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Caller ID for Risso’s and Pacific 
White‑sided dolphins
Mahdi H. Al‑Badrawi1,2,4*, Yue Liang2,4, Kerri D. Seger3,4, Christopher M. Foster2,4 & 
Nicholas J. Kirsch2,4

Tracking species with expanding ranges is crucial to conservation efforts and some typically temperate 
marine species are spreading northward into the Arctic Ocean. Risso’s (Gg) and Pacific white-sided (Lo) 
dolphins have been documented spreading poleward. Further, they make very similar sounds, so it 
is difficult for both human analysts and classification algorithms to tell them apart. Using automatic 
detectors and classifiers on large acoustic datasets would improve the efficiency of monitoring these 
species. variational mode decomposition (VMD) provides both an easier visualization tool for human 
analysts and exhibited robustness to background noise while extracting features in pulsed signals 
with very similar spectral properties. The goal of this work was to develop a new visualization tool 
using VMD and a statistics-based classification algorithm to differentiate similar pulsed signals. The 
proposed VMD method achieved 81% accuracy, even when using audio files with low SNR that did not 
have concurrent visual survey data. While many dolphins whistle, pulsed signals are one of the more 
useful vocalizations to use in detection and classification because of their species-specific acoustic 
features. Automating the VMD method and expanding it to other dolphin species that have very 
similar pulsed signals would complement current detection and classification methods and lead to a 
more complete understanding of ecosystem dynamics under a changing climate.

Marine mammals shifting their habitat ranges may be because of climate change and these shifts can be monitored 
acoustically by placing underwater recorders throughout the ocean to listen for and track their vocalizations1–3. 
Such acoustical surveys are a complementary monitoring tool to visual surveys because, unlike visual methods, 
they can collect data overnight and year-round, even in harsh conditions and remote locations4. Downsides to 
acoustical surveys include a lack of concurrent visual observations of animals and the need for many hours of 
manual analysis—the latter of which this new detector/classifier method aims to expedite. Because of spectral 
similarity, analyzing dolphins’ clicks, buzzes, burst pulses, and pulsed calls (henceforth called “pulsed signals”) 
from these acoustical surveys is a challenging task. But being able to use pulsed signals to differentiate between 
species is an important analysis capability for monitoring species as their populations rebound or decline, or as 
they adjust to climate change or respond to anthropogenic noise.

The Risso’s dolphin (Grampus griseus, or “Gg”) and Pacific white-sided dolphin (Lagenorhynchus obliquidens, 
or “Lo”) pulsed signals are a good case study for tracking effects of climate change because they have recently 
been documented expanding northward into the Bering and Chukchi Seas2. Their pulsed signals were recorded 
in the Arctic Ocean starting in 2009 in areas where they were previously presumed to be extralimital when 
visually spotted5. Between 2009 and 2016, the presence of their pulsed signals coincided with warmer surface 
temperatures in the Gulf of Alaska (during years with a negative Pacific Decadal Oscillation (PDO)) and a Bering 
Sea Cold Regime2. If Gg and Lo are following prey northward, this combination of the PDO and Cold Regime 
can foster greater food supply in the pelagic zone2 where they both hunt. With climate change, the prevalence of 
the Bering Sea Cold Regime decreases6, the PDO cycle weakens and shortens7, and the Arctic Ocean contains 
less ice8, so it will be important to monitor whether these species become more present in the Arctic Ocean in 
the future. Because Lo and Gg do not have the same diet9–12, differentiating between their pulsed signals to track 
their presence in the Arctic Ocean would help us better understand problems like the effects of climate change 
on marine mammals, the effect of new players in the Arctic food web, and properly calculating maximum sus-
tainable yield for fisheries management.

Gg and Lo pulsed signals are also a good case study for creating classification algorithms because they have 
similar spectral features, are used more often than whistles13, and are largely above the human hearing range 
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so aural analysis is not possible. While there are other delphinid species that produce pulsed signals in similar 
bandwidths to Gg and Lo, like killer whales and long-finned pilot whales14, these clicks are usually defined by 
peak and centroid frequencies instead of by peak and notch patterns. The first study to define different peak and 
notch patterns in the pulsed signals of Lo and Gg was done by Soldevilla et al.15. They also measured the statistical 
differences between Gg and Lo peaks and notches using Gaussian mixture models. Their work was successfully 
used to associate click types with behaviors in a subsequent study16. This instilled confidence that the distinc-
tive peak and notch patterns of the two species are sufficiently stereotyped over time for use in the new method 
presented here. Since only the overall peak frequency of pulsed signals is normally reported in acoustic feature 
sets for classification use, any new algorithm used for Gg and Lo would need to handle multiple peak frequencies.

Previous classification work on pulsed signals includes a range of approaches from classical signal processing 
to machine learning techniques. FFT-based classifiers, such as short-time Fourier transforms or Wigner–Ville 
transforms17, have deteriorating performance with poor-quality (low SNR) files and are computationally 
expensive18. A more efficient FFT method using a two-stage classifier with the cepstrum has classified small 
dolphins, killer whales, pilot whales, sperm whales, and three species of beaked whales19. However, the band-
widths and frequency patterns of these species’ clicks and tones are well-documented in the literature. They are 
also more distinctive from each other than the pulsed signals are between Gg and Lo.

Gaussian mixture models (GMMs) have some success distinguishing between Lo clicks and burst pulses, 
common dolphin whistles, and bottlenose dolphin whistles20. The Lo pulsed signals were likely differentiated 
well because they were the most different from the other species in the dataset20 and were not tested against 
Gg pulsed signals. Gg pulsed signals were included, though, in a deep network study recently21. Other strate-
gies like combining wavelets and neural networks have differentiated between sperm whale and long-finned 
pilot whale clicks22. A viable alternative to the wavelet transform for odontocete clicks is the Hilbert–Huang 
transform (HHT)23. Empirical mode decomposition (EMD) is the key part of the HHT and it performed well 
in differentiating between many tonal baleen whale signals24. EMD performed less well when applied to pulsed 
signals, but its advanced version—variational mode decomposition (VMD)—performs much better for feature 
extraction in pulsed signals. These mode decomposition techniques act like filter banks that break down signals 
into finite sets of components called intrinsic mode functions (IMFs), effectively sorting a waveform into its 
most to least powerful bandwidths.

Our proposed Bayesian VMD Method includes (1) a detector using proven FFT techniques to find signals 
in an audio file, (2) a VMD algorithm to extract acoustic features from the detected snippet of sound, and (3) 
a Bayesian classification weighting system to determine whether Lo or Gg most likely produced the detected 
sound. The Bayesian VMD Method capitalizes on the VMD-gram, which is a visualization of VMD IMFs in the 
time-frequency plane via the Hilbert spectrum. Like the Wigner plot25,26 in PAMGuard that makes it easier for 
a manual analyst to recognize beaked whale upsweeps, the VMD-gram can be used in addition to or in place of 
the spectrogram for manual analysis of pulsed signals with similar peak and notch patterns.

The Bayesian VMD Method has two advantages. First, it inherently denoises the data while decomposing it. 
Software like PAMGuard uses a multiple-phase process to denoise data with its whistle and moan detector27. 
But, any of the denoising steps that aim to remove mechanical pulses may also remove biological pulsed signals. 
Therefore, the overall framework that the Bayesian VMD method came from was designed to detect instead of 
discard broadband pulsive noises in the detection phase, then parse them into a separate category in the clas-
sification phase24. With this denoising, the peak and notch patterns are more noticeable to the human eye in the 
VMD-gram28 than if they were displayed in a standard FFT spectrogram. This means the VMD-gram can have 
cleaner acoustic features extracted from it, providing cleaner input to a classification algorithm. Second, the 
Bayesian VMD Method uses a probability summation to calculate whether the pulsed signals are more likely Lo 
or Gg based on parameters set by Soldevilla et al.15. The probability summation quantifies the relative strength 
of each classification like in the BANTER software13. The likelihood comparison makes it possible to decide the 
category of the pulsed signal even if some peaks or notches are absent.

The goals when creating the Bayesian VMD Method for pulsed signals included:

•	 using only pulsed signals to distinguish two species in a passive acoustic dataset since not all delphinid spe-
cies whistle, but they do all click;

•	 de-noising the data inherently and adaptively to avoid separate denoising steps and to adjust to fluctuating 
background noise conditions in a file or a dataset;

•	 testing the Method on poor-quality recordings instead of discarding them, because sparse datasets need to 
involve as many data points as possible; and

•	 achieving accuracy levels like previous studies to build a trustworthy product for researchers by demonstrat-
ing successful classification with the worst-case scenario.

Results
Proposed detector and classifier accuracy.  Beginning with ninety audio files that were 4.5 s long, auto-
mated detection and manual analysis by an expert identified 174 distinct signals that were labeled as either Lo 
or Gg. These 174 signals plus other pulses from noises like a mooring chain, a pinger, and unknowns contained 
1730 groups of energy peaks made up of 4815 individual energy peaks. Our FFT detector began to group energy 
peaks with an inter-pulse interval threshold of 10 ms for all files, but 100 ms threshold performed better when 
click trains were in the file. PAMGuard’s click detector does not do a similar grouping, so the manual analysis 
had to include a count of individual energy peaks for us to best compare it to our FFT detector. The settings in 
PAMGuard’s click detector were explored to generate the best detection rate. The best settings were the Ishmael 
Energy Sum with 20–50 kHz bounds and 10 dB peak detection thresholdwith a 20 kHz high pass filter. The EMD 
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detector from previous work 38 detected 977 of the 1730 energy peak groups, achieving an accuracy of 56.47%. 
To improve upon this result, we switched to an FFT detector based on PAMGuard’s method that detected 1542 
of the 1730 energy peak groups, scoring an accuracy of 89.13%, while PAMGuard’s click detector detected 3876 
of the 4815 energy peaks, scoring an accuracy of 80.5%. Scoring an accuracy at least as good as PAMGuard while 
using inspiration from the authors’ previously published methods made us confident in continuing to the next 
step: classifying the detected signals.

The basis of using VMD in a classifier was due to the fact that previous work24 that used EMD failed to sepa-
rate Gg from Lo pulsed signals. Both species’ pulsed signals resulted in “EMD identities” of the label “[1, 2]”. For 
the sake of comparison, though, precision, recall, and accuracy for how the old EMD classifier performed are 
provided in Table 1. Specifically, 60 of the 84 (71.43%) Gg pulsed signals were correctly classified as the EMD 
identity [1, 2] and 60 of the 90 (66.67%) Lo pulsed signals were also correctly classified as the EMD identity 
[1, 2]. Pulsed signals that were classified as EMD identities other than [1,2] came from low SNR files or were 
missing key frequency content. Therefore, with 60 correct [1, 2] classifications from known Lo signals and 60 
correct [1, 2] classifications from known Gg signals, the chance of guessing which species the signals were actu-
ally from was a coin toss: 50%. Since some signals were false negatives, accuracy would be worse than a coin 
toss at 34.48% for each species.

The new classifier using a VMD feature extractor was able to separate Gg from Lo pulsed signals and the 
results achieved 81.03% overall accuracy (for both Lo and Gg) in contrast to 72.99% overall accuracy for the 
classifier when using FFT feature extractor results (Table 1). As for the performance of the Bayesian VMD Method 
on each dolphin species, it achieved 88.89% recall on Lo and 72.62% recall on Gg as compared to the FFT feature 
extractor achieving 72.22% and 73.81%, respectively. The Bayesian VMD Method achieved 77.6% precision on Lo 
and 85.91% precision on Gg, as compared to the FFT feature extractor achieving 74.71% and 71.26%, respectively 
(Table 1). The FFT feature extractor method slightly outperformed the Bayesian VMD Method only for recall 
with Gg, but otherwise the Bayesian VMD Method outperformed the FFT feature extractor method (Table 1). The 
Bayesian VMD Method was better able to identify Lo signals and its accuracy to identify Gg signals is also better.

The VMD‑gram visualization tool.  The VMD-gram is the visualization tool that made manual analysis 
of peak and notch patterns easier to compare to those published in Soldevilla et al. (2008). The noise reduction 
from the FFT spectrogram to the VMD-gram can be seen in Fig. 1. Compared to an FFT-gram (a.k.a. a tradi-
tional spectrogram), electrical noise bands have largely been eliminated and the energies that are non-stationary 
(like those produced by animals) are emphasized. The VMD-gram is obtained by applying the Hilbert transform 
to the VMD output components. The resulting instantaneous energies and frequencies are transformed into a 
sparse time-frequency matrix29. The sparse matrix representation of the VMD-gram makes it easier to visualize.

Processing a set of VMD-grams is much quicker, by hand, than by squinting at or zooming into spectrograms. 
For any species identification that relies on frequency banding patterns, the VMD-gram accentuates those com-
pared to a spectrogram. The experience of manually analyzing these VMD-grams is similar to the Wigner Plot25 
now used in PAMGuard to quickly identify beaked whale upsweep pulses.

Once the VMD-gram is made, the acoustic features that can be extracted from it are also largely void of 
background noise and peaks and notches become more apparent, making features to feed into classification 
algorithms more apparent. As an image file, it is also applicable as input to machine learning algorithms such 
as neural networks.

The good, the bad, and the ugly.  To demonstrate the capabilities of this new Bayesian VMD Method, 
three examples of different quality audio data files were chosen to represent the variety of results. These three 
examples are described as “good”, “bad”, and “ugly” with regard to their SNR and difficulty to be visually classi-
fied in spectrograms. It should be noted that the data segments in Fig. 2 are isolated from the full audio files that 
contain them so that the length of the very short pulses can be better visualized.

The good.  In the “good” example, the less-than-a-millisecond broadband buzz at 1.8 s is the only biological 
signal in the file. The electrical noise bands, like at 10, 12, 14, 20, and 30 kHz are faint, and there is very little 
background noise from things like ships, singing baleen whales, seals, storms, or ice, so it is a relatively “clean” 
file. Using visual inspection, like the manual analysis, it is quite clear that there are peaks in the frequencies 
associated with Lo pulsed signals. One of these characteristics is the strong red bands centered at about 26.6 and 
33.7 kHz. The VMD-gram merely accentuated these peaks. The Bayesian VMD Method classifier agreed with 

Table 1.   Precision (P), recall (R), and total accuracy (A) of three classifiers for Gg and Lo: the EMD 
classifier24, the FFT-based features extractor classifier, and the VMD-based features extracted classifier. 
*Denotes accuracy for either Lo or Gg classifications separately.

Class

EMD FFT-based VMD-based

P % R % A % P % R % A % P % R % A %

Gg 50 71.43
34.48*

71.26 73.81
72.99

85.9 72.62
81.03

Lo 50 66.67 74.71 72.22 77.6 88.89
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this manual analysis, which means that it should be able to achieve comparable classification results for pulsed 
signals of similar length and SNR.

The bad.  Before isolating the biological signal present between 3.7 and 3.9 s, this “bad” example differenti-
ated itself from the “good” example by having more prominent electrical noise bands (the red horizontal lines 
every 4.17 kHz) present in the spectrogram. In terms of the biological signals themselves, there are strong peaks 
around 31, 35.5, and 37 kHz as well as faint peaks around 25.7 and 26.8 kHz. While the peak around 31 kHz is 
associated with Gg pulsed signals, the 35.5 kHz peak is a strong indicator of Lo pulsed signals15. The strongest 
peak around 37 kHz is indicative of both Gg and Lo pulsed calls15, so the species classification remains unclear. 
This signal was difficult to identify visually, but by including species-specific notches in the manual analysis, 

Figure 1.   Three visualization tools for delphinid clicks. FFT spectrograms of one sample of a Pacific-white 
sided dolphin pulsed signal (a) and Risso’s dolphin pulsed signal (d) compared to the FFT spectrograms of 
thousands of clicks from each species by Soldevilla et al. (2008) (b, e) compared to the VMD-grams of the 
segments with pulsed signals (c, f). Ease of visualizing the peak and notch patterns for manual analysis is more 
evident in the VMD-gram than in the FFT spectrogram.

Figure 2.   Spectrograms and VMD-grams of various data qualities. “Good” (a, d), “bad” (b, e), and “ugly” (c, 
f) data sample spectrograms (a–c) compared to their VMD-grams (d–f). “Good” means SNR > 6 dB and few 
electrical noise bands; “Bad” means SNR > 6 dB and more noise bands or background noise; “Ugly” means SNR 
< 6 dB. Energy bars are in jet color scale where redder is more energy and bluer is less energy.
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Lo was chosen as the most likely species for this pulsed signal. The VMD feature extractor disagreed with this, 
but the weighted values were very similar: 0.608 for Gg versus 0.604 for Lo. The VMD-gram showed that peaks 
around 25 kHz (indicative of Lo) were obscured by electrical noise in the spectrogram. This remains a “bad” 
example, though, because it is possible the acoustic propagation is different in the Arctic than in the Eastern 
Tropical Pacific where Soldevilla et al.15 worked to develop the peak and notch pattern differences. It is also pos-
sible that the animals call differently in the two places, meaning the peak and notch patterns could be different in 
this dataset than in theirs. Regardless of whether the manual classification is correct, the Bayesian VMD Method 
still determined the pulsed call was more likely from one species over another, albeit barely so, using the work 
from Soldevilla et al.15 as ground truth.

The ugly.  The “ugly” example has the worst combination of factors that make manual analysis using a spec-
trogram difficult: the overall quality of the signal itself is poor and has low SNR, the electrical noise bands are 
present, and there is some noise in the lower frequencies of the file. Whereas the “good” and “bad” examples still 
had at least a 6 dB SNR that would have let them pass the typical quality controls most researchers put in place, 
the seafoam and yellow colors that are the average in Fig. 2c, f makes it almost impossible to see the signal in 
orange between 0.05 and 0.15 s. In addition to this low SNR, the electrical noise bands, if not removed from the 
file, could easily become peaks in the Bayesian VMD Method that are not related to delphinid pulsed calls at all.

While barely visible over background noise to the eye, there are energy peaks at approximately 38 kHz and 
in the low 20 kHz. This is not very helpful since both peaks could be evidence for either Gg or Lo. The Bayesian 
VMD Method, however, was able to make more sense of the “ugly” example for the human eye than the spec-
trogram could. It amplified the peak around 38 kHz and unveiled a peak at about 34 kHz. This latter frequency 
is associated with Lo pulsed signals15, allowing for a classification to be made. This shows that the VMD-gram 
is able to uncover information that would normally be hidden by a substantial amount of noise when using a 
spectrogram. Most acoustic studies institute quality control rules, and this file would fail to pass them, thus 
getting removed from any dataset that it would be a part of. For sparse datasets, removing files because of poor 
quality is an impairment to the study, so having a method that could retain files by increasing their visualization 
quality would be helpful.

Discussion
As climate change occurs, animals that usually occupy temperate habitats shift further towards the poles (a.k.a. 
northward habitat expansion)30–32, so tracking Lo, Gg, and other delphinid, pulsed-signal-producing species will 
help address crucial ecological concerns about the restructuring of the Arctic food web. Therefore, we must be 
able to differentiate between similarly calling species like Lo and Gg to understand how quickly food webs are 
shifting. Timely analysis of acoustic data will enable conservation efforts to respond more quickly. An algorithm 
that can eliminate background noise, emphasize frequency content in short signals, and use limited acoustic 
features to differentiate between species while being computationally efficient would advance the processing of 
marine mammal signals needed to track habitat expansion of species as the climate changes. Adding a visualiza-
tion tool to improve manual analysis of pulsed calls would also expedite bioacoustical data processing.

Our Bayesian VMD Method and VMD-gram meet these advantageous requirements. They were tested on a 
difficult dataset—one that was sparse, void of whistles, lacked contextual clues beyond 4.5 s, and had many low 
SNR files. These difficulties are the reality for much underwater acoustic data, but future work includes testing this 
new method on a set of more robust (higher SNR) datasets to determine how well our results generalize. Fig. 3 
demonstrates the detection of an Lo signal and the usage of the VMD-gram in manual analysis. The promise of 
the Bayesian VMD Method is that it achieved recall, precision, and accuracy values similar to previous work in 
automated detection and classification while differentiating between two species that produce very similar pulsed 
signals. The EMD detector from previous work24 avoided picking most energy peaks generated by noise, but it 
lacked adaptability and simplicity since multiple tuning parameters had to be manually adjusted for audio files 
with different levels of background noise. The new detector used in this paper not only automatically estimates 
the noise floor of each file as an adaptive threshold, but also groups buzzes or clicks based on the inter-click 
interval of signals of interest (see Fig. 3a–c). Lo and Gg were a prime pair of dolphins to test the Bayesian VMD 
Method on because they produce fewer whistles than other species13 and the peak and notch patterns of their 
pulsed calls are not stereotyped across individuals or geography, yet are two important animals to track in the 
changing Arctic Ocean.

Successful analysis software today perform detection and classification on sparse data because processing is in 
real-time (like PAMGuard). For sparse data to give reliable real-time results, a few key features in a single event 
need to be capitalized on and we can not rely on extracting many features in terabytes of data that have been 
archived for years. Our application of VMD is essentially a distillation process: a small dataset of the good, the 
bad, and the ugly SNR quality recordings, using a few key features, can still be analyzed equally well between an 
algorithm and a human analyst. It is not without its needed improvements, though. The Bayesian VMD Method 
may fail when noise (electrical noise, boat noise, etc.) in a recording is stronger than the desired acoustic sig-
nals. To improve it, noise with high power could be removed first to get rid of the bulk of background noises. 
Additionally, the number of IMFs that the signal is decomposed into could be set adaptively depending on the 
input acoustic file. One difficulty in making the Bayesian VMD Method was establishing the best number of IMFs 
because 9, what we settled on, was not perfect for every file. Any algorithm or software package that can reliably 
discern clicks of different species across all the oceans would be a powerful tool in cetacean conservation efforts, 
and is thus the reason many scientists are focused on advancing such signal processing methods in bioacoustics 
today. The Bayesian VMD Method and VMD-gram are two pieces in that pursuit.
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Methods
Manual analysis.  Data files from previous work2,33,34 that were manually analyzed (visually validated) and 
found to contain Lo or Gg pulsed signals were used to test the Bayesian VMD Method. No animals were directly 
involved in this study as all acoustic data were collected passively. Data were collected with passive acoustic 
listeners (PALs)35 at a 100 kHz sampling rate with an adaptive duty cycle between 0.75% and 3.75% depend-
ing upon whether the PAL’s software had detected a signal of interest or not36. This created up to twenty-one 
4.5 s files per day over each yearlong deployment. Visual validation was done using spectrograms generated by 
Ulysses software (written by A. Thode; optimized by J. Sarkar). The dataset we used in this study only contained 
clicks or burst pulses except for two files with faint whistles that were not coincident with pulsed signals, so 
whistles were not a viable signal for contextual use like in the BANTER13 study. We used the peak and notch 
patterns from Soldevilla et al. (2008) since they are the best documented pulsed signal characteristics for Gg and 
Lo and because the geographical range between the ETP groups and the individuals spreading into the Arctic 
Ocean might overlap.

We used all files that were of good enough quality to manually determine peak and notch patterns to ascribe 
to a species as well as files from the same day with similarly looking, but poor quality, pulsed signals. The poor 
quality files as stand-alone signals did not pass quality control guidelines put in place in previous work2,24,33,34, 
but they were recorded close in time to good quality files with more certain IDs. Therefore, they were assigned 
the same species as a good quality signal.

Because it is known that these two species travel in pods15 and mill around while feeding, it was reason-
able to assume that pulsed signals close in time to one another were from the same species. These poor-quality 
files were included in the dataset for VMD accuracy testing to find the point where the Bayesian VMD Method 

Po
w

er
/F

re
qu

en
cy

 (d
B

/H
z)

0
Time (s)

A
m

pl
itu

de

0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Data

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
m

pl
itu

de

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.7

0.6

Time (s)

Threshold

End of segment
Start of segment

Time (s)

A
m

pl
itu

de

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

End of segment
Start of segment
Data

10

20

30

Fr
eq

ue
nc

y 
(k

H
z)

40

50

0
0

Time (ms)
100 200 300 400 500

1

2

3

4

5

6

x 10-3

Frequency (kHz)

En
er

gy
 (l

og
 s

ca
le

)

15 20 25 30 35 40 45
-5

-4

-3

-2

-1

0.5 1 1.5 2 2.5 3 3.5 4
Time (s)

0

10

20

30

Fr
eq

ue
nc

y 
(k

H
z)

40

50

Po
w

er
/F

re
qu

en
cy

 (d
B

/H
z)

-50

-60

-70

-80

-90

-100

-110

-120

-130

-140

-150

4.5

b

-50

-60

-70

-80

-90

-100

-110

-120

-130

-140

-150
0

Time (ms)
100 200 300 400 500

5

10

20

25

15

30

50

45

40

35

Fr
eq

ue
nc

y 
(k

H
z)

Frequency (kHz)
15 20 25 30 35 40 45

-76

-74

-72

-70

-64

-66

-68

Po
w

er
 (d

B
)

ca

fe

d

hg

Figure 3.   Flowchart demonstrating the usage of the VMD-gram. (a) The time-domain of the input signal, 
(b) the spectrogram of the audio file, (c) application of the threshold and defining time bounds, (d) isolating 
the significant signal component of the input signal using the time bounds from (c), (e) the VMD-gram of the 
segment, (f) the comparison of the segment to Soldevilla et al. 2008, (g) the spectrogram of the segment, and (h) 
the comparison of the segment to Soldevilla et al. (2008). Bars in (f) and (h) indicate the peaks in pulsed signals 
as documented by Soldevilla et al. (2008) for Gg (gray) and Lo (red).
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failed. If a dataset existed with many good-quality files, then rules set forth by Kowarksi et al.37 could have been 
implemented, but a sparse dataset does not have the advantages of “Big Data”. Poor quality pulsed signals could 
have been received from the side of the dolphins’ heads or from a distance, so are highly attenuated and variable 
in both spectral and temporal characteristics13,38. It was expected that these poor-quality files would drive down 
the accuracy of the Bayesian VMD Method, but poor quality files are a reality in underwater bioacoustics and 
manual analysts sift through them regularly, so including them was a better approximation of reality.

For this study, additional manual analysis included visually determining the peak and notch patterns in (1) 
noisy spectrograms, (2) de-noised spectrograms, and (3) the new VMD-grams. If IDs from the three visualiza-
tions differed in whether a pulsed signal was “Gg”, “Lo”, or “too difficult to determine”, the ID that was the same 
for two of the three methods was used as the final ID for the file. These final manual analysis IDs were used as 
the ground truth set to compare the Bayesian VMD Method results against for accuracy and precision/recall 
calculations. We decided not to use the anecdotally easier VMD-grams for the ground truth IDs because using 
spectrograms for manual analysis has been the historical way to do manual detection and classification work. 
Note from the results, though, that using the VMD-gram IDs as the ground truth improved accuracy. This is 
because the VMD-gram displays the peak and notch patterns more cleanly, thus removing much of the guessing 
that the human analyst has to do about where the exact peak frequencies appear to be in spectrograms. Finally, 
the VMD classifier was chosen because previous work24 using EMD to distinguish the acoustic signals of Gg 
from Lo were unsuccessful. Both species’ pulsed signals resulted in the same “EMD identity” labels, meaning 
they were assigned to the same class. VMD, however, captured the peak and notch patterns of the two species 
and made it possible to distinguish between them.

Detection and classification system
The Bayesian VMD Method we developed can classify pulsed signals with similar frequency content in poor SNR 
files from underwater acoustic recordings. The Method consists of two parts. The first part scans the incoming 
audio data as segments that potentially contain signals of interest by detecting energy peaks. It then uses the 
start and end of the energy peaks to isolate those areas of interest from non-signal areas of the audio file. The 
second part classifies the detected signals into separate categories based on their frequency content. The algo-
rithms of our Detector and Classifier steps are self-developed, but some key components in them were inspired 
by previous work39–41.

Detector.  The proposed detector uses full audio files that are 4.5 s long at a sampling rate of 100 kHz. It then 
finds audio file segments where potential signals of interest exist.

For a given audio file, denoted by x̂(n) , where n = 1, . . . ,N , and N is the total number of samples, the Lapla-
cian Differential Operator (LDO) is applied to x̂(n) resulting in an enhanced version of the audio file denoted 
by y(n), as follows:

The LDO enhances the transient signals (edge detection) and filters out the low frequencies ( < 10 kHz) which 
are not needed for Gg and Lo pulsed signal classification. The y(n) is then transformed into a time-frequency 
representation using Short-time Fourier transform (STFT). The STFT was implemented on 1024 samples with 
90% overlap and a 1024-point Hanning window. The magnitude of the STFT matrix s(n, f) is given as Ŝ(n, f ).

Where N is the length of the input segment and M is the number of frequency bins. The dimensionality of 
matrix Ŝ(n, f ) is reduced from 2-D to 1-D as follows:

The resulting temporal sequence is an accumulated sum of all frequency bins from Ŝ(n, f ) , so scaling is 
applied, as follows:

After finding Sd(n) from Eq. (4), the mean of Sd(n) is subtracted. Then, to determine the boundaries of the 
acoustic signal, an adaptive threshold is applied. The first step in developing the threshold is to vectorize the 
matrix Ŝ(n, f ) in column order into a vector called Sr(n):

(1)y(n) =
1

4

∂2x̂

∂n2
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




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.
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M
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f=1

Ŝ(n, f )

(4)Sd(n) =
Sd(n)

max{Sd(n)}

(5)Sr(n) =
−−−→
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Then, Sr(n) is scaled similar to Sd(n) and is sorted into ascending order, denoted by Ŝr(n) . The changing 
point where the root-mean-square level of the sorted curve Ŝr(n) changes the most is obtained by minimizing 
Eq. (6)39,40,42

where k and N are the index of the changing point and the length of the sorted curve Ŝr(n) , respectively, and

The threshold, � , is the value of Ŝr(k) which equals the noise floor estimation, and can be represented as 
follows:

where H0 and H1 are the hypothesis that the activity was below or above the threshold, respectively. The calcu-
lated threshold can vary for each file, thus making it adaptable if ambient noise conditions change between files. 
The threshold � is then projected onto the temporal sequence Sd(n) to extract the boundaries of the regions of 
the acoustic signal that comprised the detected energy peak. The start and end points of each acoustic signal are 
determined as the first and last points that are greater than � in amplitude.

The boundaries of the detected segments are scaled by the sampling rate to obtain start and end times which 
will be used to extract the audio file segments from the original data file in the classification step. Figure 4 illus-
trates the layout of the the proposed detector.

Classifier.  Once segments with energy peaks were identified, they were scanned by the team’s bioacoustics 
expert, and any segments confirmed to contain only Gg or Lo signals were sifted out for use in testing the accu-
racy of the Bayesian VMD Method classifier.

In this paper, the metric weight was defined for classification purposes. The weight for a parameter θi given 
its measurement yi is defined as

where θi is the probability density function (PDF) of yi , yi is one measurement in the measurement vector y , 
P�|Y (θi | yi) is the posterior probability of the parameter θi given the measurement yi , and pi is the scaled 
prominence value of yi.

When a detected audio file segment is fed into the Bayesian VMD classifier, the classification process starts 
with a feature extraction step. During this step, peak and notch frequencies and their prominence values were 
obtained from the VMD-Hilbert spectrum of the segment. The prominence measures how much a peak stands 
out due to its intrinsic height or how much a notch stands out due to its depth and its location relative to sur-
rounding peaks or notches. In general, peaks that are taller and more isolated have a higher “prominence” (p) 
than peaks that are shorter or surrounded by other peaks.

In the feature extraction step, VMD decomposed the input audio segment into a set of IMFs. The HHT was 
then applied to all IMFs to create a Hilbert spectrum with a frequency resolution of 50 Hz. The Hilbert spectrum 
is a matrix, H(n, f )  that contains the instantaneous energies,  h(n, f ).

where r is the length of the input segment and q is the number of frequency bins in H.
The matrix H(n, f ) is then converted from a 2-D array to a 1-D spectral representation by summing all 

instantaneous energy values in each frequency bin, as follows:

The energy summation sequence was converted to a base-10 logarithmic scale and then smoothed by pass-
ing through a 17-point median filter and an 11-point moving average filter for the purpose of easily extracting 
features. All peaks and notches in the sequence whose prominence values exceeded the threshold of 0.5 were 
located, and their frequency values and prominence values were then stored as extracted features from the input 
signal (see Fig. 5).

For testing the effectiveness of the VMD feature extractor, a second set of features were extracted from the 
FFT-based power spectrum using the same input signals with the Welch’s algorithm. The FFT-based spectrum 
was calculated on 2048 samples with 50% overlap and a 2048-point Hanning window with 48.82 Hz frequency 
resolution. The power spectral density sequence was then converted to dB and went through a 21-point median 
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Table 2.   Mean, standard deviation (SD), and percent of occurrence (O) for the peak and notch patterns 
established by Soldevilla et al.15. Adapted from Test data part of their Table IV.

Class Parameters

Peaks # Notches #

1 2 3 4 1 2 3

Gg
Mean (SD) 22.4 (0.8) 25.5 (1.0) 30.5 (1.1) 38.8 (1.1) 19.6 (1.3) 27.7 (1.1) 35.9 (1.2)

O % 72 45 82 48 46 64 54

Lo
Mean (SD) 22.2 (0.6) 26.6 (0.9) 33.7 (1.4) 37.3 (1.4) 19.0 (1.1) 24.5 (0.9) 29.7 (1.4)

O % 89 76 45 62 51 75 66

Figure 4.   Block diagram of the proposed detector.
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Figure 5.   Example of locating peak and notch frequencies and how prominent they are compared to other 
peaks and notches. The wave form in (a) is the smoothed energy summation sequence from the Hilbert 
spectrum of the Lo signal in Fig. 1. Subplot (b) is a flipped version of the energy summation sequence for the 
convenience of extracting notch frequencies and their prominence values. The length of the red line represents 
the prominence value of a peak or notch.
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filter and a 15-point moving average filter. Feature extraction followed the same strategies as in VMD feature 
extractor except using a prominence threshold of 2 dB.

Next, the measured features, frequencies (Hz) of the peaks and notches (henceforth referred to as “measured 
peaks and notches”), were matched with the probability distribution functions (PDFs) of peaks and notches 
(henceforth referred to as “parameter peaks and notches”) from Soldevilla et al. (2008). The matching between 
measured and parameter peaks and notches was done in preparation of weight calculations, and it was imple-
mented for both Gg and Lo. There are four Gaussian PDFs for parameter peaks and three for parameter notches 
for each species in Soldevilla et al. (2008) (Table 2). A 95% confidence interval of a Gaussian PDF was used here 
as a frequency range defined as 1.96 standard deviations to the left and right of its mean value. When measured 
peaks and notches were matched to parameter peaks and notches, only the peak or notch that fell within a 95% 
confidence interval were kept. Any peaks or notches outside the 95% confidence intervals were discarded.

Because there are overlaps between the 95% confidence intervals of 22.4 kHz and 25.5 kHz parameter peaks 
of Gg and between 33.7 kHz and 37.3 kHz parameter peaks of Lo (see Table 2), it is likely that some measured 
peaks will fall in the overlapping areas. In this paper, the maximum a posterior (MAP) estimation41 was used to 
determine which PDF results in the measured peak in an overlapping area. For a measured peak that falls into 
an overlapping area, two parameter peaks’ PDFs are plugged in the MAP estimation equation sequentially, and 
then the measured peak will be matched with the PDF that maximizes the posterior probability of it given the 
measured peak.

After the preliminary match, if more than one measured peak or notch remains in any one PDF confidence 
interval, the measured peak and notch with the highest prominence value is selected as the real measured peak 
or notch of this PDF, and the redundant ones are discarded. Finally, all remaining peak prominence values and 
notch prominence values were scaled to be between 0 and 1, respectively.

Once peak and notch matching and selection was finished, Bayesian weights were calculated to select the most 
likely species. From Bayes’s rule, the posterior probability of a parameter given its measurement is proportional 
to the product of the likelihood function of the measurement given the parameter and the prior probability of 
the parameter41, as shown in Eq. (12).

therefore, substitution of the posterior probability in Eq. (9) yields

With all PDFs and a priori probabilities from Soldevilla et al. (2008), the weight value in terms of Gg and Lo 
given a set of measurements, y , was obtained by Eqs. (13) and (14)

where yi and yj are the remaining measured peaks and notches that were matched with Gg’s PDFs and Lo’s PDFs 
after the matching and matching step. The feature matching and selection results and the weight calculation 
process are shown in Fig. 6.

The last step was a comparison between weight values in terms of Gg and Lo. If w(Lo | y) > w(Gg | y) , the 
signal was labeled an Lo signal; otherwise, it was labeled a Gg signal. The classifier is illustrated in Fig. 7. The 
weight values are significant to three digits because weights are normally smaller than 1.000 and three significant 
digits was sufficient for comparing all calculated weight values for these audio files. In the case that the weight 
comparison is equal to three significant digits (even though this never happened in these 174 signals), the Bayes-
ian VMD algorithm will automatically classify the input as a Gg signal given that the highest precision (85.91%) 
by the Bayesian VMD Method was achieved on Gg.

(12)P�|Y (θi | yi) ∝ fY |�(yi | θi)P�(θi)

(13)w(θi | yi) = fY |�(yi | θi) ∗ P�(θi) ∗ pi

(14)w(Gg | y) =
∑

∀i

w(θi | yi) w(Lo | y) =
∑

∀j

w(θj | yj)
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