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Obesity is the main condition that is correlated with the appearance of insulin resistance, which is the major link among its
comorbidities, such as type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several
types of cancer. Obesity affects a large number of individuals worldwide; it degrades human health and quality of life. Here, we
review the role of the gutmicrobiota in the pathophysiology of obesity and type 2 diabetes, which is promoted by a bacterial diversity
shift mediated by overnutrition. Whole bacteria, their products, and metabolites undergo increased translocation through the gut
epithelium to the circulation due to degraded tight junctions and the consequent increase in intestinal permeability that culminates
in inflammation and insulin resistance. Several strategies focusing onmodulation of the gut microbiota (antibiotics, probiotics, and
prebiotics) are being experimentally employed in metabolic derangement in order to reduce intestinal permeability, increase the
production of short chain fatty acids and anorectic gut hormones, and promote insulin sensitivity to counteract the inflammatory
status and insulin resistance found in obese individuals.

1. Introduction

Insulin resistance is the main outcome caused by nutrient
overload, lipids, infections, and sepsis-induced inflammation
that affects insulin-sensitive tissues, such as the liver, muscle,
adipose tissue, and hypothalamus, and which also promotes
defects in cell signaling pathways and homeostasis [1]. The
ingestion of an unbalanced diet and low physical activity
observed in recent years in the global population are themain
drivers of the epidemic rates of obesity reached in the past
few decades [2]. A prospective study evaluated more than
9 million people worldwide over the last three decades and
observed that, globally, the average body mass index (BMI)
increased by 0.4-0.5 kg/m2 per decade; moreover, subregion
trends showed that the average BMI increased by 1.4 kg/m2
in men and 1.9 kg/m2 in women, per decade [3]. However,
not only developed countries such as the United States are
affected by this epidemic of obesity, but also countries under
development, such as Brazil and other countries, are also
affected in a similar way [4].

The World Health Organization has observed that more
than 1.4 billion adults are overweight and, of these, at least
200 million men and 300 million women are clinically obese
[5]. Some studies have shown that the increased rate of
obesity has slowed down over the last five years, trended by
some specific population groups, in eastern Europe, South
America, and even in some specific population groups in the
United States. However, the prevalence of obesity remains
high and the health costs associated with obese individuals
are huge, ranging from 2 to 7% of the health budgets in
high income countries, which is followed by the low income
nations, while the mortality among obese people is increased
[3, 6, 7].

Obesity is characterized by chronic subclinical inflamma-
tion that affects insulin activity in its metabolically sensitive
tissues, notably the liver, muscle, and adipose tissue, and
drives a metabolic disorder that culminates in the dereg-
ulation of glucose homeostasis [8]. Since the observation
that obese adipose tissue shows increased expression of the
proinflammatory cytokine TNF-𝛼 [9], extensive research
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efforts have been made regarding inflammation in metabolic
tissues, trying to determinewhat primes the insulin resistance
phenomenon, the consequences of obesity, how to improve
the molecular knowledge of insulin activity attenuation
mediated by obesity, and how it can be managed in order
to improve patient quality of life. Attempts have also been
made to reduce or prevent the incidence of obesity and its
comorbidities.

Here, we will focus on reviewing the latest contributions
to the literature on the influence of the intestine on the
pathogenesis of insulin resistance and the consequences of
insulin resistance on the liver, muscle, adipose tissue, and
hypothalamus, as well as the mechanisms by which the gut
microbiota influences systemic insulin resistance.

2. Intestinal Participation in
Insulin Resistance

For several decades, it has been known that the mammalians
intestine harbors a great number of bacteria (∼1014 bacteria)
that even surpasses the total number of cells that comprise
mammalian tissues, systems, and, ultimately, the entire body
[10]. Furthermore, it is estimated that the gut microbiota
contains, at least, 100-fold more genes than the mammalian
genome. These bacteria can live in a symbiotic way but, in
certain cases, promote disease [11]. However, over the last
ten years, this community that lives within the mammalian
body has been gaining the status of a microbial organ that
contributes to homeostasis and impacts directly on energy
metabolism and insulin sensitivity [12, 13].

3. The Obese Microbiome Has Increased
Energy Harvesting Ability

One of the first and foremost important observations on
the role of the gut microbiota in insulin sensitivity and
body weightmanagement was observed when germ-freemice
that were infected with the gut microbiota content of a
conventionally raised mice showed an increase (by about
60%) in body fat content. Moreover, the occurrence of
insulin resistance and glucose intolerance was seen within 14
days, even with a reduction in food intake (standard chow),
providing novel evidence that the bacteria community, in
some way, controlled energy metabolism [14]. Additionally,
it was described that the activity of a lipoprotein lipase (LPL)
suppressor, known as fasting-induced adipocyte factor (Fiaf)
or angiopoietin-like protein 4 (ANGPTL4), controlled the fat
storage abnormalities observed in conventionalized germ-free
mice, where the gutmicrobiota induced selective suppression
of this protein in intestinal cells and promoted an increase in
LPL activity.This resulted in increased triglyceride storage in
adipocytes, which was prevented upon the conventionaliza-
tion of Fiaf−/− germ-freemice [14].

It was also shown that the resistance of germ-free mice
against diet-induced obesity relied on increased liver and
skeletal muscle AMPK activity and its downstream targets.
This induced the activation of fatty acid oxidation and
increased energy expenditure, which regulated body weight

gain, since Fiaf expression in the gut epithelium was highly
suppressed in germ-free mice fed a high-fat diet, keeping
the body weight almost unaltered, a feature that was not
maintained in Fiaf−/− germ-freemice [15].

The great increase in interest in the relationship between
the gut microbiota and mammalian metabolism has led to
the utilization of very elegant and novelmolecular techniques
based on microbial DNA sequencing [16, 17]. This interest
has also brought new insight into the epidemic obesity rates
throughout the world and the consequent incidence of type 2
diabetes, comorbidities, and cancer.

Metagenomic analyses of human volunteers showed that
almost all bacteria present in the distal gut and feces belong
to two main bacterial phyla, Bacteroidetes and Firmicutes
[18]. The predominance of these phyla is also seen in lean
mice, with a balance among the bacterial phyla, but in
genetically obese ob/ob mice, this balance is broken. In
obese mice, a great increase in bacteria from the phylum
Firmicutes and a comparable decrease in the prevalence of
Bacteroidetes were observed, indicating gut microbiota alter-
ation driven by obesity, predisposing for or associated with
this metabolic condition [19]. Moreover, it was demonstrated
that microbiota transplantation from ob/ob mice to germ-
free recipients induced a greater increase in body fat content
when compared with germ-freemice that were the recipients
of lean mice gut microbiota, indicating that this difference
in the intestinal flora induced the obese phenotype [20].
Additionally, it was shown that the microbiota in the feces
of lean and obese humans was different in a similar way as
that observed in mice [20]. All this information led to the
hypothesis that the gut microbiota from ob/ob genetically
obesemice is capable of harvestingmore energy from the diet
[21, 22], probably by the presence and/or increased prevalence
of bacteria that produce enzymes that are more efficient in
degrading the nutrients available in the diet.

The relationship between the phyla Bacteroidetes and
Firmicutes is the main focus of discussion when obesity
is studied, with a considerable amount of data showing
an increase in Firmicutes prevalence and a reduction in
Bacteroidetes [19, 20, 23–26]. However, this issue has not yet
been completely addressed, as we can find several studies
in the literature that maintain the opposite, where the
prevalence of Firmicutes is decreased in overweight and obese
individuals, as well as in obese mice, with an accompanying
increase in Bacteroidetes prevalence [27–30]. Additionally,
the presence of nonsignificant prevalent bacteria phyla in
the gut of lean mice, such as Verrucomicrobia, has not
been well explored until now, with very few observations
on increases in pathological conditions (obesity and cancer)
and no mechanistic evaluations [27, 31]. The differences
observed among gut microbiota human studies still have to
be addressed, evaluating the ethnics and feeding behavior of
the studied population as well as the standardization of the
methods used. In animal studies, the probable cause of the
opposite outcomes may be a factor of different mouse strains
used. The issue of the “healthy” bacterial group profile is a
very important point in gut microbiota research and needs to
be further explored.Thus, no proposed treatment attempting
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to induce the proliferation of certain bacterial phyla has been
suggested until now.

4. Obesity and High-Fat Diet Increase
Circulating Endotoxin Levels and Activation
of the Inflammatory Response

A structural particularity of bacteria splits them into Gram
positive and Gram negative, based on the cell wall structure.
Each of the two most prevalent phyla belongs to one of
these groups; that is, Firmicutes are Gram positive and
Bacteroidetes are Gram negative bacteria. The latter group
harbor lipopolysaccharides (LPS) in their cell wall, which is
a large molecule formed by a lipid and a polysaccharide that
elicits a strong immune response, promoting inflammation
to protect the organism from bacterial infection [32]. LPS is
a potent activator of pathogen-associated molecular pattern
(PAMP) responses, primarily via toll-like receptor 4 (TLR4),
which activates an extensive cell signaling pathway that
induces the inflammatory response and cytokine expression
and secretion [33] (Figure 1).

Several studies have shown that circulating levels of LPS
are elevated in obese mice, rats (genetically or induced by
diet), and humans. In rodents, this is directly related to
increased intestinal permeability [34–36]. This phenomenon
occurs due to reduced expression and activity of tight
junction proteins, such as zonula occludens-1 (ZO-1) and
occludin, that create, together with gut epithelial cells, a
barrier that separates the intestinal lumen and its bacte-
rial population and products from peritoneal tissues. This
degradation of tight junction function leads to the leakage of
bacterial products, such as LPS, and bacterial translocation,
which have recently been described as key factors in both
human andmice insulin resistance and inflammation [26, 35,
37–39] (Figure 1). Recent evidence also indicates that LPS can
be transported along with chylomicrons into the circulation
instead of depending on epithelial injury to reach insulin
sensitive organs; the inhibition of chylomicron synthesis
blocks endotoxin uptake [40].

LPS is a very specific TLR4 ligand with great affinity.
Its cell signaling pathway, composed of a diverse number
of proteins, culminates with the inflammatory response
mediated by LPS contact with cells [41–43]. Beyond the high
specificity of TLR4 in identifying LPS from Gram negative
bacteria, which can reach insulin sensitive tissues through
the circulation from the gut and drive the inflammatory
response to protect the host from bacterial infection, TLR4
has a direct role in insulin resistancemediated by obesity. LPS
from the gut can react with free-fatty acids (FFA), mostly the
saturated type, that are increased in the circulation of obese
individuals due to an increase in adipose tissue-mediated
lipolysis, de novo liver lipogenesis and ectopic lipid accumu-
lation [44]. TLRs have been related to the gut microbiota,
whereas single TLR-deficient mice, such as TLR2−/− [26]
and TLR5−/− [45] mice, show a different microbiotic profile
when compared to their control littermates. This immune
modulation of the intestinal flora can induce symptoms of
metabolic syndrome, such as increased body weight, blood

glucose, and insulin resistance. The TLR4−/− mice do not
present an altered prevalence of gut microbiota bacteria as
seen in the TLR-deficient mice cited above [46]. In obesity
and conditions related to intestinal permeability, TLR4 is
known to be involved in the inflammatory response that
culminates in insulin resistance and metabolic derangement,
as those responses are attenuated by the inhibition of this
protein activity [27, 34, 47–49], such as in TLR4 loss-of-
function C3H/HeJ mice [50], in CD14−/− mice [51], and in
TLR4−/− mice [52] (Figure 1). Recent investigations have
shown that fatty acids do not activate TLR4 directly, ques-
tioning the real influence of this receptor in lipid-induced
insulin resistance caused by obesity [53, 54]. Nevertheless, a
hepatic protein has been identified, called fetuin-A (FetA),
which is a major carrier of FFAs in the circulation [55],
that acts as an endogenous ligand of TLR4, thus activating
its signaling pathway, promoting insulin resistance, which
was blocked in the absence of FetA, and attenuating insulin
resistance induced by FFA [56]. There is evidence that shows
increased FetA expression in HepG2 cells, a liver cell lineage,
after treatment with thapsigargin, an ER stress inducer, in
a time- and dose-dependent manner, which is blocked by
pretreating the cells with 4-phenylbutyrate, a compound that
inhibits ER stress [57]. These results were similar in diet-
induced obese mice, which exhibited ER stress, attenuated by
4-phenylbutyrate treatment and accompanied by a reduction
in FetA expression and improved insulin resistance [57].
Additionally, it was demonstrated that in obese individuals
and rodents, circulating levels of FetA are increased and
correlate with body weight [58, 59] and that body weight loss
brings the FetA circulating levels back to normal in children
[59]. As well, FetA−/− mice are protected from obesity and
insulin resistance induced by aging [60, 61].

Other PAMPs, as well as damage-associated molecular
patterns (DAMPs), such as the inflammasome seem to
be related to intestinal epithelial integrity. The activation
of DAMPs and PAMPs in the gut is necessary for the
maintenance of barrier function, while nucleotide-binding
oligomerization domain protein-like receptor 3 (NLRP3) and
NLRP6-deficientmice show increased intestinal permeability
and increased risk of colitis [28, 62], allowing the occurrence
of dysbiosis and insulin resistance and a greater possibility
of nonalcoholic steatohepatitis (NASH). The inflammasome
is a group of protein complexes that recognizes a wide
range of bacterial, damage and stress signals; it results
in caspase-1 activation and subsequent proinflammatory
cytokine secretion and cell death [63]. Mice deficient in
inflammasome proteins show altered gut microbiota when
compared to wild-type littermates, with an increased preva-
lence of bacteria from the Prevotellaceae family, which is
part of the Bacteroidetes phylum, and higher translocation
of bacterial products from the gut to the circulation. In
particular, TLR4 and TLR9 agonists induced inflamma-
tion and insulin resistance; this feature is transmissible to
newborn and adult mice that come in direct contact with
inflammasome-deficient animals [28, 62]. In addition to gut
microbiotamodulation, inflammasomeproteins are activated
in macrophages by LPS, which enter into the circulation due
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Figure 1: The gut microbiota is modulated by metabolic derangement, such as nutrition overload and obesity, which promote a cluster
of metabolic disease-associated processes that culminate in bacterial products and whole bacteria translocation to the circulation through
increased intestinal permeability caused by a reduction in tight junction expression. This triggers an immune response, inflammation, and
immune cell infiltration of liver and adipose tissue. It induces insulin resistance in various tissues by diverse mechanisms and food intake
deregulation in the hypothalamus promoted by the insulin and leptin resistance and also inhibited expression of gut-secreted anorectic
hormones, such as GLP-1 and PYY. Additionally, there is a reduction in the intestinal Fiaf expression mediated by bacteria that deregulate the
fat storage and lipid metabolism favoring the obese phenotype.

to increased intestinal permeability under obese conditions.
The macrophage inflammatory activity is regulated by the
TLR-induced activation of nuclear factor 𝜅B (NF-𝜅B) [64,
65].

In addition to the bacterial immune response mediated
by TLR4, viral infections also activate pattern recognition
receptors (PRRs) and trigger a specific cellular signaling
pathway that terminates with the activation of c-Jun N-
terminal kinase (JNK), inhibitor of nuclear factor-𝜅B kinase
subunit 𝛽 (IKK𝛽), NF-𝜅B, and transcription of proinflam-
matory cytokines, which are mediators of insulin resistance.
The double-stranded RNA-activated protein kinase (PKR) is
one of the molecules responsible for protection from viral
infections, as it identifies double-stranded RNA (dsRNA)
viruses and activates the innate immune response against
these pathogens [66, 67]. PKR is also related to obesity and
insulin resistance, as its phosphorylation is increased in high-
fat diet fed mice, leading to activation of JNK [68] and IKK𝛽
[69], and culminating in serine phosphorylation of IRS-1 and
insulin resistance [70]; all these inflammatory features are
absent or attenuated in PKR−/− mice [71, 72]. It has been
described that PKR is also activated by bacterial products,
such as LPS [73, 74], in a dsRNA-independent way, possibly
by the action of a cellular protein designated PKR-activating
protein (PACT), which possesses dsRNA binding domains
and interacts with other molecules that bind to PKR [75] to
trigger the same signaling pathway as viral infection [76].
This could integrate the PKR signaling pathway with gut

microbiotametabolic effects on insulin resistance, but has not
yet been investigated (Figure 1).

The activation of inflammatory pathways by gut-derived
LPS, mainly via TLR4, leads to increased expression of
inducible nitric oxide synthase (iNOS) [77, 78]. In obesity,
an increase in iNOS expression is also observed in insulin
sensitive tissues, which promotes a phenomenon known as
S-nitrosation/S-nitrosylation, where nitric oxide (NO) reacts
with cysteine residues to form S-nitrosothiol adducts, thereby
modulating protein function [79, 80]. Thus, LPS induce S-
nitrosation/S-nitrosylation of the insulin signaling pathway
(IR, IRS-1, and Akt), inducing insulin resistance in the liver,
muscle, and adipose tissue in a more particular way than ser-
ine phosphorylation of IRS-1 [81–83].The targeted disruption
of iNOS and its pharmacological inhibition attenuates the S-
nitrosation/S-nitrosylation of insulin signaling proteins and
inflammation and consequently improves insulin sensitivity
[84–87] (Figure 1). Besides gut-derived LPS, other bacteria
metabolites could induce S-nitrosation/S-nitrosylation of
diverse proteins, modulating their activity and promoting
biological effects in several tissues. Therefore, this field needs
more attention and further studies.

5. Metabolic Role of Short-Chain Fatty Acids
Derived from Gut Microbiota

The gut microbiota has an impact on mammalian physiology
(mostly metabolic and immune functions) through several
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mechanisms. Some of them are discussed previously, but the
gut bacteria can also interact with the host system through
their metabolites, mainly short-chain fatty acids (SCFA),
which are their principal end-products and are represented
for the most part by acetate, propionate, and butyrate,
which have physiological effects in different tissues [88]. Gut
microbiota fermentation, due to anaerobic bacteria, degrades
polysaccharides that are not cleaved bymammalian enzymes,
in other words, nondigestible carbohydrates, to produce
short-chain fatty acids and other subproducts in the cecum
and colon [89]. Moreover, SCFA diversity demonstrates
metabolic cooperation among the bacterial community, as
no bacterial genus can hydrolyze all kinds of nutrients
nor produce all metabolites found in the gut lumen [90],
indicating that most of the physiological interactions of the
gut microbiota with the host are not dependent on just one
particular bacterial type, but the entire community.

As metabolites, SCFA have diverse effects on various
cells. They are taken up by the host through passive dif-
fusion and via mono-carboxylic acid transporters, such as
monocarboxylate transporter 1 (MCT1) [91]. Primarily, they
work as an energy source for colonic epithelial cells, which
derive 60%–70% of their fuel influx from SCFA. Butyrate
has a particular importance as an energy source for those
cells, as almost 65% is cleared by the mucosa and more than
70% of oxygen consumption in isolated colonocytes is due
to butyrate oxidation [89]. Butyrate may also play a critical
role in cell growth and differentiation [92, 93]. Acetate is
likely to be used as a cholesterol or fatty acid precursor,
and propionate is a gluconeogenic substrate [94, 95]. The
relative levels of the specific enzymes for SCFA degradation
(acetyl-CoA, propionyl-CoA, and butyryl-CoA) in different
tissues are the determinants of SCFA metabolization [96].
Other molecules with metabolic regulatory functions can be
released by gut bacteria, such as conjugated linoleic acids
(CLA) [97, 98], which are lipid metabolites, or bile acids [99]
and gases, such as methane and H

2
S [100, 101], but they have

minor roles inmammal physiology when compared to SCFA.
SCFA also act as anti-inflammatory molecules, as acetate,

propionate, and butyrate are capable of inhibiting NF-𝜅B
activation in the host immune cells by binding to G-protein-
coupled receptor, 43 and 41 (GPR43 and GPR41), thereby
blocking inflammatory responses and suppressing TNF-𝛼
and IL-6 release; butyrate also reduces IL-12 and increases
IL-10 expression [102–105]. GPR43 seems to have great
importance in mediating acetate-induced anti-inflammatory
stimuli since the deletion of this gene promotes an increased
inflammatory response in dextran sodium sulfate- (DSS-)
induced colitis, which is attenuated by the administration
of acetate in mice that express GPR43 [106]. Moreover,
GPR43−/− immune cells are hyperactive and promote an
increased response to chemoattractants, such as C5a and
proinflammatory cytokines [106].

Acetate and butyrate are also important in epithelial bar-
rier function maintenance as they stimulate the production
and secretion of mucus, by goblet cells, which protect the
epithelium through increased expression of mucin [107].
Butyrate increases MUC-2 expression by 23-fold in a goblet

cell line in vitro, demonstrating the importance of this func-
tion in modulating intestinal permeability [108]. Butyrate
also affects tight junction protein expression, that is, zonulin
and occludin, and even low concentrations of this SCFA
seem to reduce intestinal permeability [109, 110]. Even with
this potent mucus releasing effect by butyrate, it seems that
acetate has more pronounced effects in epithelial protection,
as activation of GPR43 by acetate protects mice from a lethal
infection with an E. coli strain [111]. Moreover, the inhibition
of GPR strongly attenuates the effects of acetate in terms of
epithelial survival and integrity [112].

The products of gut microbiota fermentation, such as
acetate and butyrate, are able to increase fatty acid oxidation
and energy expenditure. There is evidence that acetate intake
by humans promotes a reduction in body weight, circulating
cholesterol, and triglyceride levels [113]. The administration
of acetate or an increase in gut production mediated by the
gut microbiota modulates activated 5-AMP-activated pro-
tein kinase (AMPK), which inhibits acetyl-CoA carboxylase
(ACC), thereby promoting fatty acid oxidation and energy
expenditure [114] and leading to increased insulin sensitivity
and reduced glucose intolerance in diabetic rats and in
high-fat diet fed mice [27, 115]. Butyrate administration
also increases AMPK activation in muscle, culminating in
increased energy expenditure, as observed by an increase in
brown adipose tissue mass and UCP1 expression [116].

It has been shown in cell culture experiments that short-
chain fatty acids, in particular propionate and butyrate, can
modulate the expression of Fiaf in intestinal cells, which was
proposed as a gut microbiota mediator of fat storage [14].
Intestinal cell culture lines were exposed to short-chain fatty
acids, which promoted an increase in Fiaf expression via
PPAR𝛾 in colon cells. This was not reproduced in adipocyte
cell lines, leading to the inhibition of LPL, adipogenesis and
a proposed increase in fat storage mechanism control and
metabolic improvement [117–119].

The activity of gut hormones in the control of appetite
has been shown [120], and it is likely that the gut microbiota
should interfere with the expression and activity of these
hormones. Gut bacteria seem to modulate the secretion of
glucagon-like peptide-1 (GLP-1), which is produced by L-cells
in the colon, and peptide YY (PYY) [121], produced by ileum
and colon cells, as well as leptin production by adipose tissue
cells via GPR41 [122]. All of these have anorectic effects in
the hypothalamus and thus promote satiety.This modulation
seems to be, at least in part, mediated by the SCFA produced
by fermentative bacteria. Evidence of SCFA and satiety show
that an acetate infusion induces an increase in the circulating
levels of GLP-1 and PYY in hyperinsulinemic overweight
women [123]. Propionate reduces food intake in animal
feeding studies [124–126], whereas supplementation of a dairy
beverage fermented by propionic acid bacteria producer
also increases satiety in humans [127]. In a similar way to
propionate, butyrate induces satiety, upregulating anorectic
neuropeptide expression, such as PYY and proglucagon in
rat epithelial cells [126, 128]. It is possible that these SCFA
mechanisms of appetite regulation are mediated by GPR41
and dependent on the intestinal transit rate, as a deficiency in
this receptor is associated with reduced PYY expression and



6 Mediators of Inflammation

faster intestinal transit with reduced energy harvesting from
the diet [129]. Most of the observations on SCFA-regulated
appetite are descriptive, and the mechanisms controlled by
these gut microbiota-derived molecules are not yet known.

6. Gut Microbiota Modulation

In the last decade, a great body of evidence and knowl-
edge about the gut microbiota and its interaction with the
host, immunity, and metabolism has provided new insight
regarding the influence of this forgotten “organ” on the most
prevalent metabolic disease, obesity. By several mechanisms,
gut bacteria influence the chronic low grade inflammation
that culminates in insulin resistance and the increase in fat
deposition and body weight gain, characteristic of obese
individuals. With the acknowledgement of these obesity and
inflammation induction mechanisms, several strategies to
block or attenuate them are being developed and tested, in
order to benefit obese and type 2 diabetic patients.

6.1. Antibiotic Therapy. It has been shown that the use
of broad spectrum antibiotic therapy greatly modifies the
gut microbiota profile in mice, improving the metabolic
derangement induced by genetic obesity and/or high-fat diet
feeding, but the prevalence of surviving bacteria and the
benefits for the host have not been determined, as the concept
of a “healthy” gut microbiota is still under investigation.
The main mechanism suggested by antibiotic administration
is a reduction in circulating LPS levels, which attenuates
inflammation and improves the insulin resistance induced
by obesity in the liver, muscle, and adipose tissue [27, 35,
130, 131]. Additionally, intestinal permeabilitymay be reduced
after the evaluation of tight junction protein expression
in epithelial cells of antibiotic-treated animals, showing
increased expression and function [35].This improvement in
insulin resistance was also observed in high-fat diet fed mice
even in absence of a difference in body weight, which was
achieved by submitting a group of animals to pair-feeding
in comparison to the antibiotic-treated animals, which pre-
sented lower circulating LPS levels and TLR4 activation.This
probably led to reduced intestinal permeability, leading to a
reduction in JNK and IKK𝛽 activation and reduced serine
phosphorylation of IRS-1 in the liver, muscle, and adipose
tissue, altogether seen as increased activation of the insulin
signaling pathway, and to inhibition of macrophage infil-
tration into adipose tissue. Moreover, antibiotic treatment
increases the portal acetate levels, which activates AMPK,
fatty acid oxidation, and, possibly, energy expenditure [27].
However, even with this striking metabolic improvement in
antibiotic therapy experiments, it seems that translating this
strategy to humans is not the best option, as there are complex
issues such as antibiotic resistance in chronic administration
panels and evidence that indicates a relationship between
chronic low-dose antibiotic therapy and body weight gain
[132, 133] (Figure 2).

6.2. Probiotics. Probiotics are defined as live microorganisms
that confer unspecified health benefits to the host [134].

Evidence frommetagenomic profiles indicates that the obese
phenotype shows an increased prevalence of Firmicutes
[20, 26] in the gut microbiota profile, inferring a negative
correlationwithmetabolism and insulin sensitivity. However,
apart from these inconclusive observations on the “healthy”
gut microbiota, the most commonly used probiotics are
Lactobacillus, which belong to Firmicutes and Bifidobac-
terium [135]. Lactobacillus strain administration leads to
several metabolic benefits in both rodents and humans,
that is, a reduction in adipocyte cell size and body fat in
high-fat diet fed mice [136], a reduction in fat mass and
BMI, the promotion of insulin sensitivity [137, 138], and
restriction of excessive body weight gain in the first years
of life of young children [139]. Although the mechanism by
which Lactobacillus control excessive adiposity has not been
described, changes in fat storage genes expression, such as
Fiaf, have been proposed to mediate this probiotic effect
[140]. Data from Bifidobacterium administration show that
the production of acetatemediates gut epithelial integrity and
barrier function, protecting animals from a lethal bacterial
infection [111], but no mechanism as to how acetate induces
this effect has been proposed. It is tempting to suggest that
acetate binding to GPR43 and its activation mediate the
beneficial effects of treatment with Bifidobacterium.

A probiotic compound that has been well studied and
appears in a great number of articles, named VSL#3, com-
posed of a blend of probiotic bacteria, modulates the gut
microbiota profile [141] and shows interesting effects, such
as the promotion of epithelial integrity by modulation of
tight junctions [142], a reduction in inflammatory status in
a chronic colitis animal model [141], protection against DSS-
induced colitis, and near reversal of atherosclerotic lesions in
ApoE−/− mice, which develop atherosclerosis spontaneously
[143]. In a clinical trial, VSL#3 promoted reduced intestinal
permeability and improved immune activity [144]. Bacterial
translocation to mesenteric adipose tissue, which seems to
precede type 2 diabetes onset, is prevented by probiotic
treatment. Apparently, thismechanism ismediated by acetate
production and increased gut epithelial integrity [39]. It
has also been shown that probiotic treatment-induced gut
microbiota modulation can suppress high-fat-diet induced
NF-𝜅B activation and inflammation-induced insulin resis-
tance [145]. Probiotics can also mimic commensal bacte-
ria and modulate protective epithelial mucus production,
reduce bacterial adhesion, increase tight junction expres-
sion, enhance epithelial and immune cell survival, induce
defensins, and stimulate IgA production as well as stimulate
TLRs to promote gut homeostasis [146–148] (Figure 2).

6.3. Prebiotics. Prebiotics are defined as a nonviable food
component that confers a health benefit on the host asso-
ciated with gut microbiota modulation [149]. The most
common prebiotics used in gut microbiota modulation
studies are the inulins, fructooligosaccharides, various types
of galactooligosaccharides, and resistant starches. Prebiotics
act by modulation of the gut microbiota profile and serve
as a substrate for the production of metabolically active
metabolites, in particular, SCFA, that are, acetate, propionate,
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Figure 2:The advent of products (antibiotics, probiotics, and prebiotics) capable of modulating the gut microbiota profile, their products and
metabolites (i.e., LPS, short-chain fatty acids), promotes a shift on the bacterial community prevalence, which favored the increase in tight
junctions expression and function, reducing intestinal permeability and bacterial products circulation levels. Thus, the LPS circulating levels
and inflammatory status in insulin-sensitive tissues are reduced, as well as muscle S-nitrosylation and liver and adipose tissue macrophage
infiltration, promoting increased insulin sensitivity and the whole body metabolism. GLP-1 and PYY circulating levels are increased after
treatment with gut microbiota modulators which together with the improvement in insulin sensitivity in the hypothalamus promoted
reduction in food intake by satiety mechanisms and in conjunction with the increased Fiaf expression, contributed to reduce body weight.

and butyrate [150, 151]. Several studies have related prebiotic
treatment to a reduction in ectopic lipid accumulation such
as steatosis, reduced fat storage in white adipose tissue,
in systemic inflammation, and insulin resistance in high-
fat diet fed and genetically obese models [152–154], and
also reduced endotoxemia [155]. In clinical experiments,
beneficial effects of prebiotic administration were observed,
such as a reduction in BMI, waist circumference, fat mass,
and insulin resistance [156–158]. The food intake regulation
is another important feature of gut microbiota modulation
by prebiotics, which induce gut hormone production, such
as GLP-1 and PYY, that signal via anorectic pathways in
the hypothalamus, and a reduction in ghrelin expression,
a gastric orexigenic peptide, thereby reducing food intake
[159, 160]. Even fibers that do not change the gut microbiota
profile, in a similar way to inulin-type fructans, induce food
intake reduction by increasing circulating levels of GLP-1
and PYY [161–165], evidencing the important role of SCFA
derived from prebiotic fermentation. Data from a 12-week
prebiotic treatment in obese subjects showed a modulated
gut microbiota profile, increased PYY, and decreased ghrelin
circulating levels, while a single dose of prebiotics (inulin)
also decreased plasma ghrelin and increasedGLP-1 [166, 167].
Prebiotics also induce the production and secretion of GLP-2
by L cells; this hormone has relevant activity on gut barrier
function and reduces gut permeability in obese animals [168]
(Figure 2).

6.4. Bariatric Surgery. Recent data on obese subjects who
have undergone gastric bypass surgery indicate that six
months after the procedure, the gut microbiota profile was
changed and bacteria diversity was reduced in comparison
with the subjects that were obese and did not undergo
the surgical procedure [169]. In addition to the changes
promoted by gastric bypass, physiologically and anatomically,
a number of factors could contribute to this gut profile
alteration throughout this six months, primarily food intake
behavior and weight loss, placing the direct influence of
bariatric surgery in doubt. An early evaluation of the gut
microbiota after the procedure is not viable due to the antibi-
otic treatment indicated for surgical recovery. Nevertheless,
a recent study brought new light to this issue, where mice
that underwent gastric bypass surgery presented a distinct gut
microbiota profile when compared with the sham-operated
mice one week after of the procedure, when no body weight
difference was detected. Furthermore, the authors placed a
group of mice under diet restriction to mimic the weight
loss achieved by the gastric bypass group for 10–12 weeks
and found that the microbiota profile was different as well,
indicating that, indeed, the bariatric surgery modifies the
bacterial composition of the gut [170]. In addition, they
showed that gut microbiota transplantation from a sham-
operated animal to germ-free mice increased adiposity as
well as circulating leptin levels concomitantly with reduced
food intake, as was previously demonstrated [14]. However,
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in the recipients of gut microbiota frommice that underwent
gastric bypass, none of those parameters were altered when
compared to germ-free mice. There was also a reduction in
bodyweight, suggesting that the gastric bypass-associated gut
microbiotamay either reduce energy harvesting from the diet
or produce signals to regulate energy expenditure and/or lipid
metabolism in a Fiaf-independentmanner since colonization
of germ-free mice with either sham or gastric bypass gut
microbiota inhibits Fiaf expression in intestinal cells, but this
is still unknown [170]. Based on the studies cited previously,
gastric bypass seems to promote gut microbiota modulation
that induces beneficial effects in obese humans and rodents.

7. Conclusions

In summary, the literature presents incontestable data that the
gut microbiota and its modulation by nutrients and excessive
energy intake heavily influence glucose metabolism, lipid
storage, inflammation, and insulin activity in a negative way,
as observed in obesity and diabetes. Furthermore, there are
intense investigations going on in this field, highlighting
several strategies to modulate the gut microbiota profile to a
“healthier” status in an attempt to increase insulin sensitivity
by blockage of the insulin resistance inductors mediated by
the interaction between bacteria and the intestinal environ-
ment of the host.

Some issues have been raised from these studies and
have not been fully explored until now, such as PKR activity
modulated by gut microbiota. Besides bacterial products,
viruses are also found in metagenomic profiles, and viral
signaling could contribute to the increased inflammation
promoted by intestinal products in obesity. In a similar way,
the nitrosative contribution from gut microbiota has not yet
been raised as having an impact on the metabolic derange-
ment mediated by obesity and microbial products. Also, it is
unknown if attempts to ameliorate themetabolic status by gut
microbiota modulation will regulate both phenomena. SCFA
seem to have an important role in food intake regulation,
but the mechanisms of inducing GLP-1 and PYY production
in intestinal cells are still poorly described and need further
investigation. Saturated fatty acids are known to promote
inflammation and insulin resistance and are prevalent in the
high-fat diet administered to experimental rodents in these
studies and in the western diet that has led to epidemic
rates of obesity. However, the utilization of unsaturated fatty
acid supplementation, which is known as a lipid with anti-
inflammatory properties, has not yet been related to gut
microbiota modulation. This is an interesting nutritional
field, as probiotic and prebiotic strategies can have irrefutable
benefits to the host’s metabolism.

Ongoing efforts will try to determine the best set of
symbiotic bacteria for mammals to harbor in the intestine in
a metabolic evaluation, avoid excessive energy uptake from
the diet, preserve gut barrier function, and reduce bacteria
and the translocation of their inflammatory products; it is
hoped that this will culminate in reduced inflammation.This
issue is under debate, as articles do not show coherence
regarding bacterial prevalencemodulation in the gut induced

by obesity and its treatment, which will need further studies
and standardization. It seems that studies from different
facilities bring distinct results. This issue has to be addressed
in order to define what bacterial colony is more interesting to
have grown in the mammalians gut.
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