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Abstract: A new series of bisteroidal esters was synthesized using a spacer group, sterols and
sapogenins as substrates. Steroidal dimers were prepared in high yields employing diesters of
terephthalic acid as linkages at the 3β, 3′β steroidal positions. In all attempts to crystallize bisteroids,
it was observed that the compounds tended to self-organize in solution, which was detected when
employing various solvent systems. The non-covalent interactions (van der Waals) of the steroidal
moieties of this series of symmetrical bisteroids, the polarity of the solvents systems, and the
different solubilities of the bisteroid aggregates, indeed induce the molecules to self-assemble into
supramolecular structures with well-defined organization. Our results show that the self-assembled
structures for the bisteroidal derivatives depend on the solvent system used: with hexane/EtOAc,
membrane-shaped structures were obtained, while pure EtOAc afforded strand-shaped arrangements.
In the CHCl3/CH3OH system, thin strands were formed, since van der Waals interactions are lowered
in this system, as a consequence of the increased solubility of the bisteroids in CHCl3. Based on
the characterization by SEM and XRD, we show evidence that the phenomenon of self-assembly
of bisteroids occurs presenting different morphologies depending on the solvent used. The new
steroidal dimer derivatives were characterized by NMR, TGA, DSC, SEM, and XRD. Finally, the
molecular structure of one bisteroid was confirmed by single-crystal X-ray analysis.

Keywords: sapogenins; bisteroidal terephthalic esters; spacer groups; self-assembly behaviour

1. Introduction

In the chemistry of steroids, there is a constant interest in performing structural modifications
on steroids to optimize their biological and pharmacological activities or to search new properties.
Steroid dimers are a particular group that are well known for their rigid, predictable, and inherently
asymmetric architecture [1].

Steroid dimers belong to an essential group of pharmacologically active compounds that are
predominantly biosynthesized by marine organisms [2,3]. The synthesis of steroid dimers was first
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identified throughout photochemical studies through the investigation of the effect of sensitized light
on the activation of ergosterol, whose product was the ergosterol dimer (1, Figure 1) [4]. Bisteroidal
conjugates caught great attention in the last years due to their noteworthy applications in biology,
medicine, and supramolecular chemistry [5]. Examples of naturally occurring bisteroids are ritterazines
and cephalostatins [6,7], which are marine natural products containing either two spirostanic or two
spirodifuranic units connected by a pyrazine ring (2, Figure 1).
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On the other hand, the making of functional materials and supramolecular systems employing
naturally occurring molecules such as steroids has been gaining attention [8,9]. More recently,
a growing interest in the design and synthesis of novel nano-objects with well-defined shapes has
emerged [10]. However, despite extensive studies, it is still challenging to prepare nanoscale-assemblies
with responsive behaviours employing this kind of substrate. Self-assembly strategies could provide
innovative capabilities to biomaterials used in modern medicine and biotechnology. Recently, there
has been an increased interest in the construction and design of new nano-architectural objects with
well-defined shapes (nanoribbons [11], nanofibers [12], nanobelts [13], tubes [14], and rods [15]),
in well-ordered and predictable sizes. Generally, a straight and efficient method for building
these well-organized nanostructures is the control of supramolecular self-assembly by slightly
altering environmental conditions, including solvent composition [16,17], temperature [18], pH
changes [19,20], metal coordination [21], and light irradiation [22,23]. Consequent to their distinctive
shapes, these nanostructures have shown potential applications, such as nanomaterials, supports
for selective-catalysis, or templates to produce one-dimensional nanostructures [24]. Several steroid
dimers have been synthesized [25,26], and among them, acyclic dimers involving connections through
A, B, C, or D rings directly or through spacers, form the major group of such molecules; these
dimers are also referred as ‘linear dimers’ [1]. The synthesis of dimeric steroids involving the
A rings from the steroid monomers, connected through spacer groups, can be accomplished by
linking through the most convenient position, C-3 [27]. The self-assembly of molecular entities
with significant molecular weight with amphiphilic properties is a useful strategy for the formation
of well-controlled materials [28–30]. Yang et al. reported that supramolecular structures formed
by polyoxometalate–steroid conjugates in a self-assembly process can be greatly influenced by the
molecular structures itself and solution components. In that case, engineering was performed by
selecting the steroids (classically cholesterol, dehydrocholic, and cholic acid) and an organically
modified Anderson-type POM cluster as building blocks to create steroid–POM–steroid hybrids [31].
Nakanishi et al. successfully prepared hierarchic nanoarchitectures through self-assembly of fullerene
derivatives with different numbers of long hydrocarbon chains and semiperfluoro-alkyl tails [32].
Three-dimensional microparticles with nanoflakes at the external surfaces or microparticles with many
plate-like units were obtained by the self-assembly of hydrocarbon-branched fullerene derivatives.
On the other hand, the fullerene derivative with semiperfluoro-alkyl chains affords surfaces with
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water-repellency properties from its 1,1-diethoxyethane solution. These assembled structures may
have applications on non-wetting, low adhesion and self-cleaning surfaces [33,34].

In the context of new synthetic approaches towards bisteroids, the primary objective of our
research was to obtain new steroidal dimers from sapogenins, with the aim to investigate their
characteristics and properties as biological activity. Our synthetic strategy involved the incorporation
of a spacer group that would give new features to the steroid and that would make it stable and highly
rigid for its application as a new material. Once we had obtained the different bisteroidal esters, we
noticed that their behaviour in solution was not the typical one observed for a sapogeninic steroid.
Possibly due to the amphiphilic nature of the steroidal moiety, the presence of the terephthalate group,
and the high molecular weight of the bisteroid compared to the raw material, we discovered that
they exhibit a self-assembly behaviour caused by the solvent. This unexpected phenomenon was
exciting, and we began to study these compounds within the framework of materials, characterizing
the assemblies and documenting the micro and macroscopic characteristics. Herein, we report the
synthesis and characterization of seven steroidal dimers forming diesters linkages of the terephthalic
acid at the 3β, 3′β steroidal positions in high yields. The chemical and physical characterization has
been carried out through IR, NMR, thermogravimetric analysis (TGA), differential scanning calorimetry
(DSC), scanning electron microscopy (SEM), powder X-ray diffraction (p-XRD) and single-crystal X-ray
diffraction (XRD).

2. Results

Synthesis and Purification of Bisteroidal Esters

The synthesis of dimeric steroids was carried out by the construction of a terephthalate dimer
containing a cholestane side chain or a spiroketal side chain in each repeat unit, that also, may allow us
to change the functionality by stereoselectively opening the side chain. Bisteroids were obtained by
the reaction of terephthaloyl chloride, acting as the spacer group, with the 3β-hydroxyl group of the
steroid moiety, generating a tail-to-tail derivative, as shown in Scheme 1.
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Scheme 1. Dimeric sterol synthesis.

For the synthesis, different bases and solvents were tested at different temperatures (Table 1).
Cholesterol and cholestanol moieties were selected as molecular targets because of the thermodynamic
affinity of cholesterol for cell membranes and its ability to change its properties, for example by
improving their mechanical durability and reducing passive permeability [35–40]; another advantage
for cholestanes is their rigidity, a useful characteristic in nanoarchitecture.
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Table 1. Conditions of reaction to obtain bisteroids derivatives from cholesterol (3) and diosgenin (7a) *.

Parameter Time Temp Solvent Base Yield

entry
a 1 h rt Py Py nr **
b 2 h rt DMF K2CO3 nr **
c 24 h reflux THF Et3N 10%
d 2 h reflux Py Py 70%
e 2 h reflux Py Py 80%

* The optimized conditions are described in rows d and e. ** nr = no reaction. Entry a–d = 3 Entry e = 7a.

The short-branched hydrocarbon tail confers to cholesterol a high hydrophobic structure, while
the polar 3β-hydroxyl group provides a slight amphiphilic nature. The fused cyclohexane rings assume
a puckered and more stable chair conformation, making cholesterol a planar and rigid structure, ideal
for molecular architecture.

Next, dimeric steroids from diosgenin (7a), hecogenin (7b) and sarsasapogenin (7c) were also
synthesized under the same conditions described in Table 1 entry e. Previously, we reported the
transformation of (25R) and (25S)-sapogenins diosgenin (a), hecogenin (b) and sarsasapogenin (c) into
the 23-acetyl-22, 26-epoxycholest-22-ene and (E)-20, 23-diacetylfurostenes, by means of Ac2O/Lewis
acids at room temperature, which were then transformed into the 23-acetyl derivatives 9a–b in good
yields [41]. Taking in account the reactivity of rings E and F of sapogenins, the conditions of reaction
were optimized, considering the lability of spiroketalic side chain in acid media, to obtain spirostanic
dimers as diesteres of terephthalic acid (Scheme 2).
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Most steroid dimers are nonpolar and can be separated by normal-phase column chromatography
employing silica gel as the stationary phase and solvent mixtures based on n-hexane-EtOAc and
CHCl3-MeOH, as eluent [42]. Alumina or celite as the stationary phase have also been used for the
separation of other steroid dimers; in our work, the first attempt for purification of the crude was
by flash chromatography. However, in some purifications, the crude of reaction supported on silica
gel formed a self-organized “membrane” presumably by stimuli of the eluent (n-hexane-EtOAc),
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impeding the appropriate flow of solvent, and inducing the formation of strand-shaped aggregates
of the compounds. In our subsequent work, for the initial separation of steroid dimers, solvent
partitioning methods were employed.

3. Discussion

3.1. Structural Characterization of Bisteroidal Esters

3.1.1. NMR Elucidation

The objective of using sterols of the 5α and 5β series as starting materials was to compare the
difference in the NMR displacements in the steroidal moieties and the influence of the terephthalate
group. The characterization by NMR of bicholesterol ester 5 is shown in Figure 2. Selected NMR
signals for 5 and 6 are given in Table 2. The results obtained with cholesterol were useful to other ∆5

steroids as diosgenin.
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Table 2. Selected 1H and 13C NMR signals for compounds 5 and 6, in ppm.

1H NMR (CDCl3) 13C NMR (CDCl3)

signals 5 6 signals 5 6
H-3, H-3′ 4.90 4.96 C-3, C-3′ 75.1 74.9

H-18, H-18′ 0.69 0.87 C-18, C-18′ 18.7 12.3
H-19, H-19′ 1.07 0.66 C-19, C-19′ 19.3 12.0
H-21, H-21′ 0.93 0.91 C-21, C-21′ 11.8 18.6
HAr-HAr

′ 8.08 8.07 Cipso-Cipso
′ 137.1 134.4

By comparing the 1H- and 13C-NMR spectra for steroidal dimers 8a–c and 10a–b with the ones of
the steroidal starting materials (sapogenins 7a–c and 9a–b), it was found that they are almost identical
to those of the corresponding starting materials, except for the presence of signals attributable to the
symmetrically 1,4-disubstituted-terephthalate bridge. Besides, when calculating the integration ratio of
the singlet signal around 8 ppm belonging to the spacer group, this signal integrates for 4 H, showing
that the aromatic ring is symmetrically disubstituted, as shown for 8a (Figure 3).
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Figure 3. 1H-NMR spectrum at 500 MHz in CDCl3 of 8a with expansion in 8 ppm (top). 13C-NMR
spectrum at 125 MHz in CDCl3 of 8a (bottom).

Similarly, the methane H-3 is shifted to high frequencies confirming the formation of the ester
at C3 and C3′ for all cases. More subtle changes in the displacements can be observed, for example
the C-19 methyl protons present a slight displacement at a higher frequency (0.06 ppm 5; 0.07 ppm
8a; 0.07 ppm 10a; 0.06 ppm 8b; 0.04 10b, Table 3), this is due to the presence of the ester as spacer
group. Although free rotation would be expected to minimize this effect, the steric hindrance generated
by the steroidal moieties causes these protons to be arranged quite close to the carbonyl oxygen of
terephthalate ester, leading to a shielding effect (Figure 3). In the 1H-NMR spectrum of 10b, a singlet is
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observed at 2.35 ppm belonging to the H of the CH3 of position 23”; in 13C-NMR spectrum the signal
in 208.8 ppm is assigned to the C=O group at C23” (Figure 4).
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Table 3. Selected 1H-NMR signals of the 8a–c and 10a–b in ppm.

Signals 8a * 8b * 8c * 10a * 10b
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H-3, H-3′ 4.91 4.95 5.36 4.80 3.81
H-6, H-6′ 5.44 5.34

H-18, H-18′ 0.80 1.06 0.78 0.61 0.90
H-19, H-19′ 1.10 0.98 1.04 1.00 0.82
H-21, H-21′ 0.99 1.08 1.00 0.92 1.37
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H-27, H-27′ 0.79 0.78 1.09 0.80 0.71
HAr-HAr

′ 8.08 8.06 8.11 8.01 7.56

* in CDCl3.
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in Pyridine-d5.

To confirm this assumption, calculations at MM2 level of theory were performed for dimeric
derivatives (series 5α 6, and 5β 8c, Figure S34) with an allowed error of 0.001; for the 5α compound,
the minimum and maximum distances between these atoms were calculated, giving a range of 4.07 Å
to 5.87 Å, close enough to generate a shielding effect for methyl C-19 protons. In the case of the 5β
series it goes from 4.10 to 5.74 Å, which confirms this effect, regardless of the presence or absence of the
double bond in ring B. Other signals that can be affected in the same way are the protons of ring A, but
due to the overlap of signals in the region 1–2 ppm it is not possible to accurately examine this effect.

Two-dimensional NMR helped to see that the simple signal in 8.08 ppm belongs to the H in
aromatic ring symmetrically disubstituted, that correlates with a C at 130 ppm, as observed in the
HSQC spectrum of 10a (Figure 5). Selected signals of NMR spectra of bispirostanic steroids 8a–c and
10a–b are shown in Tables 3 and 4.
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Figure 5. HSQC-NMR experiment at 600 MHz in CDCl3 of 10a.

It should be considered that the background information of the crystal structure from X-ray
diffraction can be useful to give an idea of the structure of supramolecular aggregates in aqueous
solutions [43–45]. The crystal structures of sapogenin dimers provide information to resolve structural
issues that will be subject to the structural characteristics of the steroidal framework and how it links
with the spacer group (tail-to-tail or head-to-head). The most recently published example relates to the
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structure of a dimeric steroid with the spirostanic side chain and the open ring A in a linked tail-to-tail
arrangement [5]. In addition to the last-referred paper, as far as we identify, only Bertolasi et al. [46],
Bai et al. [47] Ghosh et al. [48], and Dias et al. [49] have registered crystal structures of a bile acid dimer,
a bile acid cyclodimer, and a cyclotrimer derived from deoxycholate, respectively.

Table 4. Selected 13C-NMR signals of the 8a–c and 10a–b in ppm.

Signals 8a * 8b * 8c * 10a * 10b
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C-3, C-3′ 75.2 74.3 71.9 75.2 70.0
C-5, C-5′ 139.5 – – 139.6 –
C-6, C-6′ 122.7 – – 122.5 –

C-18, C-18′ 16.2 16.0 16.0 16.2 12.7
C-19, C-19′ 19.3 17.1 24.0 19.4 16.9
C-21, C-21′ 14.4 13.2 14.3 14.2 14.3
C-22, C-22′ 109.5 109.2 109.7 108.1 108.2
C-23, C-23′ 31.3 31.4 – 29.8 29.8
C-26, C-26′ 66.9 66.8 65.1 66.2 66.0
C-27, C-27′ 17.1 11.9 16.5 17.0 17.8
Cipso-Cipso

′ 134.4 134.3 134.7 134.4 135.1

* in CDCl3.
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We report the crystal structure of compound 10a, while attempts for the crystallization of other
compounds were unsuccessful, perhaps because of their trend of self-assembling in solution. For the
case of the compound 10a, the single-crystal structure is in agreement with the NMR data, and shows
that the central terephthalate ring is symmetrically substituted by two steroidal moieties, with the ester
groups arranged in an anti-conformation (Figure 6). However, the midpoint of the central benzene
ring is a non-crystallographic inversion centre, since the molecule is chiral. The full extension of the
molecule is around 39 Å, and molecules are packed in the solid state in such a way that they line up in
a single direction, a–c, see inset in Figure 6.
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Figure 6. Molecular structure of the bisteroid derivative 10a, with displacement ellipsoids at the 20%
probability level. The inset shows a part of the crystal structure, viewed down crystallographic b axis,
using a spacefill representation. Grey molecules are generated from the asymmetric unit by lattice
translations, while green molecules are generated by the 21-screw axis in space group P21.

However, the packing structure is not efficient, as reflected in the rather low Kitaigorodskii
packing index of 0.61 [50], and large voids are present, contributing to ca 5% of the crystal volume.
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Apparently, these voids are not filled by disordered solvent, since the SQUEEZE procedure does not
improve significantly the structure refinement [51].

3.1.2. Thermal Stability of Bisteroidal Esters of Terephthalic Acid

Thermal stability analysis of bisteroids allowed to corroborate the stability of the compounds
to changes in heat flux depending on temperature or time. Melting points are 317–320 ◦C for 8a
and 269–270 ◦C for 10a, with presence of opacity. At the same time, the analyses of thermal stability
for these compounds at high temperatures was evaluated using differential scanning calorimetry
(DSC) and thermogravimetric analysis (TGA, Figure 7). The calorimetry studies showed that the
solid samples do not contain solvent molecules within the structure and it was possible to see that
the samples of the analyzed compounds are highly stable because no phase transitions were detected
when heating from room temperature to 317.6 ◦C, where the onset of an endothermic transition was
observed, reaching a peak at 320.0 ◦C. This endotherm was coincident with the melting of compound
8a as it was experimentally observed. In the case of 10a the endothermic transition was observed upon
heating from room temperature up to 269.0 ◦C, at which point the start of an endothermic transition
was observed, reaching a peak at 270.0 ◦C. The thermogravimetric analysis did not exhibit any loss of
weight from room temperature to 350 ◦C, it also did not occur in any of the derivatives before reaching
the melting point.
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EtOAc and 250 mL of hexane or over pure EtOAc. The solutions were heated gently to achieve a clear 
and homogeneous solution, cooled to room temperature and left standing for three days. Pure ethyl 
acetate was chosen to study the influence of pure or mixed solvent onto the morphologies of the 
supramolecular structures. 

Figure 7. Differential scanning calorimetry (DSC, top) of 8a. Thermogravimetric analysis (TGA, down)
of 10a.

3.2. Responsive Self-Assembly of Bisteroidal Esters of Terephthalic Acid

For the experiments, 50 mg of the bisteroid derivative were added to a mixture of 10 mL of
EtOAc and 250 mL of hexane or over pure EtOAc. The solutions were heated gently to achieve a
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clear and homogeneous solution, cooled to room temperature and left standing for three days. Pure
ethyl acetate was chosen to study the influence of pure or mixed solvent onto the morphologies of the
supramolecular structures.

The morphologies of bidiosgenin derivative aggregates (8a) were analyzed by scanning electron
microscopy (SEM) to explain the supramolecular structures of such bisteroid derivatives in the
self-assembly progression. In contact with hexane/ethyl acetate system, the functionalized dimer
self-organized into a non-permeable, non-porous layer, since the formation of membrane-shaped
aggregates of the compound was observed (Figure 8). The SEM image of the aggregates of
8a are shown in Figure 9a. A noteworthy phenomenon was that the bisteroids show different
solvent-responsive morphologies in non-polar, polar and mixture media, involving strands-shaped
and membranes-shape aggregates.Molecules 2019, 24, x FOR PEER REVIEW 11 of 21 
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In the report of Yang [31], the author worked with cholesterol, showing that the molecular structure
and the solution components affect the level of aggregation. From his work, we extract that the driving
force for obtaining higher-order structures is the self-assembly of the low molecular weight gelators
mediated by non-covalent interactions, as van der Waals forces. This study affirmed that cholesterol
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keeps a rigid and planar skeleton together with the tendency to form aggregates via van der Waals
interactions, which facilitate the formation of well-defined supramolecular structures.

The cholesterol conjugate can self-assemble into different fibrous structures in mixed solution
or acetone through the synergistic effects between van der Waals forces of cholesterol residues and
electrostatic interactions between POM groups. Yang also established that the polarity of the solvent
can also be crucial and favourable for modulating supramolecular structures, where the dielectric
constant εe is employed to evaluate the polarity of the solvent. He reports in his work that, in the
acetone solution, van der Waals interactions between cholesterol residues are considerably reduced,
because the solubility of cholesterol residues decreases significantly in acetone (εe = 20.70). In the
CH2Cl2–CH3OH system with a dielectric constant of mixed solvents (εe = 13.02), van der Waals
interactions between cholesterol residues are significantly weakened, due to the solubility of cholesterol
residues in dichloromethane (εe = 9.08). That is the reason why the polarity of the solvent has an
essential role in the regulation of the morphology of the self-assembly process. These results explain
satisfactorily from a molecular level why the supramolecular structure of bisteroids (5–6, 8a–c, 10a–b)
in hexane-EtOAc and pure EtOAc is better organized than that formed in CHCl3-CH3OH where the
strands are thinner. From that it can be assumed that a dielectric constant of 8.2 (εe = 8.26) is ideal for
obtaining better organized supramolecular structures in compounds with cholesterol residues.

Our results show that in the self-assembling structures of the bisteroids 5, 6, 8a–c and 10a–b,
bisteroidal derivatives with self-assembled structures obtained from a hexane/EtOAc system (25:1) tend
to be organized, forming membrane-shaped structures (Figure 10b,d). When these derivatives were
treated with EtOAc, the bisteroid esters were self-organized in a strand-shape with a length greater
than 100 µm (Figure 10a,c; see Figures S42–S46 in SM). Since the solubility increases in chloroform, van
de Waals interactions between bisteroid moieties are weakened. As a consequence, thinner strands
are formed in the CHCl3/CH3OH system (1:25) (see Figures S39 and S40 in SM). These morphologies
are consistent with the values of the dielectric constant of the solvent systems, confirming that a
solvent with a dielectric constant near to 8.2 (Tol-DMF εe = 8.26 [31]) will present better-organized
self-assembled structures. From those results, we could observe that EtOAc (εe = 6.0) is the solvent
that leads bisteroids towards better-organized self-assemblies. The scope of the self-assembly scale
extends to a length close to 100 µm, at least for 8a (see Figure S40 in SM).

Given that bisteroids are rigid and almost linear molecules, with a dimension approaching 40 Å,
the oriented aggregation of these molecules in suitable solvent mixtures seems to be favoured, through
alignment by physical forces, for example by van der Waals interactions [52]. Once such mesoscale
assemblies have been stabilized, a mesocrystal can be formed, which is extended over much larger
dimensions, in the range 10–100 µm, as observed by SEM.

The self-organization description of these materials can also be indirectly averaged over much
larger scales, by means of powder X-ray diffraction (p-XRD). A thin layer of compound 10a, for
which the single-crystal structure refinement allows the calculation of diffraction patterns, was
characterized by p-XRD, employing standard experimental conditions (λ = 1.5406 Å). On the other
hand, simulated spectra were calculated, considering the March-Dollase approach for a non-randomly
oriented sample [53]. The intensity ratio I111/I202 ≈ 0.5 observed experimentally was used as a guide
during pattern simulation, affording an optimized March-Dollase parameter r = 1.8 and a preferred
orientation along axis c, as shown in Figure 11. The parameter r > 1 indicates an essentially needle-like
texture, consistent with SEM images. A rough estimation of the degree of preferred orientation can be
computed as η = [(1-r)3/(1-r3)]1/2, as suggested by Zolotoyabko [54]. Based on the simulated pattern
of Figure 11, a degree of preferred orientation of 33% is calculated for 10a, reflecting the spatial
self-organization of this material.
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Figure 11. Top (blue pattern): experimental p-XRD pattern for compound 10a, after baseline correction,
with indexation of main planes. Bottom (red pattern): simulated p-XRD pattern for 10a [55] based on
the single-crystal structure (Figure 6), assuming the presence of preferred orientation. Main simulation
parameters are λ = 1.54056 Å, r = 1.8, FWHM = 0.15◦ (2θ scale), and preferred orientation = axis c.
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4. Material and Methods

4.1. General Procedures and Materials

1H-and 13C-NMR along with DEPT, COSY, HMQC, and HMBC experiments were recorded on an
NMR Bruker AVANCE Spectrometer (500 MHz for 1H, 125 MHz for 13C; Bruker Corporation, MA
01821, USA) and an Agilent NMR Spectrometer (600 MHz for 1H, 150 MHz for 13C; Agilent, Santa
Clara, CA 95051, USA). Chemical shifts are stated in ppm (δ), and are referred to the residual 1H signal
(δ = 7.27 ppm) or to the central 13C triplet signal (δ = 77.0 ppm) for CDCl3 (Sigma Aldrich, MO, USA);
in pyridine-d5 (Sigma Aldrich, MO, USA) the residual 1H signals (δ = 7.19, 7.55, 8.71 ppm) or to the
13C signals (δ = 123.5, 135.5, 149.5 ppm). Coupling constants (J) are expressed in Hz. All assignments
were confirmed with the aid of two-dimensional experiments (COSY, HSQC, and HMBC). The NMR
data were processed using MestreNova 12.0 software (Mestrelab Research, Spain). IR spectra were
acquired on a Perkin Elmer Frontier apparatus (ν, cm−1) (PerkinElmer Inc., Waltham, MA, USA).
High-resolution mass spectra were obtained by the fast atom bombardment (FAB) technique, using
a JEOL The MStation spectrometer (JEOL USA, Inc., Peabody, MA 01960, USA). Optical rotations
were determined on a Perkin Elmer 241 polarimeter (PerkinElmer Inc., Waltham, MA, USA) at room
temperature using chloroform and ethanol solutions. Melting points were obtained from a Mel-Temp
apparatus (Cole-Parmer, Beacon Road, Stone, Staffordshire, ST15 OSA, UK) and are uncorrected.
Analytical TLC was performed on silica gel precoated ALUGRAM® SIL G/UV254 (Macherey-Nagel™)
plates stained with a 50% aqueous solution of H2SO4. Column chromatography was carried out
employing silica gel DavisilTM grade 633 (200–425 mesh, Sigma Aldrich, MO, USA).

Single-crystal X-ray diffraction data of the dispirostene ester 10a were collected at room temperature
with an Xcalibur diffractometer (Oxford Diffraction, Yarnton, UK; CrysalisPro 1.171)) equipped with
an Atlas detector and an Enhance X-ray source (CuKα radiation, λ = 1.5418 Å). The refinement and
structure factors have been deposited with the CCDC (Deposition code: CCDC-1951523).

4.1.1. Scanning Electron Microscopy (SEM)

The morphology analysis of the self-assembled bisteroidal esters was performed on a Philips
XL30 ESEM microscope. SEM samples were prepared by coating a gold film on the samples. The metal
was applied in a controlled manner in a sputter coater.

4.1.2. Differential Scanning Calorimetry (DSC)

Molar fractions were measured through Differential Scanning Calorimetry (DSC), DSC Mettler
Toledo Star 1 device (Mettler-Toledo GmbH, Analytical, CH-8603 Schwerzenbach, Switzerland), and
estimated purities were above 0.98. Subsequently, samples were placed into hermetically sealed
aluminium cells of 40 µL, and heated under a constant flow of dry nitrogen atmosphere with a heating
rate of 10 ◦ C/min.

4.1.3. Thermogravimetry/TGA

Thermogravimetric analysis was obtained on a Perkin Elmer Diamond Thermogravimetric device
(PerkinElmer Inc., Waltham, MA, USA) under argon atmosphere using a temperature interval from 25
to 350 ◦C with a heating rate of 10 ◦C/min.

4.1.4. Powder X-ray Diffraction

Powder diffraction patterns were collected on a Bruker D-8 Advance diffractometer (Bruker,
Madison, WI, USA; Diffrac-Eva 4.3) (Cu-Kα radiation, 40 kV, 30 mA), over the 2θ range 5–60◦, with a
step size of 0.02◦ (0.5 s per step). Samples were mounted on a silicon holder.
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4.2. Chemical Synthesis and Characterization

4.2.1. Preparation and Structural Characterization of Bisteroidal Esters of Terephthalic Acid.
General Procedure

In a 125 mL round bottom flask, the sapogenin 7a–c, or 9a–b (3 g, 7.2 mmol) was dissolved in
pyridine (30 mL); then, terephthaloyl chloride (0.6 g, 10.8 mmol) was added. The reaction mixture was
magnetically stirred at 115 ◦C for 3 h. After that, the mixture was cooled down. The organic phase
was extracted with DCM (25 mL × 3), washed with brine (2 × 20 mL), followed by neutralization with
solution of 5% HCl. The crude product was dried over anhydrous Na2SO4 and concentrated to dryness
under vacuum. The resulting bisteroids were purified by solvent partitioning methods from crude.
Bispirostanes 8a–c and 10a–b were obtained as colorless solids. The same procedure was applied for
obtaining bicholestanol ester (5) and bicholesterol ester (6) starting from (3) or (4), respectively.

4.2.2. Bicholesteryl Terephthalate (5)

Yield (83%); mp 258–260 ◦C (hexane/EtOAc); [α]D +33◦ (c = 0.0011). IR cm−1: 2931 (CH3–, –CH2–);
1715 (C=O-O terephthalate), 1271, 1080 (C–O–C). HRMS (FAB) m/z for C62H94O4 Calcd: 903.4574; obs:
903.4568. 1H NMR δ: 8.08 (s, 4H, H-phenylene), 5.45 (2H, m, H-6, H-6′), 5.10 (2H, m, H-3, H-3′), 2.29
(4H, m, H-4, H-4′), 1.09 (2H, m, H-17-H-17′) 1.00 (6H, s, CH3-19, CH3-19′), 0.91 (6H, d, J21-20 = 7.2 Hz,
CH3-21, CH3-21′), 0.86 (12H, s, CH3-26, CH3-26′), 0.68 (6H, d, J27-25 = 6.4 Hz, CH3-18- CH3-18′). 13C
NMR δ: 37.2 (C-1, C-1′), 31.4 (C-2, C-2′), 74.8 (C-3, C-3′), 41.4 (C-4, C-4′), 140.8 (C-5, C-5′), 121.4 (C-6,
C-6′), 50.0 (C-9, C-9′), 36.6 (C-10, C-10′), 20.8 (C-11, C-11′), 39.7 (C-12, C-12′), 40.2 (C-13, C-13′), 56.5
(C-14, C-14′), 31.8 (C- 15, C-15′), 80.8 (C-16, C-16′), 62.0 (C-17, C-17′), 16.3 (C-18, C-18′), 19.4 (C-19,
C-19′), 41.6 (C-20, C-20′), 14.5 (C-21, C-21′), 31.3 (C-23, C-23′), 28.7 (C- 24, C-24′), 30.3 (C-25, C-25′),
28.5 (C-26, C-26′), 17.1 (C-27, C-27′), 129.5 (CH phenylene); 134.3 (C-ipso 1, 4; 1′, 4′) 165.25 (COO-3,
COO-3′).

4.2.3. Bicholestan-3-yl Terephthalate (6)

Yield (83%); mp 254–256 ◦C (hexane/EtOAc); [α]D +6◦ (c = 0.0014). IR cm−1: 2930 (CH3–, –CH2–);
1716 (C=O-O terephthalate), 1272, 1114 (C–O–C). HRMS (FAB) m/z for C62H98O4 Calcd: 907.4620; obs:
907.4658. 1H NMR δ: 8.08, (4H, s, H-phenylene), 4.96 (2H, ddt, J3-2a = 16.15 Hz, J3-4a = 11.35 Hz, J3-2e =

J3-4e = 4.88 Hz, H-3, H-3′) 0.90 (6H, d, J3-2a = 6.39 Hz, CH3-21, CH3-21′), 0.87 (6H, s, CH3-18, CH3-18′),
0.87 y 0.86 (6H, d, J3-2a = 2.56, CH3-26 y CH3-26′), 0.66 (6H, s, CH3-19, CH3-19′). 13C NMR δ: 165.40
(COO-3, COO-3′), 131.3 (C-ipso 1, 4; 1′, 4′), 129.4 (CH-phenylene), 74.9 (C-3, C-3′) 56.3 (C-17, C-17′),
56.2 (C-16, C-16′), 54.2 (C-5, C-5′), 44.6 (C-14, C-14′), 42.6 (C-11, C-11′), 39.5 (C-20, C-20′), 32.0 (C-1,
C-1′) 31.5 (C-15, C15′), 28.6 (C-4, C-4′), 18.7 (C-21, C-21′), 12.3 (C-18, C-18′), 12.1 (C-19, C-19′).

4.2.4. Bidiosgeninyl 1,4-Terephthalate (8a)

Yield (85%); mp 317–320 ◦C (hexane/EtOAc); [α]D -67.71◦ (c = 0.0022). IR cm−1: 2942 (CH3–,
–CH2–); 1713 (C=O-O terephthalate), 1274, 1116 (C–O–C). HRMS (FAB) m/z for C62H86O8 Calcd:
959.6401; obs: 959.6414. 1H NMR (600 MHz) δ: 8.08 (s, 4H, H-phenylene), 5.44 (2H, d, J = 5.2 Hz, H-6,
H-6′), 4.91 (2H, ma, H-3, H-3′), 4.43 (2H, ddd, J16-15a = J16-15e = J16-17 = 7.6 Hz, H-16, H-16′), 3.48 (2H,
ddd, Jgem = 10.8, J26e- 25a = 4.4 J26e-24e = 2.4 Hz, H-26e, H-26e’), 3.38 (2H, dd, Jgem = J26a-25a = 10.8Hz,
H-26a, H- 26a’), 2.50 (4H, d, J4a-3 = 8 Hz, H-4, H-4′), 2.0 (2H, d, J17-16 =7.6 Hz, H-17-H-17′) 1.10 (6H, s,
CH3-19, CH3-19′), 0.99 (6H, d, J21-20 = 7.2 Hz, CH3-21, CH3-21′), 0.80 (6H, s, CH3-18, CH3-18′), 0.79
(6H, d, J27-25 = 6.4 Hz, CH3-27- CH3-27′). 13C NMR (150 MHz) δ: 37.2 (C-1, C-1′), 31.4 (C-2, C-2′), 75.2
(C-3, C-3′), 41.4 (C-4, C-4′), 140.8 (C-5, C-5′), 121.4 (C-6, C-6′), 32.0 (C-7, C-7′), 31.6 (C-8, C-8′), 50.0 (C-9,
C-9′), 36.6 (C-10, C-10′), 20.8 (C-11, C-11′), 39.7 (C-12, C-12′), 40.2 (C-13, C-13′), 56.4 (C-14, C-14′), 31.8
(C- 15, C-15′), 81.0 (C-16, C-16′), 62.0 (C-17, C-17′), 16.3 (C-18, C-18′), 19.4 (C-19, C-19′), 41.6 (C-20,
C-20′), 14.5 (C-21, C-21′), 109.5 (C-22, C-22′), 31.3 (C-23, C-23′), 28.7 (C- 24, C-24′), 30.3 (C-25, C-25′),
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66.9 (C-26, C-26′), 17.1 (C-27, C-27′), 129.7 (CH-phenylene); 134.4 (C-ipso 1, 4; 1′, 4′), 165.4 (COO-3,
COO-3′).

4.2.5. Bihecogeninyl Terephthalate (8b)

Yield (88%); mp 261–262 ◦C (hexane/EtOAc); [α]D -6.62◦ (c = 0.0018). IR cm−1: 2928 (CH3–,
–CH2–); 1702 (C=O-O terephthalate), 1672 (stretching C=O C-), 1279, 1038 (C–O–C). HRMS (FAB) m/z
for C62H86O10 Calcd: 990.6621; obs: 990.6619. NMR 1H δ: 8.06 (s, 4H, Ar), 4.95(2H, tt, J3-2a = J3-4a =

11.0 Hz, J3-2e = J3-4e = 4.7 Hz, H-3, H-3′), 4.34 (2H, ddd, J16-15a = 8.8 Hz, J16-15e = 7.4 Hz, J16-17 = 6.2 Hz,
H-16, H-16′), 3.50 (2H, m, H-26e, H-26e’), 3.35 (2H, dd, Jgem = J26a-25a = 10.6Hz, H-26a, H- 26a’), 2.53
(2H, dd, Jgem = 14.2 Hz, J11a-10 = 13.2 Hz, H-11a, H-11a’), 2.42 (2H, dd, Jgem = 14.2 Hz, J11e-10 = 5.0 Hz,
H-11e, H-11e’), 1.08 (6H, d, J21-20 = 7.2 Hz, CH3-21, CH3-21′), 1.06 (6H, s, CH3-18, CH3-18′), 0.98 (6H, s,
CH3-19, CH3-19′), 0.78 (6H, d, J27-25 = 6.4 Hz, CH3-27- CH3-27′). 13C NMR δ: 37.2 (C-1, C-1′), 31.4
(C-2, C-2′), 74.3 (C-3, C-3′), 41.4 (C-4, C-4′), 31.3 (C-7, C-7′), 30.1 (C-8, C-8′), 50.0 (C-9, C-9′), 36.1 (C-10,
C-10′), 20.8 (C-11, C-11′), 213.3 (C-12, C-12′), 40.2 (C-13, C-13′), 39.3 (C-14, C-14′), 31.4 (C- 15, C-15′),
79.1 (C-16, C-16′), 66.8 (C-17, C-17′), 16.0 (C-18, C-18′), 17.1 (C-19, C-19′), 41.6 (C-20, C-20′), 13.2 (C-21,
C-21′), 109.2 (C-22, C-22′), 31.4 (C-23, C-23′), 28.7 (C- 24, C-24′), 30.1 (C-25, C-25′), 66.8 (C-26, C-26′),
11.9 (C-27, C-27′), 130.0 (CH-phenylene); 134.3 (C-ipso 1, 4; 1′, 4′), 165.2 (COO-3, COO-3′).

4.2.6. Bisarsasapogeninyl Terephthalate (8c)

Yield (80%), mp 204–206 ◦C (hexane/EtOAc); [α]D -23.33◦ (c = 0.0018). IR cm−1: 2929 (CH3–,
–CH2–); 1718 (C=O-O terephthalate), 1269, 1117 (C–O–C). HRMS (FAB) m/z for C62H90O8 Calcd:
962.6636; obs: 962.6619. 1H NMR δ: 8.11 (s, 4H, Ar), 5.36 (2H, m, H-3, H-3′), 4.42 (2H, m, H-16, H-16′),
3.95 and 3.31 (4H, d, J26e- 25a = 4.4 H-26, H-26′), 1.09 (6H, d, J21-20 = 7.2 Hz, CH3-27, CH3-27′), 1.04
(6H, s, CH3-19, CH3-19′), 1.0 (6H, d, J21-20 = 7.2 Hz, CH3-21, CH3-21′), 0.78 (6H, s, CH3-18, CH3-18′).
13C NMR δ: 37.7 (C-1, C-1′), 31.4 (C-2, C-2′), 71.9 (C-3, C-3′), 40.0 (C-4, C-4′), 38.5 (C-5, C-5′), 28.5
(C-6, C-6′), 32.0 (C-7, C-7′), 31.6 (C-8, C-8′), 42.1 (C-9, C-9′), 36.6 (C-10, C-10′), 20.9 (C-11, C-11′), 40.2
(C-12, C-12′), 40.6 (C-13, C-13′), 56.3 (C-14, C-14′), 31.8 (C- 15, C-15′), 80.9 (C-16, C-16′), 62.0 (C-17,
C-17′), 16.0 (C-18, C-18′), 24.0 (C-19, C-19′), 41.6 (C-20, C-20′), 14.3 (C-21, C-21′), 109.7 (C-22, C-22′),
30.3 (C-25, C-25′), 65.1 (C-26, C-26′), 16.5 (C-27, C-27′), 129.4 (CH-phenylene); 134.7 (C-ipso 1, 4; 1′, 4′)
165.1 (COO-3, COO-3′).

4.2.7. Bi-(23R)-23-acetyldiosgeninyl Terephthalate (10a)

Yield (85%); mp 269–270 ◦C (hexane/EtOAc), [α]D -67.93◦ (c = 0.0014). IR cm−1: 2949 (CH3–,
–CH2–); 1715 (C=O-O terephthalate), 1695 (stretching C=O C-), 1269, 1119 (C–O–C). HRMS (FAB) m/z
for C66H90O10 Calcd: 1043.6612; obs: 1043.6609. 1H NMR δ: 8.08 (s, 4H, Ar), 5.42 (2H, d, J = 5.2 Hz,
H-6, H-6′), 4.88 (2H, ma, H-3, H-3′), 4.44 (2H, ddd, J16-15a = J16-15e = J16-17 = 7.6 Hz, H-16, H-16′), 3.50
(2H, ddd, Jgem = 10.8, J26e- 25a = 4.4 J26e-24e = 2.4 Hz, H-26e, H-26e’), 3.43 (2H, dd, Jgem = J26a-25a =

10.8Hz, H-26a, H- 26a’), 2.65 (2H, d, J17-16 =7.6 Hz, H-17-H-17′), 2.46 (4H, d, J4a-3 = 8 Hz, H-4, H-4′),
2.21 (6H, m, CH3CO-23), 1.07 (6H, s, CH3-19, CH3-19′), 0.98 (6H, d, J21-20 = 7.2 Hz, CH3-21, CH3-21′),
0.87 (6H, s, CH3-18, CH3-18′), 0.68 (6H, d, J27-25 = 6.4 Hz, CH3-27- CH3-27′). 13C NMR δ: 37.2 (C-1,
C-1′), 31.4 (C-2, C-2′), 75.2 (C-3, C-3′), 38.5 (C-4, C-4′), 139.6 (C-5, C-5′), 122.5 (C-6, C-6′), 32.0 (C-7,
C-7′), 31.6 (C-8, C-8′), 55.1 (C-9, C-9′), 36.8 (C-10, C-10′), 20.8 (C-11, C-11′), 39.7 (C-12, C-12′), 49.9
(C-13, C-13′), 61.25 (C-14, C-14′), 31.8 (C- 15, C-15′), 81.2 (C-16, C-16′), 56.4 (C-17, C-17′), 16.2 (C-18,
C-18′), 19.4 (C-19, C-19′), 41.6 (C-20, C-20′), 14.2 (C-21, C-21′), 108.1 (C-22, C-22′), 29.8 (C-23, C-23′),
28.7 (C- 24, C-24′), 31.3 (C-25, C-25′), 66.2 (C-26, C-26′), 17.0 (C-27, C-27′), 129.5 (CH-phenylene); 134.4
(C-ipso 1, 4; 1′, 4′), 165.3 (COO-3, COO-3′), 210.4 (CH3CO-23, CH3CO-23′).

4.2.8. Bi-(23R)-acetylhecogeninyl Terephthalate (10b)

Yield 80%; mp 240–241 ◦C (hexane/EtOAc), [α]D -2◦ (c = 0.0013, methanol). IR cm−1: 2957 (CH3–,
–CH2–); 1701 (C=O-O terephthalate), 1685 (stretching C=O C-), 1280, 1045 (C–O–C). HRMS (FAB) m/z
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for C66H90O12 Calcd:1074.4136; obs:1074.4144. 1H NMR (Py-d5) δ: 7.56 (s, 4H, Ar), 4.44 (2H, ddd,
J16-15a = 8.8 Hz, J16-15e = 7.4 Hz, J16-17 = 6.2 Hz, H-16, H-16′), 3.81 (2H, tt, J3-2a = J3-4a = 11.0 Hz, J3-2e =

J3-4e = 4.7 Hz, H-3, H-3′), 3.54 (2H, m, H-26e, H-26e’), 3.44 (2H, dd, Jgem = J26a-25a = 10.6Hz, H-26a, H-
26a’), 2.78 (2H, m, H-23, H-23′), 2.33 (6H, m, CH3CO-23), 2.27 (2H, dd, Jgem = 14.2 Hz, J11e-10 = 5.0 Hz,
H-11e, H-11e’), 1.37 (6H, d, J21-20 = 7.2 Hz, CH3-21, CH3-21′), 0.90 (6H, s, CH3-18, CH3-18′), 0.82 (6H, s,
CH3-19, CH3-19′), 0.71 (6H, d, J27-25 = 6.4 Hz, CH3-27- CH3-27′). 13C NMR (Py-d5) δ: 30.9 (C-1, C-1′),
33.1 (C-2, C-2′), 70.0 (C-3, C-3′), 38.8 (C-4, C-4′), 29.8 (C-5, C-5′), 28.7 (C-6, C-6′), 32.0 (C-7, C-7′), 31.6
(C-8, C-8′), 55.2 (C-9, C-9′), 37.2 (C-10, C-10′), 20.8 (C-11, C-11′), 212.3 (C-12, C-12′), 40.2 (C-13, C-13′),
56.4 (C-14, C-14′), 31.8 (C- 15, C-15′), 79.7 (C-16, C-16′), 55.3 (C-17, C-17′), 12.7 (C-18, C-18′), 16.9 (C-19,
C-19′), 54.7 (C-20, C-20′), 14.3 (C-21, C-21′), 108.2 (C-22, C-22′), 29.8 (C-23, C-23′), 44.7 (C-24, C-24′),
30.3 (C-25, C-25′), 66.0 (C-26, C-26′), 17.8 (C-27, C-27′), 129.9 (CH-phenylene); 135.1 (C-ipso 1, 4; 1′, 4′),
168.3 (COO-3, COO-3′), 208.8 (CH3CO-23, CH3CO-23′).

5. Conclusions

In summary, the use of terephthalic acid as a linker between the steroid moieties was essential
to induce the planarity of bisteroidal esters. The self-assembling behaviour of the spirostane dimers
was explored. The self-organized behaviour is triggered by solvents, that leads to a non-permeable
non-porous layer dimer in contact with the hexane/EtOAc system (25:1); as well as the formation of
aggregates in the form of strands of the bisteroidal compounds was observed in contact with pure
EtOAc and CHCl3/CH3OH system (1:25).

We conclude that non-covalent interactions (van der Waals forces) among the steroid residues of
the synthesized series of symmetric bisteroids, and the polarity of the solvent systems employed might
induce molecules to self-assemble into organized supramolecular structures. Our results also show that
bisteroids will present different self-assembly structures depending on the characteristics of the solvent.
With non-polar solvents, self-assembled structures tend to be organized into membrane-shaped
structures. By the employment of polar solvents, bisteroid esters self-organized as strand-shapes.
However, in the CHCl3/CH3OH system (polar solvent), thinner strands were formed because van
der Waals interactions among bisteroid moieties are weaker due to the higher solubility in such
system. The observed morphologies are consistent with the values of the dielectric constant of solvent
systems, confirming that a solvent with a dielectric constant close to eight will present better organized
self-assembled structures. In our study, EtOAc was the most effective solvent for the formation of
self- assemblies.

Since the applications and importance have not yet been clearly established for this class of
compounds, we plan to continue our studies in this direction.
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spectrum of Bi-23-acetylhecogenin ester (10b). Figure S30: Mass spectrum of Bi-23-acetylhecogenin ester (10b).
Figure S31: HSQC-NMR spectrum at 500 MHz of Bi-23-acetylhecogenin ester (10b). Figure S32: COSY-NMR
spectrum at 500 MHz of Bi-23-acetylhecogenin ester (10b). Figure S33: Differential Scanning Calorimetry analysis
of Bi-23-acetylhecogenin ester (10b). Figure S34: Molecular structure with MM2 energy minimization method
for 6 and 8c. Figure S35: Bicholesterol ester (5) in hexane/EtOAc showing membrane-shaped structures (SEM).
Figure S36: Bicholesterol ester (5) in hexane/ EtOAc showing membrane-shaped structures (SEM). Figure S37:
Bicholesterol ester (5) EtOAc showing strand-shaped structures (SEM). Figure S38: Bidiosgenin ester (8a) in
EtOAc showing strand-shaped structures (SEM). Figure S39: Bidiosgenin ester (8a) in CHCl3/MeOH (SEM). Figure
S40: Bidiosgenin ester (8a) in CHCl3/MeOH (SEM). Figure S41: Bisarsasapogenin ester (8c) in hexane/EtOAc
showing membrane-shaped structures (SEM). Figure S42: Bi-23-acetyldiosgenin ester (10a) in EtOAc showing
strand-shaped structures (SEM). Figure S43: Bi-23-acetyldiosgenin ester (10a) in EtOAc showing strand-shaped
structures (SEM). Figure S44: Bi-23-acetyldiosgenin ester (10a) in EtOAc showing strand-shaped structures (SEM).
Figure S45: Bi-23-acetylhecogenin ester (10a) in EtOAc showing strand-shaped structures (SEM). Figure S46:
Bi-23-acetylhecogenin ester (10a) in EtOAc showing strand-shaped structures (SEM). Figure S47: Powder X-ray
diffraction patterns for raw materials of steroidal dimers 5, 6, 8c, 10a and 10b. Patterns were collected with
the Cu-Kα radiation, and are uncorrected for amorphous contribution. Figure S48: Comparison of the X-ray
diffraction patterns of Bidiosgenin ester (8a) under different conditions: raw material, layered material, dimer
in contact with chloroform-methanol, and with hexane-ethyl acetate. Patterns were collected with the Cu-Kα
radiation, and are uncorrected for amorphous contribution. Note the intensity variation for the peak at 2θ = 11.5◦,
as a consequence of the self-organization of the steroidal dimer. CIF file of Bi-23-acetyldiosgenin (10a). Video:
Bicholesterol ester in Hexane/EtOAc system (25:1).
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