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Ancylostomiasis is a fairly common small bowel parasite disease identified by capsule endoscopy (CE) for which a computer-aided
clinical detection method has not been established. We sought to develop an artificial intelligence system with a convolutional
neural network (CNN) to automatically detect hookworms in CE images. We trained a deep CNN system based on a YOLO-
V4 (You Look Only Once-Version4) detector using 11236 CE images of hookworms. We assessed its performance by
calculating the area under the receiver operating characteristic curve and its sensitivity, specificity, and accuracy using an
independent test set of 10,529 small-bowel images including 531 images of hookworms. The trained CNN system required 403
seconds to evaluate 10,529 test images. The area under the curve for the detection of hookworms was 0.972 (95% confidence
interval (CI), 0.967-0.978). The sensitivity, specificity, and accuracy of the CNN system were 92.2%, 91.1%, and 91.2%,
respectively, at a probability score cut-off of 0.485. We developed and validated a CNN-based system for detecting hookworms
in CE images. By combining this high-accuracy, high-speed, and oversight-preventing system with other CNN systems, we
hope it will become an important supplement for detecting intestinal abnormalities in CE images. This trial is registered with
ChiCTR2000034546 (a clinical research of artificial-intelligence-aided diagnosis for hookworms in small intestine by capsule

endoscope images).

1. Introduction

Remarkable progression in the investigation and diagnosis
of small bowel lesions, such as tumors, ulcerations, enteritis,
and parasites, by capsule endoscopy (CE) has been made in
recent years [1-4]. An innovative endoscopic capsule passes
through the GI tract, capturing approximately 40,000-60,000
images per patient. A heavy burden is imposed on physi-
cians to screen lesions from a massive number of images;
as especially when lesions are present only in several frames,
they may easily be missed by the physicians due to fatigue or
oversight. In order to reduce the burden on physicians and
improve the efficiency and accuracy of endoscopic diagnosis,
computer software technology has begun to be applied to
this field. With the continuous development of the combina-
tion of computer software technology and endoscopic diag-

nosis [5], many computer-aided methods have been
formed, and such methods are promising for the detection
of many small intestinal abnormalities [6-8], such as bleed-
ing [9], erosions [1], ulcerations [1], angioectasias [10], and
protruding lesions [11], such as polyps, nodules, epithelial
tumors, stromal tumors, and venous structures.
Ancylostomiasis in the small intestine is still a fairly
common small bowel parasite disease in some regions of
developing countries, in addition to the southern part of
China, and is one of the etiologies of obscure gastrointestinal
bleeding (OGIB). Patients see a doctor due to unknown
chronic hypoferric anemia or positive occult blood test
results, and the diagnosis can be established by CE [12]. In
our earlier report on automatic detection software based
on the color and morphological features of hookworms
[13], the ability of the software to detect hookworms was
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poorer than its ability to detect the lesions mentioned above
due to algorithm imperfections [13].

Recent reports have shown that convolutional neural
networks (CNNs), a new type of “deep learning” algorithm
in the artificial intelligence (AI) field, have succeeded in
detecting many lesions in medical images, such as pulmo-
nary nodules [14, 15], breast lesions [16, 17], skin cancer
[18], and early gastrointestinal cancers [19, 20], in addition
to the ones mentioned above in CE images. In particular,
the reason for the popularity of CNNs lies in their ability
to extract the characteristics of images based on accumulated
images, which makes them useful for analysis of medical
images and for image-based detection. Once the detection
module has been obtained, such network scan automatically
and rapidly process large numbers of images.

Although many promising diagnostic results have been
obtained from CE images using CNNs, there have been
few analyses of the detailed classification of parasites, includ-
ing hookworms, according to color and morphology, and
there have been few related clinical reports in the field.

In this study, we developed and validated a CNN-based
system for the automatic detection of hookworms in small
bowel CE images. We used 11236 CE images for training
and 10,529 independent CE images for testing.

2. Materials and Methods

2.1. Preparation of the Training Image Set. The study design
was reviewed and approved by the Ethics Committee of
West China Hospital, Sichuan University (No0.2020 (290)),
and it was registered in the Chinese Clinical Trial Registry
(No. ChiCTR2000034546) on July 9th, 2020. This was a ret-
rospective study using anonymized CE images, and
informed consent was waived for patients included in the
study. CE images taken between May 2007 and December
2020 were obtained from a single institute (The West China
Hospital, China). All of the CE examinations for our study
were performed using an OMOM CE device (Jinshan Tech-
nology CO., Chonggqing, China). The CE findings obtained
by 3 endoscopists were recorded prospectively in an elec-
tronic database. As a training image dataset for the CNN
system, we collected 11236 images of small bowel hook-
worms from 119 patients between May 2007 and August
2016; the flowchart of this study is listed in Figure 1.

2.2. Preparation of the Validation Image Set. A total of
10,529 independent CE images from 60 patients obtained
between November 2016 and December 2020 were prepared
as a validation image set. Of these CE images, 529 showed
hookworms in the small bowel, and 10,000 images showed
a normal small bowel mucosa (Figure 1).

2.3. CNN Algorithm. To construct an Al-based diagnostic
system, we used a deep detection neural network called the
YOLO-V4 (You Look Only Once-Version4) as the main
part and a small classification neural network as the supple-
mentary part. YOLO-V4 is a deep CNN that consists of 53
or more layers, and the classification network consists of 3
layers [21, 22]. All regions showing hookworms in the train-
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FiGure 1: The flowchart of this study.

ing set were manually annotated for this study by 2 expert
endoscopists (Tao G. and Jinlin Y.). The annotation was per-
formed separately, and consensus was later determined.
These images were fed into the YOLO-V4 and classification
networks through two frame works, Pytorch and Tensor-
Flow. The diagnostic system was taught to recognize the
areas within the bounding boxes as hookworms and the
other areas as background.

All layers of the YOLO-V4 and classification network
were fine-tuned using Adam (adaptive moment estimation)
gradient descent. Each image was resized to 416 x 416 pixels
in YOLO-V4 and 256 x 240 in the classification network; the
bounding box was also resized accordingly. These values
were determined by trial and error to ensure that all data
were compatible with the system.

2.4. Outcome Measures and Statistics. The primary outcomes
included the area under the receiver operating characteristic
curve (ROC), sensitivity, specificity, and accuracy of the
CNN for detecting hookworms. First, 2 expert endoscopists
(Tao G. and Jinlin Y.) manually annotated all hookworms
with green rectangular bounding boxes in the validation set
(“true boxes”) used for this study. The annotation was per-
formed separately, and consensus was later decided. Finally,
the annotations of 11236 images with hookworms were
modified at the stage of consensus. The trained CNN system
marked the region of hookworms with red rectangular
bounding boxes (“CNN boxes”) in the validation set and
provided a hookworm probability score (range, 0~ 1). The
higher the probability score was, the greater the confidence
that a region identified by the CNN contained hookworms.
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The CNN-based detection system was validated by eval-
uating its ability to distinguish whether each image con-
tained hookworms. The following definitions were used:
(1) If the image contained one or more hookworms, and
the CNN box had a probability score larger than the cut-
off value on one or more hookworms, then it was considered
a true positive, while it was considered a false negative if
there were no CNN boxes with a probability score above
the cut-off value. For an image without a hookworm, if no
CNN boxes had a probability score larger than the cut-off
value, then this image was counted as a true negative, and
it was considered a false positive if there was a CNN box
with a probability score larger than the cut-oft value. (2)
When the overlapping area between the CNN box and the
true box covered more than 70%, the CNN box was defined
as correct.

Comparisons were performed by univariate analysis
using the Pearson chi-squared test. A P value < 0.05 was
considered statistically significant. The receiver operating
characteristic (ROC) curve was plotted by varying the
threshold of the probability score, and the area under the
curve (AUC) was calculated to evaluate the system’s detec-
tion ability. The sensitivity, specificity, and accuracy of the
CNN in detecting hookworms were calculated using cut-off
values for the probability score according to the Youden
index [23, 24].

The data were analyzed statistically using the SPSS soft-
ware (version 17).

3. Results

3.1. Capability of the CNN in Detecting Hookworms. The
characteristics of the patients in the training and validation
datasets are shown in Table 1. The most common cause of
hookworm infection was touching soil containing filariform
larvae of hookworms with bare hands, feet, or other parts of
the body or consuming food containing filariform larvae of
hookworms, but in both datasets, the patients could not pro-
vide the relevant information of history of infection due to
chronic and occult incidence. The validation set consisted
of 10,529 images from 60 patients (male, 43.3%; mean age,
59.7 + 11.9 years). The trained CNN required 403 seconds
to evaluate the images, with an average speed of 26 images
per second.

Figures 2(a)-2(d) show representative regions correctly
marked by the CNN, and Figures 3(a)-3(l) show typical
regions classified differently by the experts and the CNN.
As shown in Table 2, false negative images (n=56) were
classified into 4 categories based on the cause of the false
negative read: poor demarcation mainly caused by the debris
and darkness (Figures 3(b) and 3(c)), similarity to the edge
of a bubble (Figure 3(a)), similarity to a submucosal vascular
shadow (Figure 3(d)) and smallness. On the other hand,
false positive images (1 = 895) were classified into 6 catego-
ries based on the reason for the false positive read: darkness
(Figure 3(j)), a bubble (Figure 3(h)), debris (Figure 3(g)),
vascular shadow (Figure 3(i)), a fold (Figures 3(e) and 3(f
)), and smallness. Two true hookworms missed by the
experts were detected by the CNN (Figures 3(k) and 3(1)).

TaBLE 1: Characteristics of patients in the training and validation
datasets.

Validation dataset

Characteristics,  Training dataset

Hookworms Normal

0, =
n (%) (n=119) (n = 40) (1 = 20)
No. of images 11236 469 10000
Age (years), 56.2 +14.8 63.7+9.0 523+12.6
mean (SD)
Sex, male 59 (49.6) 17 (42.5) 9 (45.0)
Exam indication
for CE

OGIB 94 28 6

Abdommal 23 3 14
pain
Anemia 22 7 2
Abnormal 3 3 1
results
Abdominal
distention 3 ! 3
Diarrhea 3 0 1
Screening 3
Constipation 1
No. of
hookworms

<3 46 14

>3 73 26
Location of
hookworm
Jejunum 69 33
Tleum 13
Diftuse 37 6
Eosinophile

3 3
granulocyte
Hookworm
* 3 1

ovum
Concomitant
lesions
No other lesions 46 16
Enteritis 26
Polyp 19
Submucosal 18 12 4
mass
Angioectasia 13 2 3
Erosion/ulcer 9 7 3
Miscellaneous” 8 3 4

Values are number (%) except where indicated otherwise. SD: standard
deviation; CE: wireless capsule endoscopy; OGIB: obscure gastrointestinal
bleeding. *Hookworm ovum of stool routine. AThe causes of
miscellaneous cases included lymphatic dilatation (n=2), diverticulum
(n=1), roundworm (n=2), intestinal scar (n=2), and stromal tumor
(n=1) in training dataset and lymphatic dilatation (n = 3), intestinal scar
(n=1), vein tumor (n= 1), and stromal tumor (n = 2) in validation dataset.



Gastroenterology Research and Practice

(d)

FIGURE 2: Representative images of multiple hookworms and single hookworm correctly detected by the convolutional neural network
(CNN) in the validation set (green box, true lesion; red box, region identified as hookworms by the CNN).

The AUC of the CNN used for detecting hookworms
was 0.972 (95% confidence interval (CI), 0.967-0.978;
Figure 4).

According to the Youden index, the optimal cut-off
value for the probability score was 0.485; therefore, regions
with a probability score of >0.485 were recognized as con-
taining hookworms by the CNN. At this cut-off value, the
sensitivity, specificity, and accuracy of the CNN were
92.2%, 91.1%, and 91.2%, respectively (Table 3).

Table 4 shows the changes in sensitivity, specificity, and
accuracy when the cut-off value for the probability score was
increased in 0.1 increments from 0.2 to 0.9.

At a cut-off value of 0.485, in 529 images, 838 hook-
worms in 473 images were detected by 641 CNN “true
boxes,” 20 hookworms in 12 images were detected by CNN
“true boxes,” and 32 hookworms in 12 images and 55 hook-
worms in 44 other images were not detected by the CNN.
Amongl0000 images, two hookworms were detected in
two images by 2 CNN “true boxes” but not by the expert
endoscopists.

The detection rate of the CNN for different types of infec-
tion was as follows: there was no difference in detection rate
for single hookworms and multiple hookworms (88.8% vs.
92.0%, P =0.11) or between fully blood-fed hookworms and
partly blood-fed hookworms (89.7% vs. 91.0%, P =0.59).
When the CNN software used in this trial was used to detect
hookworms once again by using the same images of validation
dataset to appraise the reproducibility, the results were
completely consistent with those of the previous test.

4. Discussion

We developed a CNN-based system for automatic detection
of hookworms in small bowel CE images. The trained CNN

was shown to detect hookworms in independent test images
with a high accuracy of 91.2% (AUC, 0.972). Moreover, the
results were equally good for single hookworms and multiple
hookworms and for hookworms that were partly or fully
blood-fed. The detection process of the CNN software sys-
tem was not random.

For the evaluation of small bowel mucosal damage, we
speculated that it is essential to consider intestinal parasites
as well as other intestinal lesions. A previous work reported
the automatic detection of hookworms based on an edge
extraction network and classification network in 2016; how-
ever, although the preliminary results confirmed the ability
of CNN to detect hookworms, consistent with other litera-
ture findings [2], fewer images of hookworms were used,
limiting the ability further clinically validate the findings
[25]. Since 2015, some studies have reported the effective-
ness of the deep learning-based analysis of CE images for
identifying intestinal lesions such as angioectasia, ulceration,
erosion, polyps, hemorrhages, and protruding masses [9,
11]. However, there have been no clinical studies or reports
on intestinal parasites such as hookworms, roundworms,
and tapeworms. One reason is that enough samples had
not been obtained. In this study, the accumulation of case
images allowed us to further clinically validate an automatic
detection system for hookworms in CE images using a deep
learning method. Using more than 11000 training images,
our CNN was able to achieve “self-learning” and attain a
high level of detection (AUC, 0.972). Interestingly, the
CNN detected 2 true hookworms that the experts had
missed. The experts likely missed these lesions because the
surrounding dark background caused by coftee-like blood
was a similar color as the bodies of fully blood-fed hook-
worms. It is surprising that the CNN system revised our
oversight during the course of a high-speed review at more
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Figure 3: Continued.
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(k)

)

FIGURE 3: Representative images classified differently by experts and the CNN in the validation set (green box, region identified as a
hookworm by experts; red box, region identified as a hookworm by the convolutional neural network (CNN); number, the probability
score of the CNN reading). Samples of false-negative images due to (a) bubble, (b) darkness, (c) debris, and (d) vascular shadow.
Samples of false-positive images due to (e) fold, (f) fold, (g) debris, (h) bubble, (i) vascular shadow, and (j) darkness. (k, 1) True

hookworm detected by the CNN that were missed by the experts.

TaBLE 2: Causes of discrepancies in classifications by the experts
and by the CNN.

n (%)

False-negative lesions (n = 56)

Poorly demarcated (53.6)
Debris 12 (21.4)
Darkness* 17 (30.4)
Poor focus 1(1.8)

Similarity to the edge of the bubble 7 (12.5)

Similarity to the submucosal vascular shadow 17 (30.4)

Smallness 2 (3.6)

False-positive lesions (n = 895)

Darkness 32 (3.6)
Bubble 179 (20)
Debris 516 (57.7)

Vascular shadow 73 (8.2)

Smallness 3(0.2)

Fold 92 (10.3)

Hookworms overlooked by experts (1 =2)

True hookworms 2 (100)

*Caused by dark view or coffee-like bloody fluid.

than 26 images per second. There are still some inadequa-
cies in the CNN system that should be improved in our
future work. More than half of the classification errors
made by the CNN, regardless of whether they were a false
positives or false negatives, were mainly caused by three
interference factors: darkness, debris, and bubbles. Dark-
ness often resulted from the coffee-like blood due to the
effect of acid and bacterial decomposition after blood oozes
from the wounds in the intestinal wall caused by massive
hookworms. In addition to the CNN detection method
mentioned above, image light enhancement technology is
the next strategy we should use. In contrast to darkness,
some debris and bubbles have similar morphologies as the
bodies of hookworms (see Figures 3(g)-3(i)), which have

ROC curve

10

0.8

Sensitivity
e
(=)}
|

<
'S
1

0.2

0.0 T T T
0.2 0.4 0.6 0.8 1.0

1 — specificity

FIGURE 4: The receiver operating characteristic curve of the
convolutional neural network for detecting hookworms. AUC:
area under the curve; CI: confidence interval.

folds and submucosal vascularity; thus, a sufficiently large
number of images with these findings will be used to train
the CNN system to improve its specificity in detecting
hookworms. Obviously, the sensitivity of detection may be
negatively influenced by insufficient lighting, poor bowel
preparation, and other factors such as poor focus and a
small expose of hookworm. In addition, bubbles, debris,
bile, etc. were found to affect the sensitivity when present
with hookworms (see Figures 3(a) and 3(c)). The CNN sys-
tem had difficulty detecting hookworms, possibly because it
was confused by bubbles, debris, bile, etc. This result sug-
gests that when bowel cleansing is poor, the sensitivity of
the detected lesions can be improved if the CNN system
learned those findings [26].
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TaBLE 3: Classification of images predicted by the CNN technology.

Classification of endoscopists

CNN classification Hookworms  Normal mucosa Total
Hookworms 659 897 1556
Normal mucosa 56 9178 9234
Total 715 10075 10790

Sensitivity, 92.2%; specificity, 91.1%; accuracy, 91.2%.

TaBLE 4: The ability of classification for each cut-off value.

Cut-off value (P Sensitivity Specificity Accuracy
value) (%) (%) (%)
0.1 98.7 65.3 67.5
0.2 98.2 77.5 78.9
0.3 95.5 84.0 84.8
0.4 94.0 88.3 88.7
0.485" 92.2 91.1 91.2
0.5 91.6 91.5 91.5
0.6 87.3 94.4 93.9
0.7 81.4 96.4 95.4
0.8 72.4 98.2 96.5
0.9 61.7 99.5 97.0

*Calculated according to the Youden index.

Moreover, the results showed that the sensitivity, specific-
ity, and accuracy of the CNN were 92.2%, 91.1%, and 91.2%,
respectively. We recommend that the goal of the CNN system
be to maintain an auxiliary diagnosis in clinical practice until it
is supported by large-scale effective results with high sensitiv-
ity. Although we used the Youden index as the standard cut-
off value in this study, we should improve the capabilities of
this system and search for the best cut-off value with higher
sensitivity during further clinical validation.

Other future works include applying this method to
other parasites mentioned above to extend the utility of the
CNN system. In clinical practice, this detection system
should be combined with other CNN detection systems for
intestinal abnormalities [3] such as those for detecting pro-
truding lesions [11], erosions and ulcerations [1], enteritis,
intraluminal hemorrhage [9], and angioectasia [10], and
the clinical effects should be further evaluated.

Our study had several limitations. First, this was a retro-
spective study, although as many samples as possible were
obtained from one medical unit. Second, our detection sys-
tem should be validated in other hospitals by using multi-
center data. Third, our CNN system was developed and
investigated by using images from the OMOM CE system,
and it is unclear whether images from other CE systems
can be used with this detection system.

In conclusion, we developed and validated a CNN-based
detection system for hookworms in CE images. We hope this
high-accuracy, high-speed, and oversight-preventing system
will become important for detecting intestinal abnormalities
in CE images in combination with other CNN detection
systems.
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