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Cytokine-induced endothelial dysfunction leads to inflammation and vascular adhesion molecule production in retinal pigment
epithelium (RPE) cells. Inflammation is a critical mediator in retinal degeneration (RD) diseases, including age-related macular
degeneration (AMD), and RD progression may be prevented through anti-inflammatory activity in RPE cells. The flavonoid
polyphenol luteolin (LU) has anti-inflammatory and antidiabetes activities, but its effects regarding retinal protection remain
unknown. Here, we examined the ability of luteolin to alleviate markers of inflammation related to RD in cytokine-primed
APPE-19 cells. We found that luteolin decreased the levels of interleukin- (IL-) 6, IL-8, soluble intercellular adhesion molecule-1
(sICAM-1), and monocyte chemoattractant protein-1 (MCP-1) and attenuated adherence of the human monocytic leukemia cell
line THP-1 to IL-1β-stimulated ARPE-19 cells. Luteolin also increased anti-inflammatory protein heme oxygenase-1 (HO-1) levels.
Interestingly, luteolin induced protein kinase B (AKT) phosphorylation, thus inhibiting nuclear factor- (NF-) κB transfer from
cytoplasm into the nucleus and suppressing mitogen-activated protein kinase (MAPK) inflammatory pathways. Furthermore,
cotreatment with MAPK inhibitors and luteolin decreased inflammatory cytokine and chemokine levels, and further suppressed
THP-1 adhesion. Overall, these results provide evidence that luteolin protects ARPE-19 cells from IL-1β-stimulated increases of
IL-6, IL-8, sICAM-1, and MCP-1 production by blocking the activation of MAPK and NF-κB signaling pathways, thus
ameliorating the inflammatory response.

1. Introduction

The retinal pigment epithelium (RPE) is a single layer of pig-
ment cells, which is in close contact with photoreceptors and
maintains visual function [1]. RPE exposure to ultraviolet/

visible light leads to oxidative stress and chronic inflamma-
tion in the retinal tissue. Inflammation clearly plays a role
in the development of age-related macular degeneration
(AMD), which is a cause of severe irreversible visual impair-
ment in elderly persons and in diabetic retinopathy [2, 3]. A
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variety of factors promote retinal tissue degeneration and
AMD progression, including genetic and environmental fac-
tors, aging, and oxidative stress [4]. AMD involves reduced
photoreceptor cells and retinal pigment epithelium dysfunc-
tion in the macula and can be classified as “dry AMD” or
“wet/exudative/neovascular AMD.” Compared to neovascu-
lar AMD, dry AMD has a higher incidence, but involves less
vision degradation and is thus less frequently a cause of
“blindness” [5, 6]. Neovascular AMD is characterized by
excessive choroidal neovascularization (CNV) under the ret-
ina, leading to retinal edema and even detachment, thereby
causing vision loss. Notably, dry AMD can potentially evolve
into neovascular AMD, leading to irreversible vision loss
[7, 8]. Therefore, the best means of avoiding vision deteri-
oration in elderly persons and cases of diabetic retinopathy
is to prevent macular degeneration.

Available data suggest that a number of inflammatory
cytokines and chemokines are elevated in the serum or ocular
tissue of AMD patients—including interleukin-6 (IL-6), IL-8,
monocyte chemotactic protein (MCP-1), and intercellular
adhesion molecule (ICAM-1) [9–11]. Notably, IL-6 levels
are increased in the intraocular fluids of patients with neo-
vascular AMD compared to controls, and findings suggest
that IL-6 and IL-8 are proangiogenic in AMD progression
[12, 13]. Intraocular MCP-1 is a chemokine for monocyte
recruitment, and ICAM-1 is an adhesion molecule that facil-
itates leukocyte transmigration. Studies have reported that
elevated MCP-1 levels contribute to subfoveal neovascular
membrane development and the degree of macular edema
in eyes with exudative AMD and that elevated soluble
ICAM-1 (sICAM-1) levels are correlated with choroidal neo-
vascularization [13, 14]. Inflammatory mediators, including
chemokines and cytokines, can upregulate ICAM-1 expres-
sion. IL-6 could directly or indirectly activate the leukocytes
to induce retinal inflammation. It has been found that
MCP-1 recruits leukocytes to sites of injury and activates
ICAM-1; thus, ICAM-1 induced leukocyte-endothelial inter-
actions and promoted leukocyte migration into extravascular
locations involved in the inflammatory response [14, 15].
More studies found that IL-8 and MCP-1 could attract neu-
trophils and monocytes to migrate into inflammatory tissues.
IL-1β is a proinflammatory cytokine and promotes the
upregulation of chemokines in RPE as model of focal retinal
degeneration [15]. In the present study, we evaluated the
ability of the luteolin to modulate inflammation in ARPE-
19 cells-THP-1 monocytes interactions. The levels of the
inflammatory cytokines IL-6, IL-8, MCP-1, and ICAM-1 in
ocular tissue are significantly associated with exudative
AMD occurrence and progression [4]. Moreover, IL-1β
activates inflammatory-related pathways, including nuclear
factor- (NF-) κB and mitogen-activated protein kinase
(MAPK) signaling, thus enhancing the production of the
proinflammatory mediators MCP-1, IL-6, cyclooxygenase-2
(COX-2), and inducible nitric oxide synthase (iNOS). Pro-
inflammatory mediators are closely associated with the
development and progression of retinal degenerative dis-
eases [15, 16].

Luteolin (Lu), 3’,4’,5,7-tetrahydroxyflavone, is a flavo-
noid polyphenolic compound found in numerous vegetables

(e.g., celery, carrots, broccoli, and peppers), fruits (e.g., apple,
mango, blueberry, peaches, and prunes), and herbs (e.g., chry-
santhemum flowers and Taraxacum mongolicum) [17–20]. In
previous studies, it was demonstrate that luteolin shows
anti-inflammatory, anticancer, neuroprotective, and antivi-
ral properties in vitro and in animal models [21–25]. Thus,
luteolin has been investigated for potential use in the
treatment of obesity [26] and obesity-related diseases and
for antidiabetic [27–29] and neuroprotective therapies
[30, 31]. In ophthalmological research, luteolin protects
against oxidative stress-related damage and decreases
inflammation in ARPE-19 cells [32, 33]. Luteolin is protec-
tive against diabetes-induced progression of retinopathy
and reportedly inhibits expressions of the inflammation-
related markers NF-κB and IL-1β, decreases levels of the
lipid peroxidation product malondialdehyde (MDA), and
increases the antioxidant glutathione (GSH) in diabetes-
induced oxidative stress in the retina [34]. These findings
indicate the potential to use luteolin for prevention and
treatment of retinal inflammatory diseases.

Based on the available data, we speculate that IL-6, IL-8,
MCP-1, and sICAM-1 could be target molecules for AMD
therapy or prevention. In the present study, we aimed to
assess the mechanisms underlying the luteolin-induced
anti-inflammatory effects in ARPE-19 cells stimulated by
the proinflammatory cytokine IL-1β (Figure 1).

2. Materials and Methods

2.1. Materials. Luteolin (≥98% purity by TLC), cell counting
kit-8 assays (CCK-8), and DAPI solution were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Human recombi-
nant proinflammatory cytokine IL-1β and enzyme-linked
immunosorbent assay (ELISA) kits were purchased from
R&D Systems (Minneapolis, MN, USA). The inhibitors
PD98059, SP600125, SB202190, and Bay 117082 were pur-
chased from Enzo Life Sciences (Farmingdale, NY, USA).
Antibodies against β-actin, COX-2, iNOS, HO-1, AKT, and
phosphorylated- (phospho-) AKT were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). Antibod-
ies against JNK, ERK, p38, phospho-JNK, phospho-ERK,
and phospho-p38 were purchased from Millipore (Billerica,
MA, USA).

2.2. Preparation of Luteolin and Cell Culture. Luteolin was
dissolved in dimethyl sulfoxide (DMSO) to prepare a
100mM stock solution, which was stored at −20°C. The final
culture medium had a DMSO concentration of ≤0.1%, as
previously described [16]. The ARPE-19 human retinal
pigment epithelial cell line was purchased from Bioresource
Collection and Research Center (BCRC, Taiwan) and cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM)/
F-12 medium (Invitrogen-Gibco, Paisley, Scotland) contain-
ing 10% heat-inactivated fetal bovine serum (FBS; Invitro-
gen-Gibco) and penicillin G (100U/mL), streptomycin
(100μg/mL), and gentamycin (50 ng/mL). Cells were subcul-
tured every 2–3 days at 37°C in a humidified atmosphere of
5% CO2. ARPE-19 cells (2 × 105) were pretreated with or
without various luteolin concentrations (1–30μM) for 1 h,
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and then, IL-1β (1μg/mL) was added. After 24 h, the ARPE-
19 cells were lysed for western blot analysis, and the media
samples were subjected to ELISA analysis. The THP-1
human monocytic leukemia cell line was obtained from
American Type Culture Collection (Manassas, VA, USA).
THP-1 cells were cultured in RPMI 1640 medium (Gibco)
containing FBS (10%) at 37°C in a humidified atmosphere
of 5% CO2 and subcultured every 3–4 days.

2.3. Cell Viability Assay. We assessed the inhibitory effect of
luteolin on cell viability using CCK-8 kits (Sigma-Aldrich)
as described previously [35]. Cells were seeded at 105 cells/-
well into 96-well plates and treated with luteolin at concen-
trations of 1–100μM for 24 h. After treatment, the CCK-8
solution was added, and the plates were incubated at 37°C
for 2 h. Finally, cell viability was measured at 450nm using
a microplate reader (Multiskan FC; Thermo, Waltham,
MA, USA). The CCK-8 assay with each concentration was
carried out in triplicate, and cell viability was reported as a
percentage relative to the cells without luteolin treatment.

2.4. ELISA Assay. ARPE-19 cells (105 cells/mL) were
pretreated without or with various luteolin concentrations
(1–30μM) in 24-well plates for 1 h. Then IL-1β (1 ng/mL)
was added, and the cells were cultured for 24h. Specific
ELISA kits were used to measure the levels of IL-6, IL-8
MCP-1, and ICAM-1 in the supernatants, following the
manufacturers’ instructions. The OD at 450nm was deter-
mined using a microplate reader (Multiskan FC; Thermo).

2.5. Preparation of Total Proteins. ARPE-19 cells (8 cells/mL)
were pretreated with or without luteolin (1–30μM) for 1 h. In
6-well plates, the cells were then stimulated with or without
IL-1β (1 ng/mL) for 24 h to evaluate total protein content,

or for 30min to evaluate phosphorylated protein content.
Cells were harvested with 300mL lysis buffer (50mM Tris–
HCl, pH7.4; 1mM EDTA; 150mM NaCl; 1mM DTT;
0.5% NP40; and 0.1% sodium dodecyl sulfate (SDS)) contain-
ing protease inhibitor cocktail and phosphatase inhibitors
(Sigma, St. Louis, MO, USA). The BCA assay kit (Pierce)
was used to quantitate all protein concentrations.

2.6. Western Blot Analysis. Protein samples were separated
on 10% SDS polyacrylamide gels and then transferred to
polyvinylidene fluoride (PVDF) membranes (Millipore,
Billerica, MA, USA). Next, the PVDF membranes were
incubated overnight at 4°C with specific primary antibodies
against β-actin (Sigma), COX-2, iNOS, HO-1, AKT, pAKT
(Santa Cruz, CA, USA), JNK, pJNK, p38, and pp38 (Cell
Signaling Technology, Danvers, MA, USA). Then, the mem-
branes were washed three times using tris-buffered saline
with Tween 20 (TBST) buffer and incubated with secondary
antibodies at room temperature for 1 h. Proteins were
detected using Luminol/Enhancer solution (Millipore), and
signals were detected using the BioSpectrum 600 system
(UVP, Upland, CA, USA) to quantitate protein bands.

2.7. Monocyte Adhesion Assay. In the first step, AREP19 cells
(2 × 105 cells/mL) were pretreated with luteolin (1, 3, 10, and
30μM) or inhibitors (10μM SP600125, 10μM PD98059,
10μM SB202190, or 5μM Bay 11-7082) for 1 h in DMEM
medium. THP-1 cells (5 × 105 cells/mL) were labeled with
fluorescent dye (5μM calcein-AM) in RPMI-1640 medium
at 37°C for 30min in the dark and then washed by centrifu-
gation. Second, the labeled THP-1 cells were cocultured with
the ARPE-19 cells in plates for 1 h, and then, the cells were
washed three times with PBS to remove nonadherent THP-1
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Figure 1: Experimental abstract. (a) Foods containing luteolin. (b) The structure of luteolin. (c) Pathways likely related to the anti-
inflammatory activity of luteolin in IL-1β-stimulated ARPE-19 cells.
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cells. Finally, the extent of adhesion of THP-1 cells to ARPE19
cells was observed under fluorescence microscope (4 per view;
magnification, ×200; Olympus Corporation, Tokyo, Japan).
The control groups were treated with IL-1β alone, and all
experiments were repeated three times.

2.8. Immunofluorescence Staining. ARPE19 cells were seeded
into 6-well plates until reaching 50–60% confluence and pre-
treated with or without luteolin (1, 3, 10, and 30μM) for 1 h,
followed by addition of IL-1β for 15min. Then, the medium
was suctioned out, and the cells were washed with PBS. The
cells were fixed with 4% (w/v) paraformaldehyde and incu-
bated with anti-NF-κB p65 antibody overnight at 4°C. The
next day, the medium was removed, and the cells were
washed with PBS and then incubated with secondary anti-
bodies at room temperature for 1 h. Then, the cells were
washed 2–3 times with PBS, followed by the addition of fluo-
rescent dye (BODIPY493/503 or BODIPY581/591). The cells
were again washed with PBS to remove the dye, and 4’,6-dia-
midino-2-phenylindole (DAPI; Sigma) was added to stain
the nucleus. Finally, images were acquired using a fluores-
cence microscope (Olympus, Tokyo, Japan).

2.9. Statistical Analysis. Image Lab software (Bio-Rad) was
used to quantify the intensity of western blot bands, and
ImageJ software (W. Rasband, NIH, USA) to determine the
numbers of THP-1 cells in the adhesion assay. Data were pre-
sented as the mean ± standard deviation (SD) from at least
three independent experiments. Statistical analyses included
one-way analysis of variance (ANOVA) followed by the
Tukey’s post hoc test. A p value of < 0.05 was considered
significant.

3. Results

3.1. Luteolin Inhibited Inflammatory Mediator Expression
and Increased Anti-Inflammatory Protein HO-1 Expression
in IL-1β-Stimulated ARPE19 Cells. First, we performed a
CCK-8 assay to assess luteolin cytotoxicity in ARPE-19 cells.
Luteolin concentrations of ≤50μM showed no significant
cytotoxicity in ARPE-19 cells, while cell numbers were signif-
icantly reduced at concentrations of ≥100μM (Figure 2(a)).
Therefore, all subsequent experiments were performed using
1–30μM luteolin. ARPE-19 cells were seeded in 6-well plates,
treated with luteolin, and then stimulated with 1ng/mL IL-
1β. Compared with IL-1β alone, additional treatment with
luteolin at ≥1μM significantly inhibited expression of the
inflammatory mediator iNOS (Figures 2(b) and 2(c)) but
did not significantly inhibit COX-2 expression (data not
shown). Notably, compared with IL-1β alone, treatment with
1 and 30μM luteolin significantly increased expression of the
anti-inflammatory protein HO-1 (Figures 2(d) and 2(e)).
Previous studies have indicated that AKT activation may
contribute to inhibiting the NF-κB inflammatory pathway
in inflammation-related diseases [36]. Our results showed
that luteolin at ≥1μM enhanced the expression of phos-
phorylated AKT proteins in IL-1β-stimulated ARPE19
cells compared with in cells treated with IL-1β alone
(Figures 2(f) and 2(g)).

3.2. Luteolin Inhibited Inflammation-Related Cytokines and
Attenuated THP-1 Cell Adherence to IL-1β-Stimulated
ARPE-19 Cells. ARPE-19 cells were pretreated with luteolin
(1, 3, 10, or 30μM) for 1 h, and then, 1 ng/mL IL-1β was
added for 24 h. IL-1β treatment alone significantly stimu-
lated ARPE19 cells to release cytokines and chemokines
compared with control cells. Luteolin at concentrations of
10 and 30μM significantly inhibited the IL-1β-induced
release of IL-6 and IL-8 and decreased the levels of the cell
adhesion molecule sICAM-1. Additionally, treatment with
30μM luteolin significantly decreased MCP-1 levels com-
pared to treatment with IL-1β alone (Figures 3(a)–3(d)).
Since luteolin concentrations of ≥10μM strongly inhibited
sICAM-1 levels, we further investigated whether luteolin
attenuated THP-1 cell adhesion to IL-1β-stimulated ARPE-
19 cells. Pretreatment with luteolin significantly inhibited
THP-1 cell adherence to IL-1β-stimulated ARPE-19 cells,
compared to samples treated with IL-1β alone (Figures 3(e)
and 3(f)).

3.3. Luteolin Inhibited NF-κB Activation to Suppress THP-1
Cell Adherence to IL-1β-Stimulated ARPE-19 Cells. We
observed that luteolin significantly increased AKT activation
(Figures 2(f) and 2(g)), and pAKT has previously been asso-
ciated with inhibition of the NF-κB inflammatory pathway
[37]. Therefore, we evaluated whether luteolin inhibited
NF-κB in relation to the suppression of THP-1 cell adherence
to IL-1β-stimulated ARPE-19 cells. Cells were pretreated
with or without luteolin (1–30μM) for 1 h, then stimulation
with IL-1β (1 ng/mL) for 15min, to investigate whether
luteolin inhibited NF-κB p65 translocation. Immunofluores-
cence staining revealed that luteolin at ≥10μM suppressed
NF-κB p65 translocation from the cytoplasm into the nucleus
and that the p65 subunit was retained in the cytoplasm in IL-
β-activated ARPE-19 cells (Figure 4(a)). Then, we evaluated
whether luteolin inhibited IκB phosphorylation. Treatment
with luteolin at ≥1μM significantly inhibited phosphorylated
IκB expression, compared with IL-1β alone (Figure 4(b)). We
further investigated whether luteolin decreased THP-1 cell
adherence to ARPE-19 cells via inhibition of NF-κB p65 acti-
vation. First, ARPE-19 cells were pretreated with either luteo-
lin (10μM) or Bay 11-7082 (5μM) for 1 h and then
stimulated with IL-1β. Second, these pretreated ARPE-19
cells were cocultured with labeled THP-1 cells. Our results
showed that both luteolin and Bay 11-7082 pretreatment sig-
nificantly inhibited THP-1 cell adherence to IL-1β-stimu-
lated ARPE-19 cells compared to cells treated with IL-1β
alone (Figures 4(b) and 4(c)).

3.4. Luteolin Blocked MAPK Inflammatory Pathways and
MAPK Inhibitors Decreased THP-1 Cell Adherence to IL-
1β-Stimulated ARPE-19 Cells. We next evaluated whether
luteolin inhibited MAPK phosphorylation and if this was
related to the decreased THP-1 cell adherence to IL-1β-stim-
ulated ARPE-19 cells. First, cells were pretreated with luteo-
lin (1–30μM) for 1 h and then incubated with IL-1β
(1 ng/mL) for 30min or 24h to evaluate the expression of
MAPK signaling proteins. Our results showed that luteolin
at ≥3μM significantly decreased phosphorylated c-JUN N-
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Figure 2: Luteolin inhibited inflammatory mediator expression and increased anti-inflammatory protein HO-1 expression in IL-1β-
stimulated ARPE19 cells. (a) Cell viability of ARPE19 cells treated with various luteolin (LU) concentrations (0–100 μM). Cells were
pretreated with luteolin for 1 h, then stimulated with IL-1β (1 ng/mL) for 24 h. (b) Cells were pretreated with different LU doses and then
incubated with IL-1β (1 ng/mL) for 30min or 24 h. Western blots show iNOS protein expression. (c) The fold-change in iNOS protein
expression was measured relative to β-actin expression. (d) Western blots show HO-1 protein expression. (e) The fold-change in HO-1
protein expression was measured relative to β-actin expression. (f) Western blots show phosphorylated AKT protein expression. (g) The
fold-change in pAKT protein expression was measured relative to AKT expression. Data represent the mean ± SD. ∗p < 0:05, ∗∗p < 0:01,
compared to ARPE-19 cells stimulated with IL-1β alone.
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Figure 3: Luteolin inhibited inflammation-related cytokine expression and attenuated THP-1 cell adherence to IL-1β-stimulated ARPE-19
cells. Cells were pretreated with different doses of luteolin (LU) and then incubated with IL-1β (1 ng/mL) for 24 h. ELISA results showed the
levels of (a) IL-6, (b) IL-8, (c) sICAM-1, and (d) MCP-1. (e) LU significantly suppressed THP-1 cell adherence to IL-1β-stimulated ARPE-19
cells. Fluorescent-labeled THP-1 cells (green) were cocultured with control (CTL) or IL-1β-stimulated ARPE-19 cells in the absence or
presence of the indicated LU concentrations. (f) The fluorescence intensity revealed THP-1 cell adhesion to IL-1β-stimulated ARPE-19
cells, which was used to quantify calcein-AM fluorescence. The data represent the mean ± SD. ∗p < 0:05, ∗∗p < 0:01, compared to ARPE-19
cells stimulated with IL-1β alone.
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terminal kinase (pJNK) 1/2 expression, luteolin at ≥10μM
significantly decreased phosphorylated extracellular signal-
regulated kinase (pERK) 1/2 expression, and luteolin at
≥3μM significantly decreased phosphorylated p38 protein
expression (Figures 5(a), 5(b), 6(a), 6(b), 7(a), and 7(b)).
We further evaluated whether the MAPK-inhibiting effects
of luteolin were associated with decreased THP-1 adherence
to ARPE-19 cells. ARPE-19 cells were pretreated with 10μM
luteolin and/or 10μM of the JNK inhibitor SP60012, the
ERK1/2 inhibitor PD98059, or the p38 inhibitor SB202190
for 1 h, followed by incubation with IL-1β (1 ng/mL) for
24 h. All tested pretreatments decreased THP cell adherence
to ARPE-19 cells. Moreover, combined pretreatment with
luteolin plus SP60012 or luteolin plus SB202190 resulted in
significantly greater reductions of THP-1 adhesion compared
to treatment with any of these agents alone (Figures 5(c),
5(d), 6(c), 6(d), 7(c), and 7(d)).

3.5. MAPK Inhibitors Mediated the Levels of Cytokines and
Chemokines in IL-1β-Stimulated ARPE-19 Cells. We
observed that luteolin significantly decreased the release of
IL-6, IL-8, sICAM-1, and MCP-1 in IL-1β-stimulated
ARPE-19 cells (Figures 3(a)–3(d)), as well as significantly
suppressed MAPK pathways (Figures 5(a), 5(b), 6(a), 6(b),
7(a), and 7(b)). Next, we investigated whether MAPK inhib-
itors could attenuate the IL-1β-stimulated production of the
inflammatory cytokines IL-6, IL-8, and MCP-1. ARPE-19
cells were pretreated with luteolin and/or MAPK inhibitors
(10μM SB202190, 10μM PD98059, or 10μM SP600125)
for 1 h and then incubated with 1ng/mL IL-1β for 24h.
Interestingly, the pretreatment with MAPK inhibitors and
luteolin significantly reduced the levels of IL-6, IL-8,
sICAM-1, and MCP-1 in IL-1β-stimulated ARPE-19 cells
(Figures 8(a)–8(d)). These results suggested that in IL-1β-
stimulated ARPE-19 cells, luteolin suppressed the expression

of IL-6, IL-8, sICAM-1, and MCP-1 by influencing the phos-
phorylation of p38, ERK1/2, and JNK1/2.

4. Discussion

In many retinal degenerative (RD) diseases, the pathogenesis
is inflammation-induced, involving the recruitment and acti-
vation of microglia and macrophages, the expression of
inflammatory mediators (COX-2 and iNOS), and photore-
ceptor cell death. The proinflammatory cytokine IL-1β trig-
gers inflammatory responses and attracts inflammatory
cells to migrate into the retina, promoting retinal impairment
and degeneration in RD diseases [38, 39]. Numerous studies
reported that IL-1β activates the expression of other proin-
flammatory cytokines and modulates chemokine expression.
Proinflammatory cytokines can target and induce retinal
inflammation in RD pathogenesis [36, 37] and the phyto-
chemical luteolin has excellent anti-inflammatory properties
[32, 33]. Therefore, here we performed a detailed exploration
of the anti-inflammatory effects of luteolin in IL-1β-stimu-
lated ARPE19 cells.

Prior studies have indicated that the cytokines IL-6 and
IL-8 are proangiogenic, while the chemokine MCP-1 and cell
adhesion molecule ICAM-1 facilitate leukocyte transmigra-
tion into ocular tissue, in AMD development and progres-
sion [4, 12–14]. Elevated IL-1β levels in the vitreous or
retina lead to photoreceptor cell death in retinal detachment
patients and in a mouse model, while reduced IL-1β levels
inhibit photoreceptor cell death [40]. In the present study,
we demonstrated that luteolin significant inhibited cytokine
and chemokine release in IL-1β-stimulated ARPE-19 cells
(Figures 3(a)–3(d)). Prior studies have also shown that
ICAM-1 is upregulated in response to inflammatory media-
tors and mediates leukocyte adhesion and transmigration
on the RPE, while decreased ICAM-1 levels can suppress
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expression. (c) Luteolin suppressed THP-1 adhesion. ARPE-19 cells were pretreated with 10μM luteolin or 5μM Bay 117082 for 1 h and
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which was used to quantify calcein-AM fluorescence. Data represent the mean ± SD. ∗∗p < 0:01, compared to ARPE-19 cells stimulated
with IL-1β alone.
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monocyte adhesion in RPE cells [41, 42]. Here, we demon-
strated that luteolin inhibited sICAM-1 levels and attenuated
THP-1 cell adhesion to IL-1β-stimulated ARPE-19 cells
(Figure 3(e)). We also found that luteolin significantly inhib-
ited iNOS protein expression and increased HO-1 protein
expression (Figures 2(b) and 2(d)). These findings support

that luteolin is indeed an anti-inflammatory phytochemical
that can attenuate proinflammatory cytokine-induced
inflammation in ARPE-19 cells.

IL-1β activation of NF-κB signaling is closely associated
with RD diseases [15, 16] and pAKT is related to inhibition
of the NF-κB inflammatory pathway [36]. Previous studies
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Figure 5: Luteolin blocked JNK phosphorylation, and the JNK inhibitor SP60012 (SP) decreased THP-1 cell adherence to IL-1β-stimulated
ARPE-19 cells. (a) Western blots show the levels of phosphorylated JNK protein expression. (b) The fold-change in pJNK protein expression
was measured relative to JNK expression. (c) ARPE-19 cells were pretreated with 10μM luteolin or JNK inhibitor (SP600125) for 1 h and then
cocultured with labeled THP-1 cells. (d) The fluorescence intensity was used to quantify calcein-AM fluorescence. Data represent the
mean ± SD. ∗p < 0:05, ∗∗p < 0:01, compared to ARPE-19 cells stimulated with IL-1β alone.
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show that IL-1β-activates NF-κB, resulting in its transloca-
tion from the cytoplasm into the nucleus, followed by induc-
tion of cytokine and chemokine expressions in ARPE-19 cells
[43]. Our present results showed that luteolin promoted AKT
phosphorylation (Figures 2(f) and 2(g)), inhibited NF-κB
p65 activation, and suppressed THP-1 cell adhesion
(Figure 4). These findings suggest that luteolin promotes

AKT phosphorylation to block NF-κB p65 activation and
thereby suppresses THP-1 cell adherence to IL-1β-stimu-
lated ARPE-19 cells. Many studies have indicated that MAPK
signaling plays an important role in AMD [44]. We observed
that luteolin decreased the expression levels of IL-6, IL-8,
sICAM-1, and MCP-1 in IL-1β-stimulated ARPE-19 cells.
Thus, we further investigated whether luteolin attenuated
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Figure 6: Luteolin blocked ERK phosphorylation and the ERK inhibitor PD98059 (PD) decreased THP-1 cell adherence to IL-1β-stimulated
ARPE-19 cells. (a) Western blots show levels of phosphorylated ERK protein expression. (b) The fold-change in pERK protein expression was
measured relative to ERK expression. (c) ARPE-19 cells were pretreated with 10μM luteolin or ERK inhibitor (PD98059) for 1 h and then
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mean ± SD. ∗p < 0:05, ∗∗p < 0:01, compared to ARPE-19 cells stimulated with IL-1β alone.
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inflammation by suppressing MAPK pathways. Our results
demonstrated that luteolin significantly inhibited the phos-
phorylation of the MAPKs JNK 1/2, ERK 1/2, and p38,
supporting that luteolin may block MAPK pathways to
decrease production of IL-6, IL-8I, sICAM-1, and MCP-1
(Figures 5(a), 5(b), 6(a), 6(b), 7(a), and 7(b)).

Human and animal studies have demonstrated that spe-
cific MAPK inhibitors may be potential therapeutic targets
for RD disease treatment [44]. To explore the importance
of individual MAPKs, we used the MAPK inhibitors
SP600125 (JNK 1/2 inhibitor), PD98059 (ERK 1/2 inhibitor),

and SB202190 (P38), individually and as cotreatments with
luteolin in IL-1β-stimulated ARPE-19 cells. We found that
luteolin and MAPK inhibitors decreased THP-1 cell adher-
ence to IL-1β-stimulated ARPE-19 cells (Figures 5(c), 5(d),
6(c), 6(d), 7(c), and 7(d)). We further found that these
MAPK inhibitors attenuated the IL-1β-stimulated produc-
tion of the inflammatory cytokines IL-6, IL-8, sICAM-1,
and MCP-1 (Figures 8(a)–8(d)). These results suggested that
luteolin blocked MAPK pathways and inhibited the expres-
sion of inflammation-related cytokines—thereby suppressing
THP-1 adhesion.
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Figure 7: Luteolin blocked P38 phosphorylation, and the P38 inhibitor SB202190 (SB) decreased THP-1 cell adherence to IL-1β-stimulated
ARPE-19 cells. (a) Western blots show levels of phosphorylated P38 protein expression. (b) The fold-change in pP38 protein expression was
measured relative to P38 expression. (c) ARPE-19 cells were pretreated with 10 μM luteolin or P38 inhibitor (SB203580) for 1 h and then
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5. Conclusions

Our present data demonstrate that luteolin suppressed pro-
inflammatory cytokine-induced retinal pigment epithelium

(RPE) inflammation via inactivation of the NF-κB pathway
in IL-1β-stimulated ARPE-19 cells. Moreover, cotreatment
with MAPK inhibitors plus luteolin attenuated THP-1 cell
adhesion to IL-1β-stimulated ARPE-19 cells. Importantly,
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Figure 8: MAPK inhibitors mediated the expression levels of cytokines and chemokines in IL-1β-stimulated ARPE-19 cells. ARPE-19 cells
were treated with MAPK inhibitors (10 μM SB203580 (SB), 10μM PD98059 (PD), or 10 μM SP600125 (SP)) with or without 10μM luteolin
and then incubated with IL-1β for 24 h. ELISA results showed the levels of (a) IL-6, (b) IL-8, (c) sICAM-1, and (d) MCP-1. Data represent the
mean ± SD. ∗p < 0:05, ∗∗p < 0:01, compared to ARPE-19 cells stimulated with IL-1β alone. #p < 0:05, ##p < 0:01, compared to IL-1β-
stimulated ARPE-19 cells pretreated with only MAPK inhibitor.
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luteolin significantly reduced the expression levels of IL-6,
IL-8, sICAM-1, and MCP-1 in IL-1β-stimulated ARPE-19
cells. Taken together, our findings suggest that luteolin blocks
MAPK pathways, thus decreasing the expression levels of
IL-6, IL-8, sICAM-1, and MCP-1, and thereby suppressing
THP-1 cell adhesion to IL-1β-stimulated ARPE-19 cells
(Figure 9). We conclude that the natural agent luteolin may
ameliorate inflammation-induced retinal degeneration-
related disorders via inhibition of the NF-κB and MAPK
pathways in IL-1β-stimulated ARPE19 cells.
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