are not spatially homogeneous and can be present in both low
and high frequencies, good removal requires spatially-adaptive
denoising that can operate in multiple frequencies (Patel et al., 2014).
However, the presence of spatially-variable artifacts means that some
areas of the brain will unavoidably have less signal. For estimating the
df, there exist a number of whitening methods that can be used to
decorrelate fMRI data in order to maximize statistical independence.
These include Independent Component Analysis (ICA) and Discrete
Wavelet Transforms (DWTs, Percival and Walden (2006)), as well as
Fourier-basedmethods (Worsley and Friston, 1995).Where the dimen-
sionality is constrained a priori, ICA runs the risk of biasing the df esti-
mate, particularly if components are selected by the operator. In
addition, many of the most commonly used spatial ICA algorithms in
fMRI, such as InfoMax and FastICA (implemented in FSL, Smith et al.
(2004)), may optimize signal sparsity, not independence (Daubechies
et al., 2009). Such methods have the added limitation that they provide
one estimate of the df for each subject. For example, if a subject were
scanned twice, and in the second run exhibited a higher level of
movement, one would expect the signal-to-noise ratio and df to be
lower in the second run. However, if the movement primarily affect-
ed anterior or posterior regions of the brain, as is common in fMRI
data (Wilke, 2012; Satterthwaite et al., 2013), one would not expect
the loss of df to be spatially homogeneous, just as we would not ob-
serve the motion artifacts to be spread in a spatially homogeneous
manner (Patel et al., 2014). Whereas ICA may result in a reduced esti-
mate of the df for the subject's second run, wavelet transforms can be
used to produce locally reduced estimates of the df, by estimating the
df at a voxel level, thus affording the additional advantage of accommo-
dating spatial variability in df.

In a previous paper (Patel et al., 2014), we described a method
for data-driven and spatially-adaptive denoising of artifacts from
multiple frequencies, which we showed to be highly effective at
removing motion artifacts. Here, we used the same algorithm to
generate spatial df maps for single subjects which combines the
whitening properties of discrete wavelet transforms with the method
for time series denoising (see Fig. 1A and Section 2.4 of the Methods).
This analysis method results in localized denoising in voxels (and
frequencies) in which the artifacts occur, and corresponding localized
estimation of df. This method has the further advantage of being able
to characterize voxel-wise df in individual wavelet scales (frequency
bands), by taking account of the innate df present in a given frequency
and the level of denoising required in that particular frequency to
remove artifacts (see Fig. 1B for an example of spatial dfmaps for a sin-
gle subject).

Once the df are known, converting a single seed connectivity (r)
map into a P value map for probabilistic thresholding is then simple.
The functional connectivity between a seed and a given voxel can be
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Fig. 7. Application of the dfmethod to time-windowed analysis. (A) Upper panel shows the spike percentage (indicating the level of wavelet despiking required at each time point) for an
example subject from cohort 3 showing high artifact levels in the middle of the run. The middle panel shows the mean (across voxels) change in total within-window df, from the first
window. The blue line represents the fixed window method where a sliding window of length 200 s was used. The green line represents the same for the dynamic window approach.
In this case, the window length was dynamically increased (minimum window size of 200 s) in low df regions in order to minimize window-to-window variation in df. Points plotted
indicate the middle of each window. The lower panel shows the change in window size through time using the dynamic window approach, for window lengths of 100, 200, 300, 400
and 500 s. Points plotted indicate the middle of each window. (B) The table describes the properties of the set of dynamic windows calculated for a range of minimumwindow lengths
between 100 and 500 s. Boxplots show the standard deviation of the change in df from the first frame of data (e.g. of the trace shown in the middle of panel A), for a range of different
(minimum) window lengths. (C) Example of how the dynamic window approach can be used to generate windowed spatial dfmaps, which can then be used for functional connectivity
or graph analyses, and statistically thresholded as described in Figs. 2, 4 and 6.
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assigned the minimum df between the seed region and the voxel, and
the df estimate can inform conversion of rmaps to Zmaps using Fisher's
r-to-Z transform. Voxel-wise Z scores can then be compared to the stan-
dard Normal distribution and assigned P values. These P values can then
be corrected for multiple comparisons, for example, as we show, using
an FDR correction. As we show in Fig. 2, this method for estimating
the df results in excellent Type I error control.
4.2. A statistically-reasoned methodology for graph theoretic analysis

Next, given the voxel-wise df, there is a natural application to graph
theoretic analysis. Here, we propose a new methodology for building
graphs based on the probabilistic properties of edges (see Fig. 4),
which confers a number of advantages and addresses some important
issues in graph theoretical analysis of fMRI data.

Image of Fig. 7
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4.2.1. A probabilistically-informed order of adding edges
Traditionally when building graphs, edges are ranked by functional

connectivity orweight, and added serially startingwith the highest con-
nectivity edge. However, if the time series of someof the nodes connect-
ed to these “high connectivity” edges had been denoised heavily, these
time serieswould have lower df, which should be reflected in their edge
strength. Indeed, as we show in Fig. 3, the mean connectivity of a node
relates strongly to the level of denoising, or the df of that node. Put
another way, a high artifact node will require harsher denoising, and
as a result will have less signal (represented by lower connectivity)
and fewer df. Thus, without any consideration of the df, one would
not be able to differentiate between lower connectivity due to more
denoising (as a result of more artifacts present in those regions), and
truly (neurobiologically) attenuated functional connectivity. Converse-
ly, regions of similarly high connectivity cannot be compared on a
level plane if they both have different df. In order to take account of
nodal df when building graphs, we propose that edges be added in
accordance with their P value (as binary edges or weighted by their
measure of functional connectivity), lowest P value first. As we demon-
strate in Fig. 5C, this can affect the network topology, as nodes with
more denoising (and resulting lower df) will have weaker edges than
they would if the local df had not been considered. This method should
also reduce spurious connectivity to high artifact regions, by penalizing
their connectivity with low df.

4.2.2. Identifying the maximum interpretable connection density
One of the challenges of estimating the network properties of the

brain is in identifyingwhich connection density to estimate these prop-
erties at. Typically graphs are built at a range of connection densities,
and properties such as the clustering coefficient, modularity, and effi-
ciency are calculated at each of these densities. Subjects are then
matched by connection density and group comparison is performed
across a range of densities. In the absence of a method defining a
maximum connection density, this method often results in comparison
of networks with a substantial number of “noisy” edges, which could
then bias the graphmeasures. Herewe propose that themaximum con-
nection density of a given brain network should be identified by
thresholding the graph by incremental addition of edges in order of
increasing P value, up to a critical P value ≤ 0.05, corrected for the
multiple comparisons entailed by individually testing a large num-
ber of edges for statistical significance. For example, the connectivity
matrix r can be converted to an FDR-adjusted P value matrix, and
graphs can then be constructed with strong control over Type I
error that a false positive edge has been added to the graph. These
probabilistically thresholded graphs can be analyzed as binary graphs
(all edges=1), or each edge can beweighted by the functional connec-
tivity between the connected pair of nodes (Fig. 6A). If the measure of
functional connectivity between paired nodes contains both positive
and negative values, the edges of these thresholded graphs can
have both positive and negative weights, as Z scores can be convert-
ed to 2-tailed P values (Fig. 4). “Noisy” edgeswith either positive or neg-
ative weights will be excluded during the probabilistic thresholding
process.

4.2.3. Group comparison of graph measures across subjects
For group comparison after probabilistic thresholding of connection

densities, there are two potential approaches. Thefirst is a version of the
traditional method where subjects are matched by connection density.
As all subject networks will have been built to different maximum den-
sities, group comparison can then only be conducted up to the largest
connection density covered by all subjects in the cohort. In our ex-
ample in Fig. 6B, this would be up to 17.9%. However, if the level of
denoising does not relate strongly to the connection density cut-
off, as we show for cohort 2 (Fig. 6C), an alternative approach can
be used where graph measures are compared across subjects by
matching P values instead of connection density (Fig. 6D). This may
be appropriate if differences in connection density cut-off relate
more to differences in functional connectivity, or if comparison is
to being made across two cohorts with large global differences in
functional connectivity.

4.3. Application to time-varying connectomics

Finally, we demonstrate how our method can be extended to the
analysis of temporal network dynamics. Sliding window approaches
for MEG and resting-state fMRI data, which attempt to analyze non-
stationary fluctuations in network organization through time, have be-
come increasingly popular (Chang andGlover, 2010; Bassett et al., 2011;
Kitzbichler et al., 2011). However, interpretation of results from such
analyses is challenging. One of the main limitations is that artifacts in
resting-state time series often manifest as large non-stationary events
(Patel et al., 2014) which may diminish or destroy any underlying
non-stationary BOLD fluctuations. In addition, we have no information
about the temporal location of endogenous fluctuations. Reliable inter-
pretation of such information thus relies on good denoising strategies.
To further complicate matters, the presence of artifacts can vary sub-
stantially throughout time, meaning that harsher denoising will be re-
quired at some time points than others, resulting in a non-uniform
distribution of df through time. As we discuss above, the presence of
artifacts (and harsher denoising) will result in less signal and lower de-
tection power of networks at those time points. If this is not accounted
for, then observed fluctuations in network results may in fact be related
to lower detection power at that point in time, due to harsher denoising.
In order to apply the statistical methods we describe above and com-
pare information across windows, the df between windows needs to
be approximately constant. We therefore suggest that windows be
dynamically adjusted in length to account for the temporal variabil-
ity in df, for sliding window analyses (see Fig. 7). After ensuring min-
imal variability in df across windows, connectivity results can be
probabilistically thresholded within windows and compared across
time, thus minimizing spurious results related to temporal fluctuations
in df. An important point to note here is that the high-passfilter selected
during pre-processing should be sufficient to account for the shortest
window size in order to avoid spurious fluctuations (Leonardi and
Van De Ville, 2015).

4.4. Further considerations and future work

One important consideration is the choice of wavelet. Here we used
the fourth-order Daubechieswaveletwith filter length L=8 andM=4
(whereM is the number of vanishing moments). The two properties of
thewavelet despiking algorithm (denoising and probabilistic inference)
each favor different wavelets. More compact support (smaller L) should
improve denoising, but larger L theoretically favors better decorrelation.
The final choice of wavelet should thus balance both of these factors. In
the datawe analyzed, we did not find that increasing L above 8 provided
improved decorrelation, whereas use of wavelets with longer L did
worsen denoising of some types of artifact (namely large abrupt arti-
facts), hence our final choice of wavelet. In practice, the findings we
present in the Results section were robust to choice of wavelet, tested
up to filter lengths of L=16. However, application ofwavelet despiking
to different data may require consideration of different wavelets (a
number of wavelet bases are included in the BrainWavelet Toolbox,
please see Section 6 below). In general, as decorrelation across and
within scales theoretically improves as a function of filter length
(provided that M N 3), it is advisable to select the longest filter length
that still allows good denoising. A further discussion on filter length
and decorrelation is provided in Appendix A. Relatedly, we note that it
is possible to estimate time series correlations for functional connectiv-
ity analysis in the wavelet domain, using the wavelet detail coefficients
themselves. For sliding window approaches, selection of more
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symmetric wavelets would thus be pertinent if analysis is to be per-
formed in the wavelet domain.

In addition, we note that the methods described in this article are
general and could be combined with other analysis methods, such as
the two-step thresholding procedures for connectomes described in
Meskaldji et al. (2015).Wavelet despiking and the analysismethods de-
scribed here have been tested on, and can also be applied to, fMRI data
collected using different acquisition methods, such as short-TR, multi-
band and multi-echo data, and on other biological data such as electro-
physiological time series. Of note, the algorithm has proven effective at
denoising up to 30 min of local field potential data sampled at 500 Hz
(Donnelly et al., 2014). Finally, we note that neighboring voxel-wise ef-
fective df estimates could be pooled to account for spatial dependence in
autocorrelation. In an analogousway to regularization of autoregressive
coefficient estimation advocated for pre-whitening methodologies
(Woolrich et al. (2001), based on insights by Bullmore et al. (1996)), it
is possible that local regularization of df estimates produced by wavelet
despiking may be advantageous. This could be done by local averaging
of results from 1D discrete wavelet transforms or by use of higher di-
mensional discrete wavelet transforms, for example, as illustrated by
Breakspear et al. (2004).

5. Conclusion

In summary, we demonstrate a new method for estimating the
statistical properties of fMRI networks using wavelet despiking. This
method enables estimation of effective degrees of freedom (df) by
using the whitening properties of discrete wavelet transforms, to pro-
vide a spatially-variable estimate of voxel-wise df after artifact
denoising. Using this method, we demonstrate robust Type I error
controlled probabilistic inference for seed connectivity analyses and
a new methodology for probabilistic interpretation of graph theoretic
results.

6. Software

We accompany this article with a new release of the BrainWavelet
Toolbox (www.brainwavelet.org) which includes code to automatically
generate voxel-wise effective degrees of freedom (df) maps after wave-
let despiking, for individual subjects. This version also includes tools for
generating single-subject statistical maps for seed connectivity and
graph theoretic analysis. The parcellation template used in this article
will also be made available on this website.
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Appendix A. A note on decorrelation of wavelet coefficients

The correlation between wavelet detail coefficients of the Discrete
Wavelet Transform (DWT), within and between scales, is known to be
small. In other words, DWTs are decorrelating. More specifically, it has
been shown that the correlation between two wavelet coefficients
within the same scale decays hyperbolically fast with time (Tewfik,
1992) and exponentially fast across scales (Dijkerman and Mazumdar,
1992) for a class of signals called fractional Brownian motion (fBm).
These properties have also been shown for a more general wider
class of 1/f-type signals, like fMRI time series (Wornell, 1993, 1996).
For 1/f-type processes, it can be shown that the correlation between
any two wavelet detail coefficients is:

~W j;t ; ~W j0 ;t0

D E
∼O




2 jt−2 j0 t0j2 H−Mð Þ; ð13Þ

where 〈 ⋅ 〉 represents the expected correlation, j is the scale, t is the
index of the coefficient in the time plane, H is the Hurst exponent and
M is the number of vanishing moments of the mother wavelet.

Provided then that M N 2 (and given that H b 1 for fBm processes),
the correlation between any pair of wavelet coefficients, within or be-
tween scales, will fall as an inverse power of their separation distance.
More specifically, it can be shown that for the hyperbolic and exponen-
tial decay of inter-coefficient correlation within and between scales
(respectively) to hold true, → M N 2H + 1 (Dijkerman and Mazumdar,
1992). Decorrelating fractal processes with H b 1 thus requires M N 3.
In theory, decorrelation will improve with larger M. However, in
practice, and as described in Bullmore et al. (2001), increasing M
does not necessarily improve decorrelation. This is because the filter
length (or local support) of the wavelet, L, is ≥2M-1. Thus, for period-
ic boundary conditions, larger L results in a greater number of
boundary coefficients and greater uncertainty in inter-coefficient
correlation (Tewfik, 1992). In addition, with wavelet despiking,
there is a trade-off between decorrelation and denoising. The former
favors larger M(N3) and the latter favors smaller L and thus smaller
M. In this article, we used the fourth-order Daubechies wavelet
with filter length L = 8 and M = 4 (Bullmore et al., 2001; Laird
et al., 2004), which we found to denoise well while providing good
decorrelation. We confirmed this by assessing the Type I error of
false positive results. While we found that increasing L up to twice
the value used in this article did not much improve the decorrelation
obtained with L = 8, the denoising was less sensitive. In general, we
suggest that the wavelet choice should be determined by the largest
L that provides good denoising, while ensuring M N 3.
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