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Abstract

Relevant statistical modeling and analysis of dental data can improve diagnostic and treatment procedures. The purpose of
this study is to demonstrate the use of various data mining algorithms to characterize patients with dentofacial deformities.
A total of 72 patients with skeletal malocclusions who had completed orthodontic and orthognathic surgical treatments
were examined. Each patient was characterized by 22 measurements related to dentofacial deformities. Clustering analysis
and visualization grouped the patients into three different patterns of dentofacial deformities. A feature selection approach
based on a false discovery rate was used to identify a subset of 22 measurements important in categorizing these three
clusters. Finally, classification was performed to evaluate the quality of the measurements selected by the feature selection
approach. The results showed that feature selection improved classification accuracy while simultaneously determining
which measurements were relevant.
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Introduction

Dental health is one of the most important factors in our lives.

Although the advent of high information technology and dental

devices has produced vast amounts of data, relatively little research

has been conducted to retrieve meaningful information from

dental data. However, this has been changing with the develop-

ment of informatics that allows acquisition of relevant information

to guide dental treatment increasingly becomes an important

scientific discipline [1].

Among the various procedures that lend themselves to such data

mining, orthodontic treatment of malocclusion patients to correct

the position of teeth and improve appearance is well suited to use

these techniques. Various analysis and simulators have been used

to help dentists properly diagnosis and predict the outcome of

intervention before actual treatment. Downs introduced Downs’

analysis, the first systematized analytic diagnostic procedure for

the roentgenographic assessment of craniofacial, skeletal, and

dental patterns [2]. Down’s analysis has been used by many

orthodontists and by oral and maxillofacial surgeons. Based on the

location of anatomical landmarks, various lengths and angles can

be measured and compared with normal ranges [3,4]. However,

the most commonly used analysis is the Steiner analysis that can

provide guidelines for planning of treatment based on the

prediction of changes that will occur as the result of growth and

orthodontic therapy [5]. The Sassouni Cephalometric Analysis has

been also beneficial to dentists in functional orthodontic treatment

of TMD (temporomandibular disorders) patients [6,7]. This

analysis is especially useful for determining the growth potential

of these patients and in determining vertical proportions [8,9].

Wits analysis for the diagnosis of anteroposterior discrepancy was

first described by [10]. McNamara’s Analysis combines the

anterior reference plane (a plane perpendicular to the Frankfort

horizontal through the nasion) described by Burstone et al.

[11,12]. McNamara’s analysis is suitable to diagnosis, treatment

planning, and treatment evaluation for not only conventional

orthodontic patients, but also for patients with dentofacial

deformities [13].

Although all of the a fore mentioned analyses, based mostly on

simple skeletal analysis, can be useful in situations for which they

were designed, prediction of postoperative outcomes nevertheless

remains difficult. Despite the great potential of data mining

algorithms for addressing a variety of problems in dental

treatments, few efforts have been made to apply these techniques.

Raberin et al. used a k-means clustering method with 278 dental

casts of untreated French adults with normal occlusions to

determine the main mandibular dental arch forms [14]. Similarly,

Lee et al. used the same methodology with dental casts of 307

Korean subjects with normal occlusion to establish normative data

on tooth size [15]. Hwang et al. employed a k-means clustering

analysis to group 100 patients with facial asymmetry into five

groups with different characteristics [16]. De Veld et al. detected

oral cancer by applying a k-means clustering analysis and principal

component analysis to the spectra obtained from autofluorescence

spectroscopy [17].

The main purpose of the present study is to use data mining

algorithms to characterize patients with dentofacial deformities.

More precisely, we used a k-means clustering algorithm and
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principal component analysis to detect meaningful groups based

on a number of measurements related to dentofacial deformities.

Further, we used the features selection algorithm to identify which

of these measurements are most important in distinguishing

between the different clusters. Finally, we verified the quality of the

measurements identified by the feature selection algorithm.

Data
The procedures followed were in accordance with the ethical

standards and approval of the Kyunghee University Institutional

Review Board (KHNMC IRB 2012–089). The participants

provided their written consent to participate in this study. A total

of 72 patients with skeletal malocclusions who had finished the

orthodontic and orthognathic surgical treatments were enrolled for

data acquisition in this study. All patients had various dentofacial

deformities that required single or double jaw orthognathic

correction. These deformities included maxillary horizontal

hypoplasia, maxillary horizontal hyperplasia, maxillary vertical

hypoplasia, maxillary vertical hyperplasia, mandibular hypoplasia,

mandibular hyperplasia, and facial asymmetry. A digital pano-

ramic and cephalometric system (Eastman Kodak Co., Rochester,

New York, USA) was used to obtain various landmarks and planes

that characterized the size and relationships of the teeth, jaws, and

cranium. Figure 1 shows landmark points and planes that generate

22 measurements related to dentofacial deformities.

These 22 measurements can be summarized as follows:

1. SN to FH: An angle between the sella-nasion (SN) line and the

Frankfort horizontal (FH). The SN is a line connecting the sella

to the nasion. The FH is a horizontal line connecting the

cephalometric porion and orbital landmarks.

2. SN to PP: An angle between the SN line and palatal plane

(PP). PP is a line joining the posterior nasal spine and anterior

nasal spline.

3. SN to mandibular: An angle between the SN line and

mandibular plane (MP). The MP is a line/plane connecting the

gonion and menton, representing the inferior border of the

mandible in the sagittal plane. The mandibular plane may also

be drawn as a tangent to the interior border of the mandible.

4. FH to occlusal: An angle between the FH and occlusal planes

(OP). The OP is a line on the cephalometric radiograph

representing an imaginary plane at the level of the dental

occlusion.

5. FH to mandibular: An angle between the FH and

mandibular planes (MP). The FH is a horizontal line

connecting the cephalometric porion and orbital landmarks.

MP is a line/plane connecting the gonion and menton,

representing the inferior border of the mandible in the sagittal

plane. The mandibular plane may also be drawn as a tangent

to the interior border of the mandible.

6. SNA: An angle made up of three points: sella, nasion and point

A. Point A (or ss, subspinale) is the point at the deepest midline

concavity on the maxilla between the anterior nasal spine and

prosthion.

7. FH to NA: An angle between the FH plane and the NA line.

8. Convexity: A distance from point A to the N-Pog line. The N-

Pog line, also called the facial plane, is a line connecting the

nasion and the pogonion.

9. SNB: An angle composed of three points: sella, nasion, and

point B. Point B is the point at the deepest midline concavity on

the mandibular symphysis between the infradentale and the

pogonion (unilateral).

10. SNPog: An angle composed of three points: sella, nasion,

and pogonion. The pogonion is the point of tangency of a

perpendicular from the mandibular plane to the most

prominent convexity of the mandibular symphysis.

11. FH to NB: An angle between the FH plane and the NB

line. The NB is a line connecting the nasion and point B.

12. Facial angle: An inferior inside angle between the FH

plane and the N-Pog line.

13. Y axis: An acute angle between the FH plane and the

S-gnathion line.

Figure 1. Landmark points (left figure) and planes (right figure) of lateral cephalometric radiograph.
doi:10.1371/journal.pone.0067862.g001
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14. Gonial angle: An angle between the mandibular plane

and the posterior border of the mandible body.

15. ANB difference: The ANB angle (362u) measures the

relative position of the maxilla to the mandibleThe ANB

angle can be measured or calculated by the formula: ANB

= SNA – SNB.

16. Palatal to mandibular: An angle between the palatal

and mandibular planes.

17. FH to U1: The angle between the FH plane and the U1;

the U1 is a line connecting the incisal edge and the root

apex of the most prominent maxillary incisor.

18. FH to L1: The angle between the FH plane and L1; L1 is a

line connecting the incisal edge and the root apex of the

most prominent lower incisor.

19. Interincisal angle: The angle between U1 and L1.

20. Mandibular to L1: The angle between the mandibular

plane and L1.

21. NP to U1: Distance from upper the incisal edge to the N-

Pog line.

22. NP to L1: Distance from the lower incisal edge to the N-

Pog line.

Methods

K-means clustering algorithm
We performed a clustering analysis to group 72 patients with

facial deformities into several groups according to specific

characteristics. Clustering analysis partitions the data by minimiz-

ing within-group variation and maximizing between-group vari-

ation [18]. These variations can be measured by various distance

metrics between observations in a dataset.

In the present study we used a k-means clustering algorithm

mainly because it is the most well-known clustering method and

has been used in various applications including previous dental

studies [14,15,16,17]. Our procedure requires a brief summary of

the k-means clustering algorithm. Given k seed points, each

observation is assigned to one of the k seed points near the

observation. This creates k clusters. Next, the seed points are

replaced with the mean of the currently assigned clusters. This

procedure is repeated with updated seed points until the

assignments do not change. The results of the k-means clustering

algorithm depend upon three parameters: distance metrics, the

number of clusters (k), and the location of seed points.

Numerous distance metrics are available. These include the

Euclidian, Manhattan, Mahalanobis, and correlation distance

Table 1. Results of the Rand index and adjusted Rand index
methods to determine k.

k 2 3 4 5

Rand index 0.92 0.92 0.74 0.73

Adjusted Rand index 0.80 0.82 0.34 0.26

doi:10.1371/journal.pone.0067862.t001

Table 2. Basic statistics of features (measurements) in each cluster (n = the number of patients).

Feature (Measurement) Cluster 1(n = 17) Cluster 2(n = 30) Cluster 3(n = 25)

Mean±SD

1 S-N to FH 9.363.0 8.863.3 8.862.9

2 S-N to palatal 8.162.9 8.663.3 9.663.1

3 S-N to mandibular 34.764.4 39.764.9 38.763.7

4 FH to occlusal 6.764.2 9.763.6 11.863.0

5 FH to mandibular 25.465.0 30.964.6 30.064.1

6 SNA 83.162.3 79.463.2 80.462.5

7 FH to NA 92.462.4 88.262.5 89.161.9

8 Convexity 20.368.0 24.766.5 8.864.0

9 SNB 83.262.5 81.363.2 76.062.6

10 SN Pog 83.262.7 81.763.2 76.462.6

11 FH to NB 92.563.1 90.062.7 84.862.0

12 Facial angle 92.563.4 90.562.9 85.161.9

13 Y axis 59.363.4 61.562.9 65.462.5

14 Gonial angle 126.568.1 131.566.4 124.267.1

15 ANB difference 20.163.3 21.862.7 4.461.7

16 Palatal to mandibular 26.665.2 31.164.7 29.264.1

17 FH to U1 122.869.1 116.667.2 113.769.8

18 FH to L1 59.266.4 63.866.8 52.164.8

19 Interincisal angle 116.468.7 127.268.7 118.4611.6

20 Mandibular to L1 95.465.6 85.265.8 97.964.9

21 NP to U1 (mm) 9.164.3 4.862.5 12.163.1

22 NP to L1 (mm) 9.363.8 5.963.4 7.362.5

doi:10.1371/journal.pone.0067862.t002
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metrics. In the present study we relied on the widely used

Euclidean distance metric. Several methods have been developed

to determine the appropriate number of clusters. These include

silhouette plot, gap statistics, Rand index, and adjusted Rand

index methods [19,20,21,22]. However, no consensus exists about

which of them best satisfies all conditions. We used the Rand index

and adjusted Rand index methods to determine the number of

clusters. With an appropriate number k, the clustering algorithm

that reproduces consistent clustering results would be considered

the better one. The Rand index and adjusted Rand index measure

the stability (i.e., consistency) of cluster results [23]. To calculate

cluster stability with the Rand index and adjusted Rand index, we

divided the data into three datasets. With two datasets, we

conducted k-means clustering and got two sets of seed points. If k is

optimal, these two sets of seed points must be similar. This means

two sets of seed points with the same data should produce similar

results. At this point, we have two different sets of seed points. We

then split the remaining third dataset into k with these seed points.

Finally, we used the Rand index and the adjusted Rand index to

calculate cluster stability. Note that the results of both the Rand

index and the adjusted Rand index lie between 0 and 1. When a

cluster algorithm reproduces the same clustering results, both the

Rand index and the adjusted Rand index will converge to 1

because they consider the probability of chance as the determinant

of which cluster results are consistent [22]. As for determining the

location of seed points, we used a random selection approach

available in R software (www.r-project.org). In this study we used

the ‘‘kmeans’’, ‘‘randIndex’’, and ‘‘adjustedRandIndex’’ functions

in R software to implement the k-means clustering, Rand index,

and adjusted Rand index algorithms, respectively.

Principal component analysis
Principal component analysis (PCA) is one of the mostly widely

used multivariate statistical methods for dimensionality reduction

and visualization of high dimensional data [24]. PCA reduces the

dimensionality of a dataset by linear combination of the original

features, called principal components (PCs). Extracted PCs are

uncorrelated with each other, and typically the first few PCs are

sufficient to represent most of the variability in the high-

dimensional original data [25,26]. Thus, the PCA plot of

observations using these first few PC axes facilitates the

visualization of high-dimensional datasets. These PCs can be

represented by a linear of combination of the original features (X1,

X2, …, Xp)

PC1~a11X1za12X2z � � � a1pXp

PC2~a21X1za22X2z � � � a2pXp

..

.

PCp~an1X1zan2X2z � � � anpXp

ð1Þ

The coefficients of each PC, called loading value, can be

calculated by eigenvector decomposition of the covariance (or

correlation) matrix of the original data. For example, the loading

values of the first PC (a11, a12, …, a1p) are the components of the

eigenvector that corresponds to the largest eigenvalue of the

covariance (or correlation) matrix. Determination of the appro-

priate number of PCs to retain can be subjective. Typically, a scree

plot that exhibits the proportion of variance caused by each PC

can be used. In a scree plot, the number of PCs to retain can be

identified at an elbow point at which the proportion of variation

Figure 2. The photos and X-ray images representing three
clusters identified by a k-means clustering algorithm.
doi:10.1371/journal.pone.0067862.g002

Figure 3. A scree plot to determine the number of PCs.
doi:10.1371/journal.pone.0067862.g003
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begins to stabilize [26]. We used the ‘‘princomp’’ function in R

software (www.r-project.org) to generate the PCA results.

A multiple hypothesis testing procedure controlling the
false discovery rate

We employed a multiple hypothesis testing procedure that

controls the false discovery rate (FDR) to identify the subset of

features important to distinguishing the different clusters from

each other. The FDR procedure has been used to identify the

significant features in high-dimensional data such as microarray,

mass spectra, nuclear magnetic resonance spectra, and pairwise

amino acids [27,28,29,30]. First we begin with the definition of

FDR, followed by the FDR procedure for feature selection. An

FDR, a useful measure of the error rate in a multiple hypothesis

test, is defined as the expected proportion of false positives among

the all hypotheses rejected [31].

To apply FDR for feature selection, we first construct a

hypothesis for each feature. More precisely, a null hypothesis,

stating that the average value of the feature is equal between k

different clusters, is established for each feature, and these

hypotheses are tested simultaneously. In our study, we can

construct the following multiple hypotheses for 22 features:

H01 : m11 ~m12~ � � �~m1k vs HA1 : m1i=m1j

for some i and j

H02 : m21~m22~ � � �~m2k vs HA2 : m2i=m2j

for some i and j

..

.

H022 : m221~m222~ � � �~m22k vs HA22 : m22i=m22j

for some i and j,

ð2Þ

where k is the number of clusters. Assuming that the data follow a

normal distribution, we can employ an F-test for each feature by

using the following test statistic:

Fp~

Pk
i~1

ni (xi:{x::)2

k{1

Pk
i~1

Pni

j~1

(xij{x::)2{
Pk
i~1

ni (xi:{x::)2

N{k

, ð3Þ

for p = 1, 2, …, 22. xi:and niare, respectively, the sample mean and

the sample size of the ith cluster of the pth feature. xij is the value

for the ith cluster and the jth observation. x::is an overall mean of

the observations. Based on statistical theory, Fp follows an F

distribution with degrees of freedom k-1 and N-k. Combining this

with the observed Fp yields the p-value for each feature. Once we

obtained a collection of p-values for a total of 22 features, we can

use the FDR procedure that can be summarized as follows [31]:

Consider a series of p-values and ordered p-values, denoted,

respectively, as pi and p(i), for i = 1, 2,…, 22.

N Choose an FDR level a with a range between 0 and 1.

N Find t~ max i : p(i)ƒ
i
m
: a

p0

h i
where m is the total number of

features (here m = 22), p0 denotes the proportion of a true null

hypothesis. In general, p0 = 1 is the most conservative choice

[32]. As a consequence, we used p0 = 1.

N Let the p-value threshold bep(t). Declare the feature significant

if and only if p(i)ƒp(t):

In this study we used the R software (www.r-project.org) to

implement the FDR procedure.

K-nearest Neighbors
A k-nearest Neighbors (KNN) algorithm is one of the most

widely used algorithms for both classification and regression

problems [33]. KNN does not require a trained model. Given a

query point, the k closest points are determined. A variety of

distance measures can be applied to calculate how close each point

is to the query point. Then the k-nearest points are examined to

find which of the most categories belong to the k-nearest points

[33]. In the present study we used a KNN algorithm to

computationally evaluate the features selected by an FDR
Figure 4. Three-dimensional PCA score plot of 72 patients with
facial deformities.
doi:10.1371/journal.pone.0067862.g004

Table 3. Selected features by FDR procedures for a= 0.01
and 0.05.

a = 0.01 a = 0.05

Feature p-value Feature p-value

FH to occlusal 0.000 FH to occlusal 0.000

Convexity 0.000 Convexity 0.000

SNB 0.000 SNB 0.000

SN Pog 0.000 SN Pog 0.000

FH to NB 0.000 FH to NB 0.000

Facial angle 0.000 Facial angle 0.000

Y axis 0.000 Y axis 0.000

ANB difference 0.000 ANB difference 0.000

FH to L1 0.000 FH to L1 0.000

FH to NA 0.001

FH to U1 0.002

doi:10.1371/journal.pone.0067862.t003
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procedure. We used the ‘‘knn’’ function in R software (www.r-

project.org) to implement a KNN algorithm.

Results

Clustering of patients with facial deformities
The k-means clustering algorithm using Euclidean distance was

conducted on 72 patients with facial deformities. In order to

determine the appropriate number k, we used the Rand index and

adjusted Rand index approaches described in Section 3.1. Table 1

shows the resulting Rand index and adjusted Rand index for

different k (k = 2, 3, 4, 5), indicating that both methods yielded

large index values when k = 2 or 3. We thought that using k = 2

was too small to capture the important grouping of the data. Thus,

we chose k = 3 for this study.

The k-means clustering method partitioned 72 patients into

three clusters in which the first, second, and third clusters contain

17, 30, and 25 patients, respectively. Table 2 shows the descriptive

statistics of the 22 measurements for each cluster.

Figure 2 shows the photos and X-ray images representing three

clusters identified by a k-means clustering algorithm. The patients

in the first cluster tend to have larger values of ‘‘SNB,’’ ‘‘SN Pog,’’

‘‘FH to NB,’’ and ‘‘Facial angle,’’ but have smaller values of ‘‘FH

to occlusal’’ and ‘‘Y axis.’’ In particular, ‘‘ANB difference’’ value is

almost zero. This characteristic can be categorized into the skeletal

Class III type caused by excessive antero-posterior and less vertical

growth of mandible. Therefore, the patients in the first cluster

require surgical treatment such as orthognathic surgery of

mandible. Patients in the second cluster have smaller values of

‘‘Convexity’’ and ‘‘ANB difference,’’ but have higher values of

‘‘FH to L1’’ than other clusters. This is the main characteristic of

the skeletal Class III type caused by the combination of maxillary

deficiency and mandibular overgrowth. Consequently, these

patients require bi-jaw surgery for maxillary advancement and

mandibular setback. In the third cluster, the patients have larger

values of ‘‘FH to occlusal,’’ ‘‘Convexity,’’ ‘‘Y axis,’’ and ‘‘ANB

difference’’ than appear in other clusters. This is the main

characteristic of the skeletal Class II caused by the mandibular

undergrowth. Thus, the patients in the third cluster require

surgical treatment for mandible advancement and genioplasty.

Visualization of clustering results
PCA can be used as a test of the validity of the groupings

obtained by the k-means clustering analysis based on k = 3. The

scree plot shows that the first three PC accounted for 85% of the

variability of the original data (Figure 3). Thus, we used three PCs.

Figure 4 shows a three-dimensional PCA score plot of PC1,

PC2, and PC3. It clearly demonstrates that the separation of the

72 patients with facial deformities into three groups hinged on

three PCs. This grouping result is consistent with the k-means

clustering analysis.

Identification of important features
The FDR procedure was performed to test for each feature with

significant differences between the clusters at FDR levels(a) = 0.01

and 0.05. The cutoffs (p(t)) when a= 0.01 and 0.05 are 0 and

0.002, respectively.

Table 3 shows the results of feature selection using the FDR

approach at a= 0.01 and at a= 0.05. Different choices of FDR

levels lead to selection of different numbers of features. A higher

Figure 5. PCA plots using the features selected by (a) FDR level = 0.01 and (b) FDR level = 0.05.
doi:10.1371/journal.pone.0067862.g005

Table 4. Misclassification rate of KNN (k = 2, 4, 8, 16) for the
datasets used with different numbers of features.

KNN(k = 2) KNN(k = 4) KNN(k = 8) KNN(k = 16)

All Features 0.22(0.10) 0.19(0.10) 0.20(0.11) 0.25(0.12)

FDR(a= 0.05) 0.23(0.10) 0.19(0.10) 0.17(0.10) 0.20(0.11)

FDR(a= 0.01) 0.23(0.10) 0.19(0.10) 0.18(0.10) 0.21(0.10)

Average standard errors from 1,000 experiments are shown inside the
parentheses; boldface values indicate in each dataset the KNN models with
minimum error rates.
doi:10.1371/journal.pone.0067862.t004
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FDR level increases the number of features selected, which results

in more false positives at the same time it increases the capability

to identify which features are significant. Conversely, a lower FDR

level decreases the occurrence of false positives but diminishes the

power to identify significant features. Here, the power is defined as

the ability to correctly identify the significant features. Interpre-

tation of our results for a case in which a= 0.05 shows that on

average less than one (0.05 = 11?0.05) feature is falsely identified as

significant (which is termed ‘‘false discovery’’) out of the 11

features selected by the FDR procedure.

Validation of the features selected
To demonstrate the validity of the feature selection results, we

generated a PCA score plot using only the features selected by the

FDR approach.

Figure 5 demonstrates that the PCA score plots produced by

using the features selected by the FDR approach yielded results

almost as good as the visualization capability created by using all

features. This indicates that the FDR-based feature selection

approach reduced the number of features required without

degrading clustering performance.

The classification model is another approach to evaluating

feature selection. In the present study we employed a KNN

algorithm. We used Euclidean distance to determine the

neighborhoods and tested different values of k (2, 4, 8, 16). To

ensure classification accuracy, we used 80% of the dataset for

training the KNN model and 20% for testing. We conducted this

test 1,000 times and computed an average of 1,000 testing error

rates to arrive at the final testing error rate. The datasets with

different numbers of features were used for the KNN algorithm.

First, we used the full dataset containing all the features. In our

second and third tests we used the datasets containing the 11 and 9

features identified by the FDR approaches using a= 0.05 and

a= 0.01, respectively. Table 4 shows the misclassification rates

from KNN (k = 2, 4, 8, 16) with different numbers of features.

Figure 6. Box plots of different clusters using nine features selected by the FDR-based feature selection approach using a = 0.01.
doi:10.1371/journal.pone.0067862.g006
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This table shows that misclassification error rates are compa-

rable for all three datasets, indicating that the subsets of features

identified by the FDR-based feature selection approach achieve as

good misclassification rates as methods that use all features. In

conclusion, the FDR-based feature selection approach reduced the

dimensionality of the original data without deteriorating classifi-

cation accuracy.

To further explore the feature selection results (visually), Figure 6

shows the box plots of different clusters using nine features selected

by the FDR-based feature selection approach using a= 0.01. We

can see that at least two clusters can be distinguished by each of

nine features.

Conclusions

This paper aimed to use data mining to characterize

orthodontic data. We employed a k-means clustering algorithm

to group 72 patients with facial deformities into several groups

according to their characteristics. A statistical point of view

suggests that these facial deformities fit into three clusters. To

investigate each cluster’s characteristics, we used FDR to select the

measurements important to this categorization. To interpret the

validity of the results of this identification of the selected features,

we used visualization and classification. PCA shows that the

selected measurements yield good visualization ability by using all

measurements. KNN results suggest that use of FDR reduced the

dimensions involved without loss of information. These results

imply that the selected features are potentially useful for

understanding the pattern of facial deformities.

We believe the selected features will be a great help in diagnosis.

We hope that the present study increases awareness within the

dental community of efficient methodologies to improve predictive

diagnosis of dental treatment.
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