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Background: In MS patients, hypertension is associated with a delayed diagnosis and

an increased risk of progression. Understanding the mechanisms of this association

could potentially lead to improved prevention of disease progression. We aimed to

establish whether high blood pressure contributes to white-matter injury and brain

atrophy in MS.

Methods: Cross-sectional study of 95 patients with RRMS. Estimates of fractional

anisotropy, gray-matter volume and lesion load were obtained from 3T MRI. We used

fractional anisotropy voxel-based statistics to establish the effect of blood pressure on

white matter tracts. Additionally, we used voxel-based morphometry (VBM) to study the

effect on gray matter integrity.

Results: Only 29.5% had normal blood pressure levels, with 52.6% suffering from

prehypertension and 17.9% with hypertension. Increasing systolic blood pressure was

associated with damage to posterior white-matter tracts as well as greater levels of gray

matter atrophy, in particular in the frontal cortex. Age-adjusted linear regression indicated

that neither lesion volume (β = 0.002, 95%CI: 0.02–0.02; p = 0.85) or lesion number (β

= −0.004, 95%CI: 0.03–0.02; p = 0.74) were associated with systolic blood pressure.

Conclusions: Prehypertension and hypertension are frequent in MS. Increased blood

pressure is related to white- and gray-matter integrity, both related to MS disability

outcomes. These findings suggest attention to the control of blood pressure in MS

patients.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune disease
characterized by the destruction of myelin and other
antigens in the central nervous system (CNS) (1). Brain,
spinal cord, and optic nerve lesions arise from the infiltration of
autoreactive mononuclear peripheral blood cells (1). Lesions are
typically located in the white matter (WM) of periventricular,
juxtacortical, infratentorial, and spinal cord areas of the CNS
(2). Additionally, gray matter (GM) lesions and brain atrophy
are observed commonly during the course of the disease (3).
Brain atrophy reflects tissue loss and represents a global measure
of both severe demyelination and axonal loss in MS (3).The
pathogenesis and course of the disease are thought to result from
complex interactions between genetic and environmental factors
(4, 5). Of note, substantial heterogeneity exists in disease severity
and several comorbidities have been proposed that may account
for some of the observed differences in disease course among
individuals (6).

Recently, epidemiological findings suggest a relationship
between MS and several cardiovascular comorbidities, including
obesity (7), insulin resistance (7, 8), dyslipidemia (9), and
hypertension (8, 10); the latter being the most frequent
cardiovascular comorbidity reported in MS (11). In chronic
medical conditions, cardiovascular comorbidities are associated
with decreased quality of life and increased mortality (11).
In MS in particular, these comorbidities are associated with a
delayed diagnosis, worse magnetic resonance imaging (MRI)
outcomes (12), and increased risk of disease progression (13).
For example, a direct relationship between cardiovascular risk
factors and clinical status as measured by the ExpandedDisability
Status Scale (EDSS) has been reported (14). Furthermore,
higher low-density lipoprotein (LDL) cholesterol and total
cholesterol levels were associated with inflammatory MRI
measures (9). Additionally, a large MS cohort study reported
that hypertension and heart disease were associated with
brain atrophy and that obesity, was associated with T1
lesion volumes (12). Finally, we recently reported that a high
sodium intake, a regulating factor of blood pressure (BP),
is linked to MS disease activity (15). Understanding the
distribution and mechanisms of cardiovascular comorbidities
in MS could then potentially lead to better management of
patients and improved diagnosis and prevention of disease
progression.

Despite the strong epidemiological evidence, there is a paucity
of studies exploring pathophysiological mechanisms to explain
the association between MS and cardiovascular comorbidities.
In particular, the mechanisms linking MS severity and elevated
BP are poorly understood. Hypertension is associated with both
cerebrovascular and cardiovascular diseases and is the greatest
risk factor for mortality in those conditions (16). Moreover,
elevated systolic BP has been previously linked to brain atrophy,
WM injury and increased blood-brain barrier permeability in a
range of conditions other than MS (17–19).

We thus hypothesize that elevated BP contributes to MS
progression by affecting WM and GM integrity. To address
this question, we evaluated the relationship between BP and a

sensitive brainMRImeasure of structuralWM change (fractional
anisotropy-FA) in a cross-sectional cohort of patients with MS.
We additionally tested for an association between elevated BP
and MS cerebral lesion load as well as GM atrophy. Establishing
whether BP contributes to structural brain changes in MS would
highlight the potential relevance of aggressive screening and
management of hypertension.

METHODS

Study Design and Patients
This study was carried out in accordance with the
recommendations of the Ethics guidelines of the Raúl Carrea
Institute for Neurological Research Ethics Committee. The
protocol was approved by the Raúl Carrea Institute for
Neurological Research Ethics Committee. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki. One hundred consecutive patients with RRMS
according to the 2010 International Panel criteria (2) who
were seen at the MS clinic of the Raúl Carrea Institute for
Neurological Research were recruited from November 2013
to July 2015. Patients needed to be 18 years old or older
to be included. We excluded pregnant women and patients
with a previous history of other neurological disorders that
may affect MRI assessment. We assessed the patient’s current
medications, with particular attention to antihypertensive
agents.

Blood Pressure Measurement
Blood pressure was measured in one session at the time of
enrollment. Classification of BP for adults was based on the
7th Report of the Joint National Committee on prevention,
detection, evaluation, and treatment of high BP (16). Categories
were as follows: Normal (systolic-SBP < 120 and diastolic-DBP
< 80), Prehypertension (SBP 120-139 or DBP 80-89), Stage
1 hypertension (SBP 140-159 or DBP 90-99) and Stage 2
hypertension (SBP ≥ 160 or ≥ 100). Due to our patients’ age
range we expected none or few patients in Stage 2 hypertension;
therefore, we used a pooled hypertension group by collapsing
Stage 1 and 2. After the finalization and image analysis of our
study, a new set of recommendations were published: the 8th
Report of the Joint National Committee on prevention, detection,
evaluation, and treatment of high BP (20) and later the 2017
ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/
PCNA Guideline for the Prevention, Detection, Evaluation,
and Management of High Blood Pressure in Adults (21). In
this guideline, BP was categorized as normal (<120/80mm
Hg), elevated (120–129/<80mm Hg), stage 1 hypertension
(130–139/80–89mm Hg), or stage 2 hypertension (≥140/90mm
Hg). Since the majority of the analysis were done with lineal
uncategorized values of BP, the update on guidelines definition
did not modify our original analysis.

For BP recordings, patients were requested to sit in an empty
office for at least 5min in a chair with their feet on the floor and
arm supported at the level of the heart. BP measurement was
delayed if the patient smoked, consumed caffeine, or practiced
exercise within 30min of measurement. The BP measurement
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was made by trained non-medical personnel to avoid the “white
coat effect.” An automatic BP monitor was used (Microlife
WatchBP Office Blood Pressure Monitor, Microlife, Switzerland)
following these steps: first, the dominant arm was identified, then
three measurements separated by 60 s intervals were made and
the average of those results were considered as the final value.

Image Acquisition and Analysis
Brain MRI images were acquired on a Signa HDxt 3T scanner
(General Electric, Milwaukee, IL) using an 8-channel head
coil. Both 3-dimensional (3D) T1-weighted and FLAIR pulse
sequences were used to measure lesion load and brain volumes.
We acquired a sagittal 3D fast spoiled gradient-echo T1-weighted
sequence (512× 512matrix; field of view= 25 cm; slice thickness
= 1.1mm; TR= 7,400ms; TE= 2,400; TI= 450ms; flip angle=
15◦) and isotropic 3D FLAIR (512 × 512 matrix; field of view =

25 cm; slice thickness = 1mm; TR = 8,200ms; TE = 136ms; TI
= 2,200ms).

Lesions were segmented by the fully automated lesion growth
algorithm (22) as implemented in the LST toolbox version
2.0.15 (https://www.applied-statistics.de/lst.html) for SPM12.
This algorithm is able to segment T2-hyperintense lesions from
a combination of T1 and FLAIR images. It first segments the
T1 image into the three main tissue classes [cerebrospinal fluid
(CSF), GM, and WM]. This information is then combined with
the FLAIR intensities in order to calculate lesionmaps. Using this
method, lesion number and volumes was estimated.

In addition to this, estimated lesion masks were then
automatically filled using an internal filling method where
candidate region voxels where replaced by random intensities
from a Gaussian distribution generated from the normal-
appearing WM intensities and then filtered to reintroduce the
original spatial variation in WM (23). We filled MS lesions in
order to increase the accuracy of brain volumes estimates as
previously described (24).

For brain volumes, we processed the T1-weighted images
using the CAT12 toolbox (http://www.neuro.uni-jena.de) in
SPM12 (http://www.fil.ion.ucl.ac.uk/spm) running MATLAB
8.5.0. Brain parenchymal fraction,WM fraction, andGM fraction
were calculated as previously described (25). These global
volumes were used for descriptive purposes and not considered
as main predictor variables.

We acquired diffusion tensor imaging (DTI) data using
the following parameters: 55 gradient directions, b-value 1,000
s/mm2, 256 × 256 matrix; field of view = 24 cm; slice thickness
= 3.5mm; in plane voxel size (pixel size) = 0.71 × 0.78mm,
TR = 10,000ms; TE = 88.7ms. To estimate the impact of
BP in WM integrity, we performed FA voxel-based statistics
using the ACID Toolbox written in MATLAB (version R2016b,
Mathworks, USA), as previously described (26). DTI data were
visually inspected and found to be free of artifacts using the
residual error map of the tensor fit to detect outliers. The DTI
data were corrected for motion and eddy current effects using
ECMOCO from the ACID Toolbox. All resulting maps were of
good quality. FA values were generated from the pre-processed
DTI data. The default settings of the SPM12 normalization
software were used for each registration approach. The b0 image

was first co-registered using an affine transformation to the
standard SPM12 EPI template. The same transformation was
subsequently applied to the corresponding FA image and to
the DW images. Finally, images were smoothed prior to model
specification and analysis.

To estimate differences in regional brain volume according
to BP, a voxel-based morphometry (VBM) approach was used
(27), a technique previously used to estimate WM and GM
atrophy in MS patients (28, 29). First, lesion-filled 3D T1-
weighted images were segmented in GM, WM and CSF, as
described above. Then, GM and WM segmented images of
all subjects, were used to produce GM and WM templates
and drive the deformation to the templates. At each iteration,
the deformations, calculated using the DARTEL registration
method (30), were applied to GM and WM, with an increasingly
good alignment of subject morphology, to produce templates.
Spatially normalized images were then modulated to ensure
that the overall amount of each tissue class was not altered by
the spatial normalization procedure. To better align the final
template with the Montreal Neurologic Institute (MNI) space,
an affine registration between the customized GM template
and the statistical parametric mapping GM template (in the
MNI space) was also calculated. The same transformation was
applied to the WM customized template. The images were
then smoothed with an 8mm full width at half maximum
(FWHM) Gaussian kernel. Finally, we overlaid the T maps
with the probabilistic fiber map included in SPM12 to provide
a post-hoc description of the area of the GM significant
voxels.

Statistical Analysis
We aimed to establish if systolic BP (SBP) was associated with
increased WM injury (as measured by FA, primary outcome).
Our secondary outcomes were to assess if SBP was related to
lesion load and regional GM volumes. For our primary outcomes,
we used FA measures in a linear model as the dependent variable
and the following covariates: SBP, age, smoking status (smoker,
non-smoker), gender, hypertension treatment (treatment vs. no
treatment), MS disease-modifying treatment, vitamin D level
(continuous). The T maps obtained for the covariates were
assessed for significance with threshold-free cluster enhancement
with an α of 0.001.

To achieve our secondary analysis, we used a linear regression
with log-transformed WM lesion volume as the dependent
variable and continuous SBP as the independent variable,
adjusting for the same co-variates as above. In exploratory
analysis, only systolic BP (our variable of interest) and age
demonstrated significance to be included in our model, and all
other variables were discarded after assessing for confounding
and effect modification. The same analysis was also carried
out for lesion number. For GM volumes, a linear model was
generated after VBM and T maps were analyzed as mentioned
above.

P < 0.05 were considered significant. Unless otherwise noted,
mean ± standard deviation is reported. All statistical procedures
were performed with Stata version 12.1 (Statacorp).
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RESULTS

Prevalence of Elevated Blood Pressure
One hundred patients were initially recruited in our study.
Two patients later refused BP recordings and 3 patients
cancelled MRI. Thus, 95 patients were finally included, 57 of
whom were female (60%). Patients were aged 19-66 (median
32, IQR 32-45). Regarding BP, 28 (29%) were normal, 50
(53%) had pre-hypertension, and 17 (18%) had hypertension.
According to the 2017 guidelines, 29% were normal, 18% had
elevated BP, and 53% were hypertense. Patient characteristics
are shown in Table 1 (including a breakdown according to BP
levels).

Elevated Blood Pressure and White-Matter
Integrity
To establish the impact of SBP on WM integrity, we performed
a voxel-based regression analysis with measures of FA as the
dependent variables and SBP as the main predictor. As shown
in Figure 1 and Table 2, SBP was independently associated with
bilateral decreased FA in voxels located in the precuneus, and
middle and posterior cingulate gyrus (Figure 1 and Table 2).
Thus, high levels of SBP were associated with reduced integrity
of WM.

Elevated Blood Pressure and Brain Atrophy
As shown in Figure 1 and Table 2, SBP was inversely associated
with regional VBM-derived GM volumes bilaterally in the
posterior orbital gyrus, the medial frontal cortex and the
subcallosal area. Thus, SBP was associated with brain atrophy in
frontal areas.

Relationship Between White-Matter Areas
Affected by SBP and Disability
To test whether WM areas found to be affected by SBP had an
impact in disability, we performed an ordinal regression analysis
with EDSS score as the dependent variable and measures of FA
as the predictors after adjustment by age, gender and smoking.
We found a positive correlation between FA values in the left and
right cingulate gyrus (P = 0.04 and P = 0.013, respectively). We
did not detect a significant association between areas in which
greater atrophy linked to higher BP and EDSS. Thus, in our
cohort, onlyWM areas linked to SBP contributed toMS disability
as measured by EDSS.

Blood Pressure and Lesion Size or Number
Elevated BP can have a significant impact on WM damage and
is associated with the appearance of WM hyperintensities in
locations similar to MS (17). Thus, we hypothesized that elevated
BP may contribute to WM lesion size or number.

We built a linear model with lesion volume as the dependent
variable and age and systolic BP as the predictors. Age-adjusted
linear regression indicated that neither lesion volume (β = 0.002,
95% CI:−0.02 to 0.02; p= 0.85) nor lesion number (β =−0.004,
95% CI: −0.03 to 0.02; p = 0.74) was associated with systolic BP.
Thus, BP was not related to overt MS lesions.

DISCUSSION

In patients with RRMS, increasing SBP was associated with WM
injury and greater brain atrophy. Although no direct comparison
to healthy controls was made, our results indicate that elevated
SBP is frequent in MS. Moreover, damage in some areas of WM

TABLE 1 | Characteristics of study participants.

All patients (n = 95) Normotensive (n = 28) Prehypertensive (n = 50) Hypertensive (n = 17) P-value

Female, n (%) 57 (60) 23 (82) 28 (56) 6 (35) 0.006

Age, median (range) 37 (19–66) 36.5 (19–53) 37.5 (19–66) 41 (29–58) 0.1

EDSS, median (range) 0 (0–4.5) 0 (0–4.5) 0 (0–4.5) 0 (0–3.5) 0.5

Disease duration, median years (range) 7.5 (0–20) 5 (0–20) 9 (0–18) 5.5 (0–14) 0.16

Age at diagnosis, median (range) 31 (17–52) 29.5 (17–43) 30.5 (17–52) 35.5 (18–47) 0.23

Treatment, n (%) 0.09

Untreated 3 (3) 0 (0) 3 (6) 0 (0)

IFN 40 (43) 14 (50) 15 (31) 11 (65)

Glatiramer acetate 12 (13) 3 (11) 9 (18) 0 (0)

Fingolimod 29 (31) 9 (32) 14 (29) 6 (35)

Natalizumab 4 (4) 2 (7) 2 (4) 0 (0)

Other 7 (7) 0 (0) 7 (14) 0 (0)

Systolic blood pressure (mmHg) 125 (13) 112 (5) 126 (7) 144 (7) <0.0001

Diastolic blood pressure (mmHg) 81 (12) 70 (6) 81 (6) 98 (11) <0.0001

Current smoking 9 (9) 3 (11) 3 (6) 3 (18) 0.3

Hypertension treatment 8 (8) 0 (0) 6 (12) 2 (12) 0.1

Brain T2 lesion number, median (range) 21 (1–91) 17 (1–58) 20 (1–91) 26 (6–51) 0.7

Brain T2 lesion volume (cm3) 3.6 (0.03–56.21) 4.4 (0.03–30.5) 3.4 (0.14–56.2) 3.27 (0.7–17.6) 0.99
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FIGURE 1 | Regions of the cerebral white matter (A) and gray matter (B) in

which systolic blood pressure is inversely associated with tissue integrity. (A)

Brain render depicting white matter areas associated with decreased fractional

anisotropy. Voxel-based regression included fractional anisotropy as the

dependent variable and systolic blood pressure as the independent variable.

Age, gender, and smoking were added as covariates. (B) Brain render

showing gray matter areas with reduced volume associated with increasing

systolic blood pressure. Voxel-based morphometry included gray matter as

the dependent variable, with systolic blood pressure as the independent

variable. Age, gender, smoking, and total intracranial volume were covariates.

affected by SBP correlated with higher physical disability on the
EDSS.

Extensive work has been done in healthy controls to establish
the impact of SBP and other vascular factors in brain aging
(17, 31). In those studies, a clear association between SBP
and WM injury and brain atrophy has been established.

TABLE 2 | Brain regions exhibiting fractional anisotropy and voxel based

morphometry abnormalities.

Area Side T score P value

DECREASED FRACTIONAL ANISOTROPY

Precuneus Left 3.6 0.001

Precuneus Right 2.9 0.002

Middle cingulate gyrus Left 3.4 0.001

Middle cingulate gyrus Right 2.6 0.006

Posterior cingulate gyrus Left 2.4 0.009

Posterior cingulate gyrus Right 2.8 0.003

DECREASED GRAY MATTER VOLUME

Posterior orbital gyrus Left 3.53 0.001

Posterior orbital gyrus Right 3.05 0.002

Medial frontal cortex Left 3.16 0.001

Medial frontal cortex Right 3.04 0.002

Subcallosal area Left 2.95 0.002

Subcallosal area Right 2.86 0.003

Although, initially, the findings referred to a link between SBP
and WM hyperintensities, damage was later linked to more
subtle measures of WM integrity such as FA, even in mid-life
individuals, such as the cohort included in our study (17). Our
work shows that raised SBP contributes toWMdamage and brain
atrophy in young and mid-life MS patients. A recent MS cohort
study addressing the impact of cardiovascular factors (12), did
not detected a significant impact in WM by hypertension, but
found a similar impact on cortical atrophy. This discrepancy
on WM results might be explained by the more sensitive (FA)
method used in our study, of particular relevance in young
cohorts.

A wide range of biological factors are thought to contribute
to clinical and MRI outcomes in patients with MS, creating
a complex disease pathophysiology (1). Previous studies show
that high sodium intake is associated with greater clinical
and MRI activity in both MS animal models and in patients
with the disease (15, 32). The mechanisms of this association
remain largely unknown. High sodium intake is also associated
with hypertension, which, in turn, is one of the leading
causes of cerebrovascular disease and mortality worldwide (16).
Thus, in addition to the immunological mechanisms previously
described linking sodium to MS pathophysiology (32, 33),
high sodium intake could also affect MS severity indirectly
through increases in SBP. One can consider possible direct
mechanisms explaining the relationship between elevated BP
and MS such as subtle myelin injury and increased blood
brain barrier (BBB) permeability. Microvascular damage due
to hypertension can increase arterial stiffness and generate
decreased oxygen loads, with subsequent chronic myelin injury
(34). This mechanism however does not explain the differential
affection of posterior WM tracts and anterior GM. Of interest,
although other tractography and VBM studies in MS patients
have found similar areas affected (28), studies in healthy controls
show that SBP impacts more on anterior WM tracts. This may
suggest a differential interaction between SBP and autoimmunity.
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The second potential mechanism relates to increases in BBB
permeability due to elevated SBP. Previous reports in animal
models suggest that raises in SBP increase BBB leakage, and may
thus facilitate the entry of immune cells and other inflammatory
mediators into the brain parenchyma (19). In addition to this,
Angiotensin II, a key component of the renin-angiotensin system
(RAS) can also enter the brain during hypertension and influence
the immune system through the activation of Angiotensin type
1 receptor (AT1R) in astrocytes and microglia (35), of great
relevance to MS progression (36). A final potential mechanism
could be that hypertension leads to small vessel occlusive disease
and therefore to hypoperfusion and subtle brain damage (37).
This fails to explain, however, the lack of association between SBP
and lesion load, but could account for additional chronic damage
to the brain relevant to MS progression.

Regardless of the potential mechanisms, comorbidities are
an increasing concern for MS practitioners. Recently, an
international workshop on comorbidities in MS was held
(6). In a meta-analysis, the panel identified hypertension
as one of the most frequent comorbidities in MS. In line
with previous reports, they highlighted that hypertension, as
well as other comorbidities, may be associated with worse
outcomes.Moreover, they generated recommendations for future
research, including exploring the mechanisms of the effects
of comorbidity on MS as a means of identifying potential
approaches to mitigating their impact. Our study goes along
with this recommendation by identifying structural correlates
of the effect of hypertension on cerebral MS related pathology,
raising the possibility that elevated BP may contribute to disease
progression.

There are several limitations of our study worthy of
comment. First, our sample consisted of a cohort of white
Hispanics from a single center, and may not be generalizable
to the worldwide MS population. Second, although every
consecutive patient was invited, participation was voluntary,
and healthier, less disabled patients were more likely to
accept invitation. This selection bias may have been negligible
due to the relative young age and low disability of our
cohort. Third, we did not include a comparison healthy
control cohort, which may have shed some more information
regarding the differential affection in MS and healthy controls.
Further studies are required to compare both groups. The
estimated prevalence in Argentina of prehypertension and
hypertension is 35 and 12.2%, respectively, for a similar
age group (38). Therefore, it appears that hypertension is
more prevalent in MS. However, because blood pressure
and hypertension were measured and defined differently, we
were very cautious to avoid any misleading comparison.
Fourth, we studied our patients in a cross-sectional fashion;
longitudinal studies are required to further elucidate the
long-term impact of BP on clinical and MRI-defined MS
progression. Despite these limitations, our study has a clear
impact: there is an unmet need to address the early detection
and treatment of hypertension in patients withMS. Furthermore,

additional research is warranted to fully characterize the role
of hypertension in contributing to the pathophysiology of
MS.

In conclusion, our study shows that prehypertension and
hypertension are common among patients with MS. Moreover,
elevated BP is associated with reduced brain integrity. Since
WM and GM integrity are associated with disability outcomes
during disease progression, it is of importance to avoid
additional factors injuring the brain. These findings further
suggest the importance of aggressive, early management of
hypertension as a preventive strategy, not only for cardiovascular
and cerebrovascular events, but also potentially, to limit
MS disease progression. Our results, suggests that MS
practitioners should measure and aim for optimum control
of BP.
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