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During the S-phase, theDNA replication process isfinely orchestrated and regulated by two programs: the spatial
program that determines where replication will start in the genome (Cadoret et al. (2008 Oct 14), Cayrou et al.
(2011 Sep), Picard et al. (2014 May 1) [1–3]), and the temporal program that determines when during the S
phase different parts of the genome are replicated and when origins are activated. The temporal program is so
well conserved for each cell type from independent individuals [4] that it is possible to identify a cell type
from an unknown sample just by determining its replication timing program. Moreover, replicative domains
are strongly correlatedwith the partition of the genome into topological domains (determined by theHi-Cmeth-
od, Lieberman-Aiden et al. (2009 Oct 9), Pope et al. (2014 Nov 20) [5,6]). On the one hand, replicative areas are
well defined and participate in shaping the spatial organization of the genome for a given cell type. On the other
hand, studies on the timing program during cell differentiation showed a certain plasticity of this program ac-
cording to the stage of cell differentiationHiratani et al. (2008Oct 7, 2010 Feb) [7,8]. Domainswhere a replication
timing change was observed went through a nuclear re-localization. Thus the temporal program of replication
can be considered as an epigenetic mark Hiratani and Gilbert (2009 Feb 16) [9]. We present the genomic data
of replication timing in 6 human model cell lines: U2OS (GSM2111308), RKO (GSM2111309), HEK 293T
(GSM2111310), HeLa (GSM2111311), MRC5-SV (GSM2111312) and K562 (GSM2111313). A short comparative
analysis was performed that allowed us to define regions common to the 6 cell lines. These replication timing
data can be taken into account when performing studies that use these model cell lines.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80029.
. Cadoret).

. This is an open access article under
2. Experimental design, materials and methods

2.1. Growth protocol

2.1.1. U2OS cells
The human U2OS cell line was purchased from ATCC and were

grown in Dulbecco's modified Eagle's medium (Invitrogen) with 10%
fetal bovine serum (Sigma) at 37 °C, 5% CO2 and 5% O2.

2.1.2. RKO cells
The human RKO cell line was purchased from ATCC and grown in

DMEM with GlutaMAX I, high-glucose, sodium pyruvate (Gibco, Life
Technologies), supplemented with 10% fetal bovine serum (Lonza),
penicillin (100 U ml−1) and streptomycin (100 μg ml−1) (Gibco) at
37°C, 5% CO2 and 5% O2.

2.1.3. HEK 293T cells
The human HEK 293T cell line was purchased from ATCC and grown

at 37 °C in DMEM supplemented with 10% fetal calf serum (FCS) under
5% of CO2.
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2.1.4. HeLa cells
HeLa cells were cultured with the recommended ATCC complete

growth medium: Ham's F12K medium with L-glutamine at 2 mM,
1.5 g·l−1 sodium bicarbonate, and 10% of fetal bovine serum in a hu-
midified 5% CO2 atmosphere at 37 °C.

2.1.5. MRC5-SV cells
The humanMRC5-SV cell line was purchased from ATCC and grown

inModified EagleMediumwithGlutaMAX™ I, High glucose, SodiumPy-
ruvate (Gibco, Life Technologies), supplemented with 10% Fetal Bovine
Serum (Lonza), penicillin (100 U/ml) and streptomycin (100 μg/ml)
(Gibco) at 37 °C, 5% CO2 and 5% O2 (standard culture conditions).

2.1.6. K562 cells
The cells, fromATCC, grown in Iscove'sModifiedDulbecco'sMedium

supplemented with 10% fetal bovine serum (Lonza), penicillin
(100 Uml−1) and streptomycin (100 μgml−1) (Gibco) at 37 °C, 5% CO2.

2.2. BrDU treatment

Cells must be in exponential growing phase. Then they were incu-
bated with BrdU (50 μM) for 90 min, collected, washed three times in
DPBS, then fixed in 75% ethanol, and stored at −20 °C. Fixed cells
were first re-suspended in DPBS with RNAseA (0.5 mg/ml) and then
with propidium iodide (50 μg/ml) during 30 min minimum at room
temperature before the cell sorting.

2.3. Cell sorting

100,000 cells were sorted in two fractions S1 and S2 using INFLUX
500 (Cytopeia purchased by BD Biosciences) corresponding to Early
and Late fractions respectively. Early fraction corresponds to the small
fraction of the end of G1 and a large portion of early S-phase (Fig. 1).
Fig. 1. FACS analysis profile for K562 cell line used in our experiments as example for the choice
phase corresponding to the Early fraction in our experiments. Blue fraction corresponds to a larg
the Late fraction.
Late fraction corresponds to the large fraction of the late S-phase and
a small portion of the beginning of G2/M (Fig. 1).

2.4. Nascent-DNA extraction

A proteinase K treatment (0.2 mg/ml) was performed in both frac-
tions in lysis buffer (50 mM Tris pH = 8; 10 mM EDTA; 300 mM
NaCl) during 2 h at 65 °C in dark condition. Then a phenol-chloroform
extraction followed by an ethanol precipitationwas performed. The pel-
let is resuspended in 100 μl of Tris buffer (10 mM). The two fractions
were sonicated to obtain fragments between 500 and 1000 bp. DNA is
then denatured at 95 °C during 5min and kept on ice during 10min. Na-
scent-DNA was immunoprecipitated using the IP-STAR apparatus with
the indirect method option (Diagenode) with BrdU antibodies (10 μg,
Anti-BrdU Pure, BD Biosciences, # 347580). Magnetic beads were pre-
pared as mentioned by the manufacturer (Adamtech; ChIP adambeads
#04342). Beads were washed with different buffers (IP buffer: Tris
pH = 8 10 mM; EDTA 1 mM; NaCl 150 mM, Triton ×100 0,5%; Buffer
B: Tris pH = 8 20 mM; EDTA 2 mM; NaCl 250 mM; Triton ×100
0,25%). Beads are resuspended in Tris buffer (10 mM). The reversion
step was then performed with SDS (1%) and 0.5 mg of proteinase K at
65 °C during 6 h. Nascent-DNA is purified by a pheno-chloroform treat-
ment following by ethanol precipitation. Pellet is resuspended inmolec-
ular biology gradeH2O. To control the quality of enrichment of early and
late fractions in S1 and S2, qPCRwere performed for all cell lines (Fig. 2A
as example with K562 cell line) with BMP1 oligonucleotides as early
control andwith DPPA2 oligonucleotides as late control and normalized
with amplicon from neo-synthesizedmitochondrial DNA. The sequence
of oligonucleotides is mentioned by Ryba et al. [10].

2.5. WGA amplification and labeling

Microarray hybridization requires a minimum amount of 500 ng of
DNA. To obtain sufficient specific immunoprecipitated nascent-DNA,
of the two S fractions. Green fraction represents the end of G1 and a large portion of early S-
e fraction of the late S-phase and a small portion of the beginning of the G2/M fraction. It is



Fig. 2.Quality control of neo-synthetizedDNA isolation fromK562 cell line by quantitative
PCR before WGA amplification (A) and after WGA amplification (B). Oligos BMP1 (noted
Early in graph) permit to evaluate early replicated enrichment and DPPA2 (noted Late),
Late replicated enrichment. S1 corresponds to Early fraction isolated by cell sorting, S2
to Late fraction.
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whole genome amplification was conducted (WGA, Sigma). To confirm
that WGA does not introduce bias, a qPCR after whole genome amplifi-
cation were performed to confirm the specific enrichment in each S1
and S2 fraction for all cell lines (Fig. 2B as example with K562 cell
Fig. 3. Proportion in % for all 6 cell lines of early and late domains in whole genome and in each
Bar errors represent the standard deviation of this proportion in 6 cell lines.
line). After amplification, early and late fractions were labeled with
Cy3 and Cy5 ULS molecules (Genomic DNA labeling Kit, Agilent) as rec-
ommended by the manufacturer.
2.6. Hybridization protocol

The hybridization was performed according to the manufacturer in-
structions on 4× 180K human microarray (SurePrint G3 Human CGH
Microarray Kit, 4x180K, AGILENT Technologies, genome reference
Hg18) that covers the whole genome with one probe every 13 Kb
(11 Kb in RefSeq sequences).
2.7. Scan protocol

Microarrayswere scannedwith an Agilent's High-Resolution C Scan-
ner using a resolution of 3 μm and the autofocus option.
2.8. Data processing

Feature extraction was performed with the Feature Extraction 9.1
software (Agilent Technologies). For each experiment, the raw data
sets were automatically normalized by the Feature extraction software
using the CGH_1105_oct12 FE protocol browser. Analysis was per-
formed with the Agilent Genomic Workbench 5.0 software. The log-
ratio [4] timing profiles (Fig. 3) were smoothed using the Triangular
MovingAverage option of theAgilentGenomicWorkbench 5.0 software
with the Triangular algorithm and 500-Kb windows.

The algorithm from CGH applications of the Agilent GenomicWork-
bench 5.0 software was used in order to determine the replication do-
mains (early and late domains). The aberration detection algorithms
associated with the Z-score and with a threshold of 1.8 define the
boundaries and magnitudes of the regions of DNA loss or gain corre-
sponding to the late and early replicatingdomains respectively (Regions
with a positive log-ratio is replicated early and late when the log-ratio is
negative).
chromosome. Red histograms represent early domain and green histograms late domains.



Fig. 4.Distribution of conserved domains along the genome. The colors used in A, B and C part indicate the degree of conservation between the 6 cell lines. Blue indicates that domains are
conserved in all 6 cell lines, green in 5, yellow in 4 and red in only 3. The distribution along each chromosome is indicated (A). A zoom of replication timing program in chromosome 1 is
shown (B). The proportion of each conservation category is plotted (C).

Table 1
Proportion of each conserved replication categories in each chromosome.

Number of cell lines with conserved
replication domains 6 5 4 3

chr1 54,55% 21,47% 16,59% 7,39%
chr2 43,90% 28,90% 18,33% 8,87%
chr3 47,16% 27,80% 16,32% 8,72%
chr4 43,32% 29,39% 19,60% 7,69%
chr5 39,89% 26,94% 24,46% 8,70%
chr6 39,72% 28,93% 19,62% 11,73%
chr7 50,70% 25,09% 16,01% 8,20%
chr8 46,23% 29,98% 15,79% 8,00%
chr9 40,85% 28,60% 20,81% 9,75%
chr10 41,11% 24,87% 24,58% 9,44%
chr11 53,25% 26,42% 13,70% 6,64%
chr12 51,14% 25,42% 15,64% 7,81%
chr13 45,67% 26,02% 16,93% 11,38%
chr14 52,75% 22,80% 16,82% 7,62%
chr15 56,40% 17,65% 18,38% 7,57%
chr16 65,09% 18,23% 10,86% 5,81%
chr17 72,68% 15,58% 8,73% 3,02%
chr18 45,50% 30,92% 19,15% 4,43%
chr19 69,18% 10,54% 13,08% 7,21%
chr20 56,97% 22,23% 14,05% 6,76%
chr21 43,79% 31,26% 16,78% 8,17%
chr22 71,50% 10,47% 12,92% 5,10%
chrX 42,74% 26,68% 21,15% 9,43%

116 D. Hadjadj et al. / Genomics Data 9 (2016) 113–117
2.9. Global analysis

After the determination of Early and Late domains for each cell line, a
comparison was conducted to determinate the degree of common do-
mains. The intersection was performed with the Intersection GALAXY
tools (Operate on genomic intervals, https://main.g2.bx.psu.edu/). In
Fig. 4, color of different regions indicates the degree of similarity be-
tween the 6 cell lines.
3. Discussion

Here we provide the DNA replication timing (RT) program of 6 dif-
ferent human model cell lines among which one (K562) is annotated
as priority cell line by the ENCODE consortium. Three others are in the
third tier group of the ENCODE consortium. Besides of generating the
timing profiles for the scientific community, we performed a global
analysis to identify some key characteristics of the RT program. First,
we show that in the whole genome 50% of CTR domains (constant
timing region as defined by Gilbert's group) are replicated early and
the other 50% are replicated late during the S phase (Fig. 3). However,
we observe that in certain chromosomes, the proportion is unbalanced
between early and late domains as in chromosome 17 whom early do-
mains outnumber late domains, and inversely in chromosome 4 for ex-
ample (Fig. 3).

https://main.g2.bx.psu.edu/
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Wealso implemented a global comparison between the6 replication
timing profiles to identify what proportion andwhich regions of the ge-
nome replicate at the same moment during the S-phase within these
cell lines (Fig. 4A and B). We thus show that 50% of the genome is rep-
licated at the same time in the six cell lines (Fig. 4C). More precisely in
chromosomes 17 and 22, around 72% of domains replicate at the same
moment during the S-phase (Table 1). These chromosomes have the
more robust RT program in comparison to other chromosomes. Con-
versely chromosome 6 is themost divergent in its RT program between
the variousmodel cell line (Table 1). All these data are now available for
the scientific community permitting to integrate the replication timing
program data in their analyses.
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