
Identification of an m6A
Regulators-Mediated Prognosis
Signature For Survival Prediction and
Its Relevance to Immune Infiltration in
Melanoma
Liuxing Wu†, Xin Hu†, Hongji Dai, Kexin Chen and Ben Liu*

Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of
Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer,
Tianjin Medical University Cancer Institute and Hospital, Tianjin, China

Despite robust evidence for the role of m6A in cancer development and progression, its
association with immune infiltration and survival outcomes in melanoma remains obscure.
Here, we aimed to develop an m6A-related risk signature to improve prognostic and
immunotherapy responder prediction performance in the context of melanoma. We
comprehensively analyzed the m6A cluster and immune infiltration phenotypes of
public datasets. The TCGA (n � 457) and eleven independent melanoma cohorts (n �
758) were used as the training and validation datasets, respectively. We identified twom6A
clusters (m6A-clusterA and m6A-clusterB) based on the expression pattern of m6A
regulators via unsupervised consensus clustering. IGF2BP1 (7.49%), KIAA1429
(7.06%), and YTHDC1 (4.28%) were the three most frequently mutated genes. There
was a correlation between driver genes mutation statuses and the expression of m6A
regulators. A significant difference in tumor-associated immune infiltration between two
m6A clusters was detected. Compared with m6A-clusterA, the m6A-clusterB was
characterized by a lower immune score and immune cell infiltration but higher mRNA
expression-based stemness index (mRNAsi). An m6A-related risk signature consisting of
12 genes was determined via Cox regression analysis and divided the patients into low-
and high-risk groups (IL6ST, MBNL1, NXT2, EIF2A, CSGALNACT1, C11orf58, CD14,
SPI1, NCCRP1, BOK, CD74, PAEP). A nomogram was developed for the prediction of the
survival rate. Compared with the high-risk group, the low-risk group was characterized by
high expression of immune checkpoints and immunophenoscore (IPS), activation of
immune-related pathways, and more enriched in immune cell infiltrations. The low-risk
group had a favorable prognosis and contained the potential beneficiaries of the immune
checkpoint blockade therapy and verified by the IMvigor210 cohort (n � 298). The m6A-
related signature we have determined in melanoma highlights the relationships between
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m6A regulators and immune cell infiltration. The established risk signature was identified as
a promising clinical biomarker of melanoma.

Keywords: signature for prognosis guidance, immune infiltration, melanoma, m6A clusters, expression pattern of
m6A regulators

INTRODUCTION

Melanoma is a highly malignant tumor characterized by invasive
and expansive growth, a high relapse rate, a short survival time,
and a high grade. Molecular pathological aberrations have been
widely studied in melanoma and have led to the development of
multiple therapeutic modalities, including immunotherapy. At
present, drugs for melanoma include small molecule inhibitors
for BRAF orMEK, anti-CTLA4 antibody, anti-PD1 antibody, and
modified oncolytic herpes virus talimogene laherparepvec
(T-VEC) (Luke et al., 2017). A study based on the national
cancer registration data in England showed that cutaneous
malignant melanoma incidence rate in females is higher than
males in the young group, and a similar result was observed in the
United States (Donley et al., 2019; Memon et al., 2021). Immune
checkpoint blockade increases the survival rate for some patients
(Allemani et al., 2018). Although immunotherapy has
dramatically improved some patients’ prognosis, there remains
a number of patients who have not responded to the drugs
available for immunotherapy (Axelrod et al., 2018). Due to
individual differences, it is more than necessary to identify
biomarkers and apply individualized therapeutic approaches.

M6A is the most common modification of eukaryotic RNA
(Dominissini et al., 2012). It plays a crucial role in RNA stability,
mRNA precursor shearing, polyadenylation, mRNA transport and
translation, noncoding RNAs cleavage, and degradation, which
participate in the occurrence and development of many tumors
(Arguello et al., 2017; Zhao et al., 2017;Wang et al., 2018; Yang et al.,
2018). The m6A modification is reversible and regulated by three
types of regulators, including methyltransferases, RNA binding
proteins, and demethylases (Liu et al., 2020). The
methyltransferases, also known as “writers,” including METTL3/
14, WTAP, etc., catalyzes methyl transfer to the nitrogen atom in
position six of adenylate. Then the inverse process is regulated by
demethylases, also called “erasers,” including FTO and ALKBH5.
The RNA binding proteins, including YTHDF1-3, FMR1, and so on,
also referred to as “readers,” are recruited by the m6A site and
specifically bind m6A residues (Liu J. et al., 2019). M6A has been
shown to be associated with multiple cancers such as melanoma,
gastric cancer, and hepatoblastoma (Liu L. et al., 2019; Yue et al.,
2019). A recent study found that METTL3-mediated m6A
modification promotes the proliferation and metastasis of uveal
melanoma via the targeting of c-Met (Luo et al., 2020). Hint2 has
been considered as a tumor suppressor and promotes the Ca2+

pumping into the mitochondria. Such a process causes the apoptosis
of mitochondria (Ndiaye et al., 2013). The m6A regulators inhibited
melanoma development by increasing the methylation of Hint2 (Jia
et al., 2019). Yang et al. revealed the positive/negative regulatory role
for METTL3/ALKBH5 in RHOB and RHOC (a subset of small
GTPase proteins) in melanoma (Yang et al., 2020). YTHDF1

interferes with the presentation of dendritic cells by promoting
the expression of lysosomal protease in dendritic cells and gives
rise to disorder in the immune response. This work demonstrated
that m6A modification constitutes an important regulator in
immune infiltration (Han et al., 2019).

Mutations in driver genes can promote cancer development
and progression, along with a significant impact, such as giving
tumor cells selective advantages, improving cell division, avoiding
apoptosis, and negative growth regulation (Martinez-Jimenez
et al., 2020). However, the correlation between m6A regulators
and driver genes remains unknown in melanoma.

Some studies have shown that tumor-initiating stem cells
inhibit cytotoxic T cell responses via the surface molecule of
CD80, which suggests that tumor-initiating stem cells could be
essential to activating immune checkpoint pathways (Miao et al.,
2019). M6A is involved in regulating many signaling pathways
associated with stem cell differentiation (Lv et al., 2018; Su et al.,
2020). The mRNA expression-based stemness index (mRNAsi)
was used to estimate the degree of oncogenic dedifferentiation.
The results showed that higher mRNAsi is correlated with a
reduced immune infiltration, such as a lower leukocyte fraction
and PDL1 expression (Malta TM. et al., 2018). However, the
association between m6A and mRNAsi is not clear in melanoma.

Immunotherapy has good therapeutic potential in the context of
several fatal neoplasms, such as melanoma and non-small cell lung
cancer (Schadendorf et al., 2012; Martinez et al., 2019). Yang et al.
showed that FTO attenuates the clinical response to anti-PD1 therapy
in melanoma (Yang et al., 2019a). The study demonstrated that
knockdown of FTO promotes the degradation of PD1, CXCR4, and
SOX10 via increased methylation, and YTHDF2 recognizes the
process. The study of Li et al. revealed that small-molecule
ALKBH5 inhibitor increased the immune response in melanoma
(Li et al., 2020). These studies suggested that combining target m6A
regulator and anti-immune checkpoint therapy may improve the
efficacy of immunotherapy inmelanoma. However, the above studies
were restricted to single m6A regulators. Little is known about the
association between multiple m6A regulators and the immune
infiltration, pathological characteristics, and clinical prognosis of
melanoma. Our study identified a risk signature consisting of
12 m6A-related genes. In addition, we analyzed the association
between m6A and infiltration in melanoma. The signature has
been verified in four independent melanoma cohorts and an anti-
PDL1 cohort.

MATERIALS AND METHODS

Data Acquisition
The gene expression data and clinicopathological data of 457
melanoma patients and 233 normal skin tissues were obtained
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from the UCSC Xena platform (http://xena.ucsc.edu/). Gene
mutation maps of 457 melanoma patients were downloaded
from TCGA (https://portal.gdc.cancer.gov/). Gene expression
data and the clinical data of GSE65904 (n � 210), GSE59455
(n � 122), GSE54467 (n � 78), GSE91061 (n � 51), GSE19234 (n �
44), GSE78220 (n � 26), GSE22154 (n � 22) and GSE100797 (n �
21) were obtained from gene expression omnibus (GEO) (https://
www.ncbi.nlm.nih.gov/geo/). Other gene expression data and the
clinical data were obtained from previous studies, including a
melanoma cohort from Nathanson et al. (n � 24), an anti-CTLA4
melanoma cohort (n � 39), an anti-PD1 melanoma cohort (n �
121), and IMvigor210 cohort (n � 298). Finally, 233 normal
samples and 1,513 tumor samples were included in the follow-up
analyses. The sequencing platform and sample size of each cohort
are summarized in Table 1.

Selection of m6A Regulators
A total of 21 regulators related to m6A modification were
included in the follow-up analyses. These 21 m6A regulators
included eight writers (METTL3, RBM15, METTL14, RBM15B,
CBLL1, WTAP, KIAA1429, ZC3H13), eleven readers (YTHDF1,
YTHDF2, YTHDF3, YTHDC1, YTHDC2, IGF2BP1, FMR1,
HNRNPA2B1, ELAVL1, HNRNPC, LRPPRC) and two erasers
(ALKBH5, FTO) (Zhang and Wu, 2020a).

Differential Expression and Genetic
Variation Analyses
The limma package was used to compare the difference in gene
expression between normal samples and tumor samples. The
mutation maps of the TCGA tumor samples were obtained, and
the mutation waterfall map of the 19mutated m6A regulators was
drawn with the GenVisR package. The landscape of the CNV
variation in the chromosome of these m6A regulators was plotted
via R package OmicCircos. We acquired seven cutaneous
melanoma driver genes from the previous study, included
BRAF, NRAS, CDKN2A, NF1, MECOM, COL5A1, DACH1, in
which mutation frequencies were more than 10% (Bailey et al.,
2018). Then we performed a permutation test to examine the
p-value of the expression of m6A regulators between the driver
genes-mutant and -wild samples.

Unsupervised Clustering of m6A Regulators
and Gene Set Variation Analysis (GSVA)
Unsupervised clustering analysis of melanoma patients was
performed using the ConsensusClusterPlus package in the R
software. We used the GSVA enrichment analysis to explore
the differences in pathways between the two m6A clusters. We
downloaded the gene sets of “c2.cp.kegg.v7.4” from the
MSigDB database for the GSVA enrichment analysis
(Subramanian et al., 2005). FDR < 0.05 was considered
statistically significant. We combined eight independent
melanoma cohorts to validate the unsupervised clustering
model, including GSE78220, GSE91061, GSE100797, a
melanoma cohort from Nathanson et al. study, GSE65904,
GSE19234, GSE22154, GSE59455.

Evaluation of Tumor Immune Infiltration
We used the estimate R package to estimate the immune infiltration
in TCGAmelanoma patients. The 28 immune-related gene sets were
obtained from the study of Charoentong et al. They contained both
innate immune cells, such as eosinophils, mast cells, macrophages,
and so on, and adaptive immune cells, such as CD4+ T cell, Gamma
delta T cell, and so on (Charoentong et al., 2017a). The single-sample
gene set enrichment analysis (ssGSEA) of 28 immune-related gene
sets was used to quantify the abundances of 28 immune cells using
GSVA package in melanoma patients. The estimate package was
used to evaluate the immune scores, stromal scores, and tumor
purity of the tumor patients. In addition, we utilized CIBERSORT,
MCPcounter, TIMER algorithms to assess the abundances of
immune infiltration between the two m6A-clusters. These three
analyses were performed via the CIBERSORT function,
MCPcounter, and IOBR R packages, respectively. Differential
gene expression analysis between the two m6A clusters was
performed via the limma package of the R language.

Construction of an m6A-Related Signature
and a Nomogram
We selected differential expression genes between two m6A
clusters (n � 849, p < 0.05 and | log fold change | >0.5). We
performed GO enrichment analysis for the differential expression

TABLE 1 | The sequencing platform and sample size of each cohort.

Datasets Citation Platforms Sample size

TCGA Cancer Genome Atlas, (2015) Illumina RNAseq HTSeq 457
GSE65904 Cirenajwis et al. (2015) Illumina HumanHT-12 V4.0 expression beadchip 210
GSE59455 Budden et al. (2016) Illumina HumanRef-8 WG-DASL v3.0 122
GSE54467 Jayawardana et al. (2015) Illumina HumanWG-6 v3.0 expression beadchip 78
GSE91061 Riaz et al. (2017) Illumina Genome Analyzer (Homo sapiens) 51
GSE19234 Bogunovic et al. (2009) Affymetrix Human Genome U133 Plus 2.0 Array 44
GSE78220 Hugo et al. (2016) Illumina HiSeq 2000 (Homo sapiens) 26
Melanoma cohort from Nathanson et al Nathanson et al. (2017) Illumina TruSeq mRNA library kit 24
GSE22154 Jönsson et al. (2010) Illumina HumanHT-12 V3.0 expression beadchip 22
GSE100797 Lauss et al. (2017) Illumina HiSeq 2000 (Homo sapiens) 21
Anti-PD1-melanoma cohort Liu et al. (2019c) Illumina’s TruSeq RNA Access Library Prep kit 121
Anti-CTLA4-melanoma cohort Van Allen et al. (2015) NA 39
IMvigor210 Mariathasan et al. (2018b) NA 298
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genes via the clusterProfiler package. Then we screened genes
present in both the GEO and our total of differentially
expressed genes via univariate Cox regression analyses (n �
31, p < 0.0001). We used multivariate Cox regression analyses
to narrow the range of target genes. The Akaike information
criterion (AIC) was used to measure the prognostic prediction
ability of the Cox proportional hazard regression model by
calculating for different variables. Here, lower values of AIC
indicate a better model fit. Finally, 12 genes were identified to
establish a risk signature (Gaulke et al., 2019). The Benjamini
and Hochberg method was applied for multiple-testing
adjustments, and the p-value remained significant. The
patients were divided into the high-risk and low-risk groups
using the surv_cutpoint function (Chu et al., 2020). The
integrated discrimination improvement (IDI) and the net
reclassification improvement (NRI) were used to evaluate
the performance of the signature (survIDINRI package). To
test the predictive efficiency of this signature on
immunotherapy, we performed the validation analysis
through integrating five melanoma immunotherapy cohorts,
including an anti-PD1 melanoma cohort, an anti-CTLA4
melanoma cohort, GSE91061, GSE78220 and GSE100797
(ICB-therapy-combined melanoma, n � 258). Data were
corrected for batch effects via the combat function from the
sva R package. To predict the survival rates, we constructed a
nomogram model based on risk score, gender, stage, and age in
457 TCGA melanoma patients. We obtained the weights of the
immune-related genes (four categories) from the previous
study, including major histocompatibility complex (MHC)-
related molecules, suppressor cells, effector cells, and
checkpoints or immunomodulators. The weighted averaged
Z-score was calculated based on the expression. Based on the
sum of the weighted average Z-scores of four categories, the
IPS was calculated (ranging from 0 to 10) (Charoentong et al.,
2017b).

Statistical Analysis
R 3.6.2 was used for data analysis and graph drawing. The detailed
methods, software, algorithms, and sources of each cohort are
summarized in Table 2. The expression correlations between 21
m6A regulators were analyzed by Spearman correlation
coefficient analysis. Univariate Cox analysis was used to screen
for genes that were significantly associated with prognosis. Then,
a risk signature was constructed via the multivariable Cox
regression model based on the stepwise regression with the
minimum Akaike information criteria (AIC). A Wilcoxon
rank-sum test was used to analyze the differences in
continuous variables between the two groups. The log-rank
test was used to compare the difference in survival rates
between the two groups. Differences were established by chi-
square tests and Fisher’s exact test. p < 0.05 was considered to be
statistically significant.

RESULTS

The Landscape of Expression and Genetic
Variation of m6A Regulators in Melanoma
Patients
A schematic of the process is presented in Figure 1. The
landscape of the expression correlation of these m6A
regulators was shown in Figure 2A. We found most m6A
regulators presented a significant positive correlation in
expression, except for ALKBH5. To better understand the role
of m6A regulators in the pathogenesis and progression of
melanoma, we analyzed the differences in the expression of 21
m6A regulators between normal and tumor samples via the R
package limma. Among the 21 m6A regulators, 11 were
significantly more highly expressed in the tumor tissues than
in the normal tissues (RBM15B, RBM15, ALKBH5, YTHDF1-3,

TABLE 2 | The detailed methods, software, algorithms and sources of each cohort.

Reagent or Resource Source Identifier

Software and algorithms
Workflow This paper Figure 1
R 3.6.2 R Core Team (2019) https://www.r-project.org/
limma (v 3.42.2) Ritchie et al. (2015) http://bioconductor.org/packages/release/bioc/html/limma.html
ConsensusClusterPlus (v 1.50.0) Wilkerson and Hayes, (2010) http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
GenVisR (v 1.18.1) Skidmore et al. (2016) http://bioconductor.org/packages/release/bioc/html/GenVisR.html
OmicCircos (v 1.24.0) Hu et al. (2014) http://www.bioconductor.org/packages/devel/bioc/html/OmicCircos.html
survminer (v 0.4.8) Kassambara et al. (2020) https://CRAN.R-project.org/package�survminer
GSVA (v 1.34.0) Hänzelmann et al. (2013) http://www.bioconductor.org/help/search/index.html?q�GSVA/
estimate (v1.0.13) Yoshihara et al. (2013) https://R-Forge.R-project.org/projects/estimate/
MCPcounter (v 1.2.0) Becht et al. (2016) https://github.com/ebecht/MCPcounter
IOBR (v 0.99.9) Zeng et al. (2021) https://github.com/IOBR/IOBR
CIBERSORT Gentles et al. (2015) https://precog.stanford.edu/
clusterProfiler (3.14.3) Yu et al. (2012) https://guangchuangyu.github.io/software/clusterProfiler/
ggplot2 (v 3.3.2) Wickham, (2009) https://cran.r-project.org/web/packages/ggplot2/index.html
sva (v 3.34.0) Leek et al. (2012) http://www.bioconductor.org/packages/release/bioc/html/sva.html
survIDINRI (v 1.1-1) Uno et al. (2013) https://CRAN.R-project.org/package�survIDINRI

Deposited Data
Melanoma expression and clinical data UCSC Xnea https://xenabrowser.net/datapages/?hub�https://gdc.xenahubs.net:443
Melanoma somatic mutation data The cancer genome atlas https://portal.gdc.cancer.gov/
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IGF2BP1, CBLL1, ELAVL1, LRPPRC, and ZC3H13; p < 0.05,
Figure 2B). Then, we analyzed the somatic mutations of 21 m6A
regulators in TCGA melanoma; 19 m6A regulators displayed
mutations, with the exception of only two genes (METTL14 and
ALKBH5) in melanoma tissues (Figure 2C). Among the 19 m6A
regulators showing somatic mutations, IGF2BP1, KIAA1429 and
YTHDC1 displayed the highest mutation frequency (7.49, 7.06,
and 4.28%, respectively) (Figure 2D). To evaluate the potential
signaling pathways controlling the mutation patterns of these
three genes, we performed GO enrichment analysis in 67
melanoma cell lines using the mutation and RNA-seq
expression profiles from the Cancer Cell Line Encyclopedia
(CCLE) dataset (Ghandi et al., 2019). We found that the
IGF2BP1 and KIAA1429 mutant cell lines exhibited a
significant association with the functions related to DNA

repair like melanin biosynthetic process and DNA strand
elongation involved in DNA replication, as well as DNA
replication and Mismatch repair. While Melanin metabolism
pathway, including melanin biosynthetic process, melanosome
organization, and Melanogenesis, were remarkably rich in the
YTHDC1 mutant cell lines (Supplementary Figure S1).

The somatic copy number alteration (CNV) analysis revealed
that most m6A regulators displayed deletion in copy number,
except for CBLL1, HNRNPA2B1, IGF2BP1, KIAA1429, LRPPRC,
and YTHDF1-3 (Figure 2E). The position of the CNV variation in
the chromosome of these m6A regulators is shown in Figure 2F.
The high expression of eight m6A regulators (CBLL1, FMR1,
HNRNPA2B1, HNRNPC, LRPPRC, RBM15, RBM15B, ZC3H13)
was enriched in driver genes-mutated samples. The low
expression of one m6A regulator (ALKBH5) was enriched in

FIGURE 1 | Flowchart of the article. Patients with survival information were selected for this study.
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FIGURE 2 | Bioinformatics analysis of the expression and genetic variation of m6A regulators in melanoma. (A) The expression correlation of m6A regulators; blue
represents negative correlation, and orange represents positive correlation (*p < 0.05, **p < 0.01, ***p < 0.001). (B) The box plots were used to visualize the differential
expression of 21 m6A regulators in tumor and normal samples; the expression values are log-transformed (*p < 0.05, **p < 0.01, ***p < 0.001). (C)Waterfall diagram of
the m6A regulators in the TCGA melanoma cohort. Each column represented individual patients. The upper barplot showed TumorMutationBurden (TMB). The
number on the left indicated the mutation frequency in each gene. (D) This bar graph displays the mutation rates of m6A regulators in TCGA melanoma. (E) The CNV
alteration of the 21 m6A regulators. (F) The position of the CNV variation in the chromosome of these m6A regulators.
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driver genes-mutated samples (permutation test, p < 0.005,
Figure 3). These results showed the high heterogeneities of m6A
regulators and indicated that the dysregulation of m6A regulators
had a critical role in the pathogenesis and progression of melanoma.

Identification of Two m6A Clusters Based
on the Expression Pattern of m6A
Regulators
To comprehensively analyze the role of multiple m6A regulators in
melanoma, we performed unsupervised clustering of the tumor
samples using the expression values of 21 m6A regulators via the
R package ConsensusClusterPlus. The consensus clustering
algorithm was used to determine the most stable consensus
clusters. According to the consensus matrix, when k � 2, the
number of patients was evenly distributed in each cluster,
without any cluster containing an exceptionally high or low
number of patients. The clusters showed a low correlation. When
K � 2, the CDF curve is flat, revealing the correct K (Wilkerson and
Hayes, 2010; Senbabaoglu et al., 2014; Hu et al., 2021). The
maximum Calinski-Harabasz (CH) index indicated that K � 2
was the optimal number of clusters (Supplementary Figure S2).
Principal component analysis indicated a significant difference in
transcriptome between the two clusters (Figure 4A). Two optimum
clusters of m6A were obtained, named m6A-clusterA and m6A-
clusterB, respectively (Figure 4B). Heatmap demonstrates the
clinicopathological manifestations between the two m6A-clusters
(Figure 4C). The association between the m6A clusters and the
clinical indexes was analyzed, and we found that the low expression
of FMR1, METTL3 and YTHDC2 was associated with the m6A-
clusterA (Supplementary Table S1). To further understand the
differences in biological processes between the two clusters, we
employed GSVA enrichment analysis. The results indicated that

the m6A-clusterA exhibited a significant association with the
pathways related to immunological responses, such as antigen
processing and presentation, natural killer cell-mediated
cytotoxicity, chemokine signaling pathway, complement and
coagulation cascades, and so on (Figure 4D). To verify the
findings in the TCGA melanoma dataset, we performed external
validation using a combined melanoma cohort to validate the
unsupervised clustering model (n � 520). The result is consistent
with the model based on TCGA, and K � 2 was the optimal value
(Supplementary Figure S3).

Different Characteristics of Immune
Infiltration in Two m6A Clusters
The correlation between the m6A RNA methylation regulators and
immune infiltration was further evaluated. To assess the different
immunological responses between the two m6A clusters, we
measured the immune score, tumor purity, stromal score,
mRNAsi, and infiltrating abundances of 28 immune cells using
the Wilcoxon rank-sum test. The mRNA expression-based
stemness index (mRNAsi) was obtained from the study of Malta
et al. It was calculated with an innovative one-class logistic regression
machine-learning algorithm (OCLR) based on mRNA expression,
giving values between 0 and 1 (Malta TM. et al., 2018). The results
showed that the m6A-clusterA had a higher immune score
(Figure 5A) and stromal score (Figure 5B) but lower tumor
purity (Figure 5C) and mRNAsi (Figure 5D) compared with the
m6A-clusterB (Wilcoxon rank-sum test, p < 0.05). The infiltrating
abundances of 28 immune cells indicated that most immune cells
were enriched in them6A-clusterA compared with them6A-clusterB
except for the Activated CD4 T cell, Effector memory CD4 T cell,
Memory B cell, Type 2 T helper cell, Eosinophil, Gamma delta T cell,
Immature dendritic cell, Natural killer cell (Wilcoxon test, p < 0.05,

FIGURE 3 | These heatmaps were used to visualize the expression of m6A regulators between the driver genes mutant and wild samples, permutation test, p <
0.005. (A) ALKBH5 between the different mutation statuses of NRAS. (B) CBLL1 between the different mutation statuses of BRAF. (C) FMR1 between the different
mutation statuses ofCOL5A1. (D)HNRNPA2B1 between the different mutation statuses of BRAF. (E)HNRNPC between the different mutation statuses ofMECOM. (F)
LRPPRC between the different mutation statuses of NRAS andMECOM. (G) RBM15 between the different mutation statuses of NRAS. (H) RBM15B between the
different mutation statuses of NRAS. (I) ZC3H13 between the different mutation statuses of NRAS.
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FIGURE 4 | Identification of consensus clusters by 21 m6A regulators. (A) Principal component analysis indicated that there was a significant difference in
transcriptome between the twom6A clusters. (B) Box plots were used to visualize the differential expression of 21 m6A regulators in two clusters (upper, *p < 0.05, **p <
0.01, ***p < 0.001). The heatmap shows the Z-score-transformed expression levels of 21 m6A regulators between the two m6A clusters (down). (C) clinicopathological
manifestations between the two m6A-clusters. (D) The heatmap shows the activation states of pathways between the two m6A clusters, and yellow represents
activated and blue represents repressive pathways.

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7189128

Wu et al. m6A and Immune Infiltration

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Figure 5E). Similar to previous conclusions, the m6A-clusterA was
characterized by a higher immune score and immune cell infiltration
in the validation cohort (Supplementary Figure S4).

In addition, we also utilized CIBERSORT, MCPcounter, and
TIMER algorithms to evaluate the abundances of tumor immune
infiltration. The heatmap was used to show the landscape of
immune infiltration based on these five algorithms (Figure 5F).
These results showed that multiple m6A regulators-mediated
modification patterns might involve regulating tumor immune
infiltration of melanoma.

Identification of m6A-Related Risk
Signature With Prognostic Significance and
a Nomogram Construction
To predict the prognosis and guide individualized treatment, we used
the differentially expressed genes with prognostic significance

between the two m6A clusters to construct an m6A-related
signature. We selected differential expression genes between two
m6A clusters (n � 849, p < 0.05 and | log fold change | >0.5)
(Supplementary Table S2). Then we performed GO enrichment
analysis for these differential expression genes. These differential
expression genes were enriched in m6A-related pathways, such as
RNA splicing, regulation of mRNA processing, and so on
(Supplementary Figure S5). So we considered these differential
expression genes as m6A phenotype-related genes, which can be
used to construct the m6A-related signature (Zhang et al., 2020b).
Then we screened differential genes with prognosis significance via
univariate Cox regression analyses (n � 31, p < 0.0001)
(Supplementary Table S3). Moreover, 12 genes were used to
construct the optimized risk signature with minimum Akaike
information criterion (AIC) value via multivariate Cox regression
analysis (IL6ST, MBNL1, NXT2, EIF2A, CSGALNACT1, C11orf58,
CD14, SPI1, NCCRP1, BOK, CD74, PAEP) (Sun et al., 2020). The risk

FIGURE 5 | The two m6A clusters show differential immune infiltration. (A) Immune scores in melanoma samples were compared between the two m6A clusters.
(B) Stromal scores in melanoma samples were compared between the two m6A clusters. (C)Tumor purity in melanoma samples was compared between the two m6A
clusters. (D)MRNAsi in melanoma samples were compared between the two m6A clusters. (E) Infiltrating abundances of 28 immune cells were compared between the
two m6A clusters (Wilcoxon test, *p < 0.05, **p < 0.01, ***p < 0.001) (F) The landscape of immune infiltration based on TIMER, CIBERSORT, estimate, MCP
counter, and ssGSEA algorithms.
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FIGURE 6 | The m6A-related signature and the nomogram in the role of survival prediction. The Kaplan Meier plots for survival prediction of high-risk and low-risk.
Forest plot representation of the multivariate Cox regression analysis of risk signature with age, gender, tumor stage was taken into account. (A) TCGA, (B) GSE65904,
(C) GSE54467, (D) GSE78220, (E) combined TCGA-GEO. T: T-stage, primary tumor stage; N: N-stage, lymph node; M: M-stage, metastasis. (F) A Nomogram model
was established using risk score and well-known risk factors. (G) The calibration curves showed favorable consistencies between the predicted and the actual
survival probabilities in 3-, 5-years.
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FIGURE 7 | The association between risk signature and immune infiltration in melanoma. The expression of three immune checkpoints in TCGA melanoma with
different risk groups (A) PDL1. (B) PD1. (C) CTLA4. (D) The level of risk scores in TCGA melanoma with different mutation statuses of BRAF. The immunophenoscores
(IPS) in TCGA and combined gene expression omnibus (GEO) cohorts, (E) TCGA. (F) Combined-GEO cohorts. (G) The correlation between risk scores and immune
infiltration cells in TCGA melanoma. (H) Box plots were used to visualize the differential expression of 21 m6A regulators in high- and low-risk groups (*p < 0.05,
**p < 0.01, ***p < 0.001). (I) Gene ontology (GO) analysis showed that the low-risk group was enriched in pathways associated with immune full activation; (J) the high-
risk group was prominently enriched in Melanin metabolism pathways.
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scores were derived from the following equations: Risk scores � ∑
(coefi × Xi), wherein coefi is the coefficient and xi is the relative
expression value, transformed by Z-score, of the 12 genes
(Supplementary Table S4).

The patients in the cohort were divided into high- and low-risk
groups using the surv_cutpoint function. The Kaplan Meier survival
curves showed significant differences in overall survival between the
two risk groups. The above results were independently validated in
three melanoma cohorts from the gene expression omnibus database
(GEO) (log-rank test, p < 0.05, Figures 6A–D). We plotted receiver
operating characteristic curves (ROC curves) using timeROC in the R
package. We evaluated the prediction accuracy of the risk signature
according to the area under these ROC curves (AUC); high AUC
values indicate good sensitivity and specificity (Supplementary
Figure S6). The association between risk signature and survival
remained statistically significant after age, gender, and stage were
taken into account [TCGA, HR: 2.79 (95% CI: 2.01–3.85), p < 0.001,
Figure 6A; GSE65904, HR: 2.20 (95% CI: 1.43–3.36), p < 0.001,
Supplementary Figure S7A; GSE54467, HR:2.70 (95% CI:
1.41–5.20), p � 0.003, Supplementary Figure S7B; GSE78220,
HR: 10.49 (95% CI: 1.30–84.15), p � 0.027, Supplementary
Figure S7C; TCGA + GEO: HR: 2.41 (95% CI: 1.95–2.97), p <
0.001, Figure 6E]. We calculated the integrated discrimination
improvement (IDI) and the net reclassification improvement
(NRI) for the comparation of the old model (AJCC stage only,
without risk score) and combined model (combined stage and risk
score). The IDI for 1- and 3-years were 5.5% (p < 0.001) and 16.5%
(p< 0.001), respectively. Consistently, theNRI for 1- and 3-yearswere
30.2% (p � 0.006), 40.1% (p < 0.001), respectively, (Supplementary
Figures S8A,B). From the ROC curves, the AUCs of combined
model for the survival prediction in 1- and 3-years were 0.721 and
0.745, respectively, higher than the old model (Supplementary
Figures S8C,D). In addition, we developed a nomogram based on
risk score, age, gender, and stage for survival rate prediction
(Figure 6F). The C-index of the nomogram was 0.726 (95% CI,
0.685–0.767), markedly higher than AJCC stage (0.621, 95% CI:
0.580–0.662). A calibration curve at 3 or 5 years showed high
consistency between predicted survival probability and actual
survival proportion (Figure 6G).

The low-risk group had higherPDL1 (Figure 7A),PD1 (Figure 7B)
and CTLA4 expression (Figure 7C), and immunophenoscore (IPS)
(Figures 7E,F) compared with the high-risk group, indicating that the
low-risk group may exhibit a better response to immunotherapy. The
results were validated in GEO-combined cohorts (Supplementary
Figure S9). The correlation between the 28 immune infiltration
cells and the risk scores was examined using Spearman correlation
analysis (Figure 7G).

Notably, nearly all the writers and readers were significantly
upregulated in the low-risk group, indicating the potential
correlation of m6A levels and immunotherapy response in
melanoma (Figure 7H).

Furthermore, the GO enrichment analysis revealed that the
low-risk group was enriched in pathways associated with immune
fully activation, including MHC class II protein complex,
regulation of dendritic cell apoptotic process, and T cell
receptor complex (Figure 7I). In comparison, the high-risk
group was prominently related to Melanin metabolism

pathways such as melanin biosynthetic process, tyrosine
metabolic process, and melanocyte differentiation (Figure 7J).
In addition, the risk scores of the BRAF wild-type group were
higher than that of the mutation group (Figure 7D).

The Role of Risk Signature in
Immune-Checkpoint Blockade Therapy
Cohorts
To further test the predictive efficiency of m6A-related signature in
immunotherapy cohorts, we analyzed the proportion of patients with
response to immune checkpoint blockade therapy in low- and high-
risk groups. The immunotherapy cohorts included a combined
melanoma cohort (ICB-therapy-combined melanoma) and
urothelial cancer patients treated with anti-PDL1 (ICB-therapy-
UC). As regards ICB-therapy-combined melanoma, the patients in
the low-risk group had a significantly improved survival rate (log-
rank test, p < 0.05, Figure 8A) and a higher response rate to ICB
therapy (Fisher’s exact test, p < 0.05, Figure 8B) compared with the
high-risk group. Consistent with ICB-therapy-combined melanoma,
the patients in the low-risk group exhibited a significantly prolonged
survival rate (log-rank test, p < 0.05, Figure 8C) and a higher
response rate to immune-checkpoint blockade therapy (Fisher’s
exact test, p < 0.05, Figure 8D) compared with the high-risk
group in ICB-therapy-UC.

DISCUSSION

Although various immunotherapies have revolutionized melanoma
treatment, only a few patients can respond well to immunotherapy
(Rodriguez-Cerdeira et al., 2017). Recent studies have revealed the
multiple functions of m6A methylation in the immune response;
however, these studies focused on single m6A regulators. The
immune infiltration comprehensively mediated by multiple m6A
regulators has never been investigated in melanoma. Therefore, it is
necessary to comprehensively evaluate the m6A regulators and
immune responses to approach individual treatment.

In the current study, we uncovered a significant correlation
between the m6A regulators and immune infiltration in
melanoma for the first time. In addition, we identified an m6A-
related risk model composed of 12 genes for survival prediction. The
methyltransferase METTL3 controls the function of dendritic cells.
The depletion of METTL3 leads to an elevation in functional
maturation damage and phenotypic DC (Wang et al., 2019a).
FTO plays a crucial role in therapeutic resistance to anti-PD1
immunotherapy in melanoma. Therefore, one promising strategy
is to combine FTO inhibition with anti-PD1 blockade for reducing
the resistance to immunotherapy in melanoma (Yang and Wei,
2019b). METTL3 increased cytokine production via a TLR4/NF-kB
signal-induced mechanism indicated that it’s promising to combine
m6A and the blockade of immune checkpoints for immunotherapy
(Wang et al., 2019b). These studies showed that m6A regulators were
key enzymes in shaping different immune infiltration patterns. We
stratified the patients into two m6A clusters based on the expression
pattern of m6A regulators by consensus clustering analysis. The
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differences of multiple immune functioning ratings between the two
clusters were compared. Considering the strong need to assess the
prognosis of patients and effective personalized immunotherapy
strategies, we constructed an m6A-related signature with
independent prognosis and potential ability to provide
immunotherapy strategies. We confirmed the low-risk group had
higher PDL1, PD1, and CTLA4 expression and immunophenoscore
(IPS) than the high-risk group, indicating that the low-risk groupmay
exhibit a better response to immunotherapy. The results were
validated in GEO-combined cohorts. The patients in the low-risk
group treated with immune checkpoints blockade showed a higher
response rate to ICB therapy. Notably, there was trend towards better
survival outcome in female patients relative to males in the high- and

low-risk groups, respectively (data not shown). These gender
differences in outcome were probably related to the inactivation of
X chromosome, tumor location, single nucleotide polymorphisms
and hormone levels (Machado et al., 2014; Hernando et al., 2016;
Klein and Flanagan, 2016; Balaton et al., 2018; Bellenghi et al., 2020;
Liu et al., 2021). A prior study showed that m6A methyltransferase
proteins RBM15 and RBM15B promote X-inactive specific transcript
(XIST)-mediated transcriptional repression (Patil et al., 2016). These
interesting observations suggested that m6A RNA methylation is
involved in sex-related differences regulation.

There is often no unique “right” answer in the unsupervised
clustering method (Arora et al., 2020). Interestingly, K � 2 or 4 were
both stable clustering methods according to the consensus matrix

FIGURE 8 | The role of risk signature in ICB therapy cohorts. Kaplan Meier plots of patients treated with immune checkpoint blockade. (A) ICB-therapy-combined
melanoma. (B) ICB- therapy-UC. The degree of immune checkpoint blockade therapy response in high- and low-risk groups. (C) ICB-therapy-combined melanoma. (D)
ICB-therapy-UC. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.
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and the CDF curve in our study. However, we aim to explore
the association between immune infiltration and m6A
clusters. Accordingly, we chose the K � 2 for analysis
because dichotomous classification maybe a reasonable
method to reflect the immune phenotype of “hot” and
“cold” tumors (Gajewski et al., 2017; Maleki Vareki, 2018).
The binary classification may lead to a better understanding of
the property of immune cells infiltration status of the m6A
clusters (Supplementary Figure S2). Further, the Calinski-
Harabasz (CH) index suggested that K � 2 was the optimal
number of groups. In addition, we performed external
validation using a combined melanoma cohort to validate
the unsupervised clustering model. The result is consistent
with the model based on TCGA, and K � 2 was the optimal
value. This classification was also verified by further immune
phenotype analyses (Supplementary Figure S3). These
suggested that K � 2 is the more appropriate method for
the identification of m6A clusters in melanoma.

A previous study showed that the hot tumors are enriched
with immune infiltration and more likely to benefit from
immunotherapy (Jiang et al., 2018). TGFβ Blocking and
anti-PDL1 antibodies promote T cells to penetrate into the
tumor center by decreasing the TGFβ signal in stromal cells
and stimulating anti-tumor immunity and tumor regression
(Mariathasan and Turley, 2018a). This is consistent with our
result that the low-risk group is enriched in immune
activation pathways. Several lines of the study revealed the
association between the improved immunotherapy, favorable
prognosis, and abundant m6A modification level. Yang et al.
showed that knockdown of FTO (an eraser) sensitizes
melanoma to anti-PD1 treatment in mice, depending on
adaptive immunity (Yang et al., 2019c). Cui et al.
demonstrated that overexpression of METTL3 (a writer) or
inhibition of the RNA demethylase FTO suppresses
Glioblastoma Stem Cells growth and self-renewal (Cui
et al., 2017). Our findings also showed the high expression
of writers and readers in the low-risk group. In summary, this
may have contributed to the high response rate and better
prognosis in the low-risk group.

Other m6A-related prognostic signatures also achieved good
performance in predicting the prognosis of multiple malignant
tumors, including hepatocellular carcinoma, rectum
adenocarcinoma, gastric cancer (Guan et al., 2020; Huang
et al., 2020; Shen et al., 2020). Compared with other clinical
factors (gender, age, TNM stage), the risk signature showed a
beneficial supplement to prognostic factors for melanoma. And
the m6A-related signature can not only predict melanoma
patients’ survival outcomes and predict the response to
immunotherapy. These results indicated that m6A-related
signature might be a promising predictor for individual
treatment.

Previous studies indicated that BRAF targeted therapy
was associated with improved immune infiltration, such as
increased antigen expression, an CD8+ T-cell infiltration,
class I major histocompatibility complex (MHC) expression
(Boni et al., 2010; Frederick et al., 2013; Bradley et al., 2015;
Sabbatino et al., 2016). In our result, patients with BRAFwild

status showed a higher risk score, significantly poor
overall survival, progress-free survival, and a trend toward
decreased immune score (Supplementary Figure S10). All of
the above findings suggested that BRAFmut patients with BRAF
targeted therapy may benefit from immunotherapy due to
increased immune infiltration (Naderi-Azad and Sullivan,
2020).

There were several limitations in our study. First, clinical
information in our study was relatively incomplete.
Furthermore, the data was collected from different platforms,
so there is heterogeneity between different data sets and the study
population.

In conclusion, our study identified a risk signature that was an
independent indicator of prognosis in melanoma. For the first
time, we have also found the nonnegligible role of the expression
pattern of m6A regulators in shaping immune infiltration in
melanoma. However, further experiments are warranted to verify
the applicability of the risk signature.
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