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Abstract
Background: Identification of transcription-factor binding motifs (DNA sequences) can be
formulated as a combinatorial problem, where an efficient algorithm is indispensable to predict the
role of multiple binding motifs. An ant algorithm is a biology-inspired computational technique,
through which a combinatorial problem is solved by mimicking the behavior of social insects such
as ants. We developed a unique version of ant algorithms to select a set of binding motifs by
considering a potential contribution of each of all random DNA sequences of 4- to 7-bp in length.

Results: Human chondrogenesis was used as a model system. The results revealed that the ant
algorithm was able to identify biologically known binding motifs in chondrogenesis such as AP-1,
NFκB, and sox9. Some of the predicted motifs were identical to those previously derived with the
genetic algorithm. Unlike the genetic algorithm, however, the ant algorithm was able to evaluate a
contribution of individual binding motifs as a spectrum of distributed information and predict core
consensus motifs from a wider DNA pool.

Conclusion: The ant algorithm offers an efficient, reproducible procedure to predict a role of
individual transcription-factor binding motifs using a unique definition of artificial ants.

Background
To extract biologically meaningful information from a
large amount of gene expression data and genomic infor-
mation is one of the most challenging tasks in the post
Human Genome Project era [1-3]. Since transcriptional
processes are regulated combinatorially by multiple regu-
latory elements, computational modeling is inevitable
and an efficient algorithm capable of solving combinato-
rial optimization problems is desirable [4]. Swarm intelli-
gence is a computational technique that mimics the
collective behavior of social insects such as ants and bees
[5-7]. Although there is no centralized module that dic-

tates the behavior of individuals, local interactions cause
a global optimization pattern to emerge [8-10]. Algo-
rithms based on swarm intelligence have been applied
successfully to a large number of hard discrete optimiza-
tion problems including traveling salesman, quadratic
assignment and routing in telecommunications networks
[6,8].

The ant algorithm is a branch of swarm intelligence tech-
niques inspired by the foraging behavior of ant colonies.
Here, the solution in a combinatorial problem is initial-
ized with a population of randomly positioned ants. Each
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ant represents a particular solution and deposits a varying
amount of artificial pheromone based on the fitness of the
solution. The concentrations of pheromone provide dis-
tributed information in a whole solution space, and they
are constantly updated through deposition and evapora-
tion. With a positive feedback mechanism through rein-
forcement of the previously favored solutions, algorithm-
based ants are guided towards the solution of higher fit-
ness like the social behavior of natural ants (Fig. 1).

The ant algorithm is designed to predict a set of transcrip-
tion-factor binding motifs using array-derived gene
expression data. Based on the idea that gene expression
levels are regulated by the combinatorial actions of multi-
ple transcription-factor binding motifs, we formulated a
linear relationship between the observed gene expression
patterns and the appearance number of potential tran-
scription-factor binding sites in the regulatory region of
each gene. Thus, the ant algorithm seeks the motifs whose
occurrences in the regulatory region collectively correlate
with the global expression levels.

We examined whether the unique version of ant algo-
rithms presented here would predict a potential contribu-
tion of all conceivable transcription-factor binding
motifs. Most of the existing methods evaluate either a sin-
gle oligo sequence at a time [11-14], or a fixed set of mul-

tiple binding motifs with little information on a role of
individual motifs [14,15]. We previously utilized the
genetic algorithm [15] as well as a particle swarm optimi-
zation procedure [14], and searched for a suboptimal
combination of binding motifs. Such approaches, how-
ever, were not ideal because of the astronomical number
of possibilities in the solution space (motif combina-
tions) and the limited scope in the presence of redundant
regulatory mechanisms. Here, we describe a novel appli-
cation of ant algorithms to evaluate the role of each of
individual binding motifs from a population of random
DNA sequences. Unlike the genetic algorithm or particle
swarm optimization, the ant algorithm aims to evaluate
individual binding sites rather than searching for the best
motif combination using a unique artificial pheromone
spectrum.

In the current study prediction of transcription-factor
binding motifs was formulated as a foraging problem of
artificial ants using human chondrogenesis in vitro as a
model system. Each ant represented a set of random DNA
sequences and deposited a varying amount of artificial
pheromones depending on the deviation from the array-
derived data, which is defined in Eq. 4 later in the section
of Methods. Pheromones were constantly renewed by
deposition as well as partial evaporation, and ants were
attracted to DNA sequences with high concentration of
pheromones. This reinforcement process was aimed to
select the most desirable group of transcription-factor
binding motifs from random DNA sequences.

The microarray-derived mRNA expression data, being
used throughout the study, were published by Sekiya et al.
[16] (see additional file 1). The prediction of transcrip-
tion-factor binding motifs was conducted previously with
the genetic algorithm, and the results were experimentally
validated using the genes specific to chondrogenesis such
as type II collagen [15]. Here, we extended our analysis by
developing a unique version of ant algorithms and evalu-
ated the potential role of all DNA sequences in the solu-
tion space. All conceivable random sequences from 4 bp
to 7 bp in length were analyzed, although the results with
5-bp DNA sequences were mainly described to validate
the novel ant algorithm using the previous results with the
genetic algorithm. The TRANSFAC database was used to
derive biologically known consensus sequences (ranging
from 5 to 30 bp) [17].

Results
The overall strategy with the ant algorithm is to evaluate
individual motif candidates considering combinatorial
effects with other motifs. Briefly, each ant is defined to
represent a potential combination of multiple transcrip-
tion-factor binding motifs where the number of ants was
determined based on the statistical studies with Akaike

Schematic illustration of the ant algorithmFigure 1
Schematic illustration of the ant algorithm. (A) Selec-
tion of a shorter path between a nest and a food source by 
natural ants. The ants travel between the nest and food 
through trail #1 and trail #2. Initially, ants are distributed 
equally on both trails (top). Since trail #1 is shorter than trail 
#2, trail #1 becomes their favorite pathway with a higher 
pheromone concentration (bottom). (B) Modeling gene 
expression using artificial ants. In an artificial nucleus consist-
ing of two transcription-factor binding motifs involved in the 
regulatory model, ants are initially located in a random fash-
ion (top). These two motifs are treated like a food source, 
and two ant colonies are formed after cycles of pheromone 
deposition and evaporation (bottom).
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information criterion [15,18]). Using a mathematical
model for expression profiles (Eqs. 1–3), each ant is asso-
ciated with a model error (Eq. 4). A pheromone concen-
tration is assigned high if the model error of the ant is
small and vice versa (Eq. 5). In the next iteration of ant
migration, the probability of particular motifs being
selected by any ant is affected by the previous pheromone
concentration (Eq. 6). The pheromone concentration
deposited to each motif candidate is additive and evapo-
rative (Eq. 7).

In the current study, 100 ants (NA = 100) were utilized
with 1000 computational iterations for deposition and
evaporation of pheromones. The final pheromone con-
centrations assigned to individual DNA sequences were
plotted in a form of pheromone spectrum (See Methods).
Two key parameters here were a "pheromone preference
factor (ε)" and a "pheromone evaporation factor (δ)": the
pheromone preference factor regulated affinity of ants
towards artificial pheromone, and the pheromone evapo-
ration factor was used to reduce influence from the earlier
computational outcomes. Using these two factors, "repro-
ducibility (r)" and "selectivity (s)" of the motif selections
were analyzed. Reproducibility was defined as cross-corre-
lation among the pheromone spectra, and selectivity was
defined as "1 – information entropy" (See Methods).

Pheromone spectrum
Using 512 random DNA sequences of 5 bp in length as
potential transcription-factor binding motifs, the fitness
of individual motif candidates was analyzed from their

final pheromone concentrations (Fig. 2). In the pherom-
one spectrum that illustrated 512 pheromone concentra-
tions assigned to the sequences such as AAAAA, AAAAC,
etc., they varied considerably depending on the choice of
the pheromone preference factor (ε) and the pheromone
evaporation factor (δ). With ε = 0 and δ = 0 (Fig. 2A), most
DNA sequences received a relatively uniform pheromone
concentration (0.25 ± 0.05; mean ± s.d.) except for
CTGAC. Note that the highest concentration was normal-
ized to 1. With ε = 500 and δ = 0.5 (Fig. 2B), on the other
hand, 11 DNA fragments including CTGAC received the
concentration higher than 4 s.d. above the average. These
two examples indicated dependence of the pheromone
spectrum on selection of ε and δ .

Reproducibility and selectivity
In order to characterize the effects of ε and δ in the ant
algorithm, reproducibility (r) and selectivity (s) were
determined for varying pairs of ε and δ for 0 ≤ ε ≤ 100 and
0 ≤ δ ≤ 1 (Fig. 3). As expected from random selection, the
selectivity value became ~0 with ε ~ 0 (no preference to
pheromone). The selectivity value was high for a pair of
large ε and small δ, while the reproducibility value
approached 0.9 or above for 0.1 <ε < 10 and δ < 0.5. Based
on statistical considerations, we aimed at high reproduci-
bility and significantly low selectivity that would provide
~10 local peaks in the pheromone spectrum. Selecting of
10 local peaks corresponds to building a model with 10
potential binding motifs. Hereafter, a pair of ε = 10 and δ
= 0.1 was employed to achieve r = 0.98 and s = 0.17 for
modeling human chondrogenesis in vitro.

Examples of pheromone spectraFigure 2
Examples of pheromone spectra. The pheromone spectra display the pheromone concentration for each DNA sequence 
as a potential transcription-factor binding motif. (A) Pheromone spectrum with ε = 0 and δ = 0. A single dominating peak indi-
cates a highly selective computational condition. (B) Pheromone spectrum with ε = 500 and δ = 0.5. Multiple peaks suggest a 
distributed regulatory system with the given computational parameters.
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Motif length analysis
Since the length of known transcription-factor binding
motifs vary from 4 bp up to more than 10 bp, we exam-
ined sequence similarities among the predicted motifs
ranging from 4 to 7 bp (Fig. 4). There are 136, 512, 2080,
and 8192 DNA sequences in total for 4-, 5-, 6-, and 7-bp
binding motifs, respectively. Interestingly, the motifs con-
sisting of particular DNA sequences such as GCCC,
CAGG, and CTGA repeatedly appeared with a high con-
centration of pheromone.

Biological relevance
Among the four models (4 to 7 bp motifs), the most influ-
ential 25 transcription-factor binding motifs were selected
from a pool of 10,920 potential motifs (Fig. 5). First, 4-bp
DNA sequences such as CTGA, CAGG, and GCCC were
selected in all four models. To test statistical significance
of selecting any 4-bp core sequence throughout the four
models, Monte Carlo simulations were conducted. The
simulation result supported statistical significance (p < 10-

5) of picking three 4-bp core sequences from 4 to 7 bp
motifs (25 motifs in each group), although a null hypo-
thesis assumed here was significantly weak because of a
multiple motif selection. Second, the binding motifs such
as AP-1, Sox9 and NFκB known to be involved in chon-
drogenesis were selected in the 5-bp model (Table 1).
Third, nine out of 10 binding motifs, predicted previously
by the genetic algorithm, were included in this short list.

The state transition representing the time-dependent role
of the predicted transcription-factor binding motifs are
illustrated on days 1, 7, 14, and 21 (Fig. 6). The figure

reveals that DNA sequences such as CGTAC and AACTC
were predicted to up-regulate the selected genes in the
model, while the sequences such as ACCCA and AACAT
were modeled to down-regulate the same genes. In partic-
ular, the predicted role of AGGGG is consistent to the
molecular experiments using a transient DNA transfection
[15].

Discussion
This study described a novel application of the ant algo-
rithm in predicting a role of each of the random DNA
sequences as a transcription-factor binding motif in
human chondrogenesis. The prediction procedure was
formulated as the combinatorial problem to select a set of
multiple motifs followed by a histogram analysis to build
a spectrum of potential contributions among all conceiv-
able motifs. Using human chondrogenesis in vitro as a
model system, we demonstrate that the ant algorithm is
capable of identifying DNA sequences found in the bio-
logically known motifs such as AP-1, CREB, Sox9, NFκB,
Erg-1, AP-2, Stat, Smad, E47, and Oct-1 as well as
unknown candidates. We discuss the described ant algo-
rithm focusing on its characteristic formulation, selectiv-
ity and reproducibility, computational efficiency, and
biological relevance.

The first feature of the described algorithm is definition of
artificial ants as a set of m transcription-factor binding
motifs (m = 10 in this study). In this algorithm, each ant
was assigned to its own set of m binding motifs and it
deposited an equal amount of pheromone to the assigned
set. A pheromone spectrum was then built from the sum

Reproducibility and selectivityFigure 3
Reproducibility and selectivity. Reproducibility and selectivity of the described ant algorithm were characterized by defin-
ing two variables with 0 ≤ ε ≤ 100 and 0 ≤ δ ≤ 1. (A) Reproducibility defined as correlation between pheromone spectra in Eq. 
8. (B) Selectivity defined as modified informational entropy in Eq. 9. The higher value represents a fewer peaks in the pherom-
one spectrum.
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of deposited pheromones by NA ants (NA = 100). The
value of m > 1 allowed us not only to evaluate a combina-
torial effect of multiple binding motifs but also to reduce
the number of computational iterations.

The second feature among biology-inspired algorithms is
a well-characterized choice of selectivity and reproducibil-
ity by the two key parameters: pheromone preference fac-
tor, ε, and pheromone evaporation factor, δ. The value of
ε determines the preference to pheromones, and the value
of δ regulates fading of the previous concentration of phe-
romone. Selectivity was defined as "1 – informational
entropy" to evaluate distance from randomness, while
reproducibility was defined as correlation among the
spectra. A higher selectivity in general implies that the lim-
ited number of motif candidates receive a significantly
higher pheromone concentration than most of the other

candidates. The extreme case for ε ~ 0 or ε > 100 yielded
low reproducibility, since the final pheromone spectrum
was predominantly influenced by the ants in the first or
the last generation. A value of δ controlled evaporation of
previous information, and a large value of δ placed more
emphasis on recent decisions. The values of ε and δ can be
selected arbitrarily depending on the purpose of a partic-
ular study. In this study we determined these parameters
to reproducibly obtain ~10 peaks in the spectrum. The
number of peaks was pre-determined using Akaike infor-
mation criterion [18].

A clear advantage of the ant algorithm is a computational
efficiency to reach a stable solution compared to the other
evolutionary algorithms such as the genetic algorithm.
The major difference between the ant algorithm and the
genetic algorithm is their solution space. The ant algo-

Motif length analysisFigure 4
Motif length analysis. The motif length analysis among the four models (4-, 5-, 6-, and 7-bp DNA sequences as potential 
transcription-factor binding motifs) with ε = 10 and δ = 0.1. (A) Pheromone spectrum for 4-bp DNA sequences. (B) Pherom-
one spectrum for 5-bp DNA sequences. (C) Pheromone spectrum for 6-bp DNA sequences. (D) Pheromone spectrum for 7-
bp DNA sequences.
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rithm searches for a group of the best motifs in a space of
individual binding motifs, while the genetic algorithm
seeks the best combination. The former space is appar-
ently more restricted than the latter combinatorial space.
Therefore, the ant algorithm has a clear advantage to ter-
minate the search. Furthermore, the advantage of the ant
algorithm includes identification of redundant transcrip-
tion-factor binding motifs in eukaryotic gene regulation.
Neither the genetic algorithm nor particle swarm optimi-
zation is well suited to include redundant motifs in a final
solution.

The ant algorithm is also different from other model-
based approaches such as REDUCE [11] and the principal

component analysis [14]. In REDUCE, for instance,
motifs are selected recursively in an add-on manner to
reduce the model error by the largest degree at each selec-
tion. This selection strategy makes later selections strongly
affected by the earlier ones. The ant algorithm, on the
other hand, can avoid such a potential conflict in selec-
tion. In order to compare these two algorithms, numerical
simulations were conducted using a benchmark dataset
for 200 artificial genes (see additional file 1). Simulation
results suggested that both REDUCE and ant algorithm
offers similar power in predicting correct number of
embedded motifs. Although the advantage of REDUCE is
its superior reproducibility with a shorter computational
time, the ant algorithm is apparently more suited to pre-

Biological relevanceFigure 5
Biological relevance. Linkage of the transcription-factor binding motifs among the ant algorithm prediction, the genetic algo-
rithm prediction, and the biologically known binding motifs.
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Table 1: Comparison of the predicted binding motifs to the biologically known motifs

Known binding sites Consensus sequences Predicted motifs

AP-1 TGAGTCAKCNTGA CTGAC
CREB CGTCANRGGC CTGAC
SOX9 GGTAACAAGA GTAAC
EGR-1 WTGCGTGGGCGK GCCCA, ACGCA
AP-2 GGSGGTGMNTTCC ACCCC
STAT TTCCCGKAATGGM CATTC

SMAD3 TGTCTGTCTCTGACSTCA GAGAC
E47 VSNGCAGGTGK CCACC

OCT1 TATGCAAAT GCATA
NFκB GGGGATYCCCCWN GATCC, AGGGG

State transition of the predicted binding motifsFigure 6
State transition of the predicted binding motifs. The predicted state levels are plotted on days 1, 7, 14, and 21 during in 
vitro chondrogenesis. The positive level indicates stimulation, and the negative level shows inhibition. The 5-bp DNA 
sequences, predicted with the ant algorithm, include CTGAC, AACTC, AGACC, GTAAC, CTCCC, CGGTA, GCCCA, 
AGAGG, AGGGG, and ACCCA.
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dict a motif longer than 5 bp including a motif consisting
of a dimeric binding site. Biologists are usually advised to
use several complementary computational tools to iden-
tify regulatory elements from microarray data [19]. The
ant algorithm seems to complement analytical
approaches such as REDUCE and the principal compo-
nent-based method in identifying longer motifs and
dimeric binding sites.

The ant algorithm can still evaluate combinatorial effects
among multiple factors like other model-based
approaches reported previously [11,14-16]. Defining a
background model is a general approach in searching for
over-representation of DNA words within a sequence set.
The ant algorithm, however, aims at searching for the
DNA sequences whose occurrences in the regulatory
region correlate with the observed expression levels in the
context of combinations of multiple motifs. Therefore,
the described ant algorithm is in principle not overly sen-
sitive to over-represented DNA words. The expression lev-
els are described as a linear combination of the role of
individual motifs with different functions. Therefore, it is
possible that some motifs, predicted to be a stimulator by
the ant algorithm, may appear in the regulatory region of
the gene whose expression level is down-regulated.

A motif length analysis and sequence comparisons sup-
ported, at least in part, statistical and biological signifi-
cance of the selected transcription-factor binding motifs.
The 25 predicted motifs matched with the sequences of 10
known binding motifs known to be involved in human
chondrogenesis. These binding motifs include AP-1,
CREB, Sox9, NFκB, Erg-1, AP-2, Stat, Smad, E47, and Oct-
1. Interestingly, two of the 5-bp motifs (GCCCA and
ACGCA) together with a 6-bp motif (GCCCAC) and a 7-
bp motif (CGCCCAC) constituted a contiguous 10-bp
binding motif of Egr-1 ([A/T]TGCGTGGGCG [G/T]), con-
firming a strong involvement of Egr-1 in chondrogenesis.
Furthermore, two 5-bp motifs (GATCC and AGGGG)
coincided with 9-bp consensus sequence of NFκB (p50)
binding sites (GGGGAT [C/T]CCCC [A/T]NTC [C/G]). It
is possible to evaluate a pool of candidates with varying
length simultaneously by including them together in the
simulation. Note that the prediction by the ant algorithm
should be used to address a set of hypotheses, and biolog-
ical experiment is inevitable.

In summary, the described procedure is the first applica-
tion of ant algorithms for prediction of transcription-fac-
tor binding motifs. Other definitions of artificial ants and
pheromones are possible. For instance, a group of hetero-
geneous ants could behave like transcription factors or
RNA polymerases and deposit different kinds of pherom-
ones directly onto genomic DNA sequences. We believe
that this application will be advanced by further studies

for improving computational efficiency and biological
relevance.

Conclusion
We developed one form of ant algorithms for prediction
of transcription-factor binding motifs. The consensus
sequences of 10 biologically known binding motifs have
significant similarities with the predicted motifs. Unlike
healing capability of bones, joint tissues such as articular
cartilage hardly regenerate and therefore in vitro chondro-
genesis is an extremely challenging subject in tissue engi-
neering. The transcriptional mechanism of human
chondrogenesis remains largely unknown. With its effi-
cient search procedure and its controllable reproducibility
and selectivity, the described version of ant algorithms
allows us to provide a known and novel set of molecular
targets for biological verification.

Methods
Biological model system
We focused our analysis on 55 genes whose alterations in
mRNA were statistically significant during human chon-
drogenesis as published by Sekiya et al. in Table 1[16], and
their 5'-end flanking DNA sequences were identifiable
with the UCSC genome browser (see additional file 1).
The logarithmic ratios in the gene expression levels on
days 1, 7, 14, and 21 relative to day 0 were used in the
model:

where yi(t) = mean mRNA level of the i-th gene on day 1,
7, 14 or 21, and = yi(0) mean mRNA level of the i-th gene
on day 0. The positive and negative ratios indicate upreg-
ulation and downregulation to day 0, respectively.

Model-based analysis
The global gene expression patterns were modeled using
the number of occurrences of the potential transcription-
factor binding sites in the 5'-flanking regulatory region of
the gene:

Zn(t) = Hnxm Xm(t)  (2)

where Zn(t) represents logarithmic ratios of differential
gene expression levels derived in Eq. 1, the element hij in
Hnxm denotes the number of j-th transcription-factor bind-
ing motif in the regulatory region of the i-th gene, and
Xm(t) corresponds to the functional levels of m predicted
binding sites at time t. The positive and negative values in
Xm(t) suggest stimulatory and inhibitory roles of the cor-
responding transcription-factor binding motif, respec-
tively. Here, n is the number of genes. The upstream
regulatory sequence of each gene was acquired from the
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USCS genome browser. Based on the results of our previ-
ous studies [15,16] and others [20,21], we used the 1000-
bp upstream region of the transcription starting site (see
additional file 1). This region, however, should be consid-
ered as a parameter to be chosen, and the model can
include further upstream regions, downstream regions, or
untranslated regions. As potential transcription-factor
binding motifs, a complete set of random DNA sequences
of 4 to 7 bp in length (AAAA, AAAC, AAAG, AAAT, etc.)
was considered and their distribution was identified on
the 5'-end flanking region of the genes in the model. In
formulation of Eq. 2, the reverse complementary motifs
were combined with their counterparts. Namely, we
counted the appearances of both the forward and the
reverse motifs and treated them together as a single motif
candidate. Therefore, the total numbers of 4-, 5-, 6-, and
7-bp motifs are 136, 512, 2080, and 4192, respectively.

We evaluated a set of random sequences in two steps.
First, the functional level of each motif (x value) was esti-
mated using a least-square procedure (Eq. 3). Second, the
cost function of each set was defined as sum square error
of the differences between the experimental and the pre-
dicted gene expression levels (Eq. 4):

where ek is the cost function of the k-th ant, zi(t) and i(t)

are the observed and the predicted gene expression vectors

in Zn(t) and n(t), respectively.

Ant algorithm
From the group of random DNA sequences, the ant algo-
rithm with NA ants was used to select the set of m tran-
scription-factor binding motifs that would minimize the
cost function. The ant algorithm in this study included
three steps such as deposition of pheromones, pherom-
one-guided selection, and evaporation of pheromones.

Deposition of pheromones – First, each ant was assigned
m random DNA sequences as potential transcription-fac-
tor binding motifs and evaluated from its cost function in
Eq. 4 [22,23]. Based on their cost performance in Eq. 4, NA
ants deposited the same amount of pheromone to each
assigned DNA sequence. At the i-th iteration, for instance,
the amount of deposition on each motif was defined:

where fj,i = amount of pheromone deposited to the j-th
potential binding motif by the i-th ant, Kj,i = all the ants
that host the j-th motif in the i-th iteration, ek = cost func-
tion of the k-th ant derived from Eq. 4, and α = power fac-
tor for error evaluation (α > 1).

Pheromone-guided selection – Based on the pheromone
concentration assigned to each of the potential transcrip-
tion-factor binding motifs, each of NA ants selected m
DNA sequences at the (i+1)-th iteration:

where pj,i+1 = probability of selecting the j-th binding
motif, ε = pheromone preference factor (ε >0), and Fj,i =
cumulative pheromone concentration of the j-th binding
motif. Note that M is the total number of potential tran-
scription-factor binding motifs, and it is 136, 512, 2080,
and 8192 for 4-, 5-, 6-, and 7-bp selections, respectively.
When ε = 0, the selection of DNA sequences would be
conducted randomly without any preference to pherom-
ones.

Evaporation of pheromones – The pheromone concentra-
tion, Fj,i, was updated at each iteration step:

Fj,i+1 = (1 - δ)Fj,i +fj,i  (7)

where δ = pheromone evaporation factor (0 ≤ δ ≤ 1).
When δ = 0, the pheromone would be preserved without
evaporation. On contrary, the previous pheromone infor-
mation was completely lost with δ = 1.

Evaluation of reproducibility and selectivity
Two key parameters in the ant algorithm were ε (pherom-
one preference factor), and δ (pheromone evaporation
factor). In order to evaluate the role of these two parame-
ters in reproducibility and selectivity of transcription-fac-
tor binding motifs, we defined reproducibility, r (0 ≤ r ≤
1), and selectivity, s (0 ≤ s ≤ 1):

r = ρ(Φ, Φ')  (8)

where ρ = correlation coefficient between two pheromone
spectra Φ and Φ', M = total number of DNA sequences in
the model, and φj = final pheromone concentration of the
j-th potential transcription-factor binding motif. With r =
1, two pheromone spectra become identical. The selectiv-
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ity parameter was defined as "1 – informational entropy,"
and with s = 1 only one binding motif received pherom-
ones with no pheromone deposition on others. Note that
the similar definition of informational entropy was first
employed to evaluate variations in expression profiles
[22].

Monte Carlo simulation and comparison to TRANSFAC 
database
The independent models using a different length of DNA
sequences as potential transcription-factor binding motifs
resulted in several common core DNA sequences. In order
to evaluate statistical significance of identifying 4-bp core
sequences, Monte Carlo simulation was conducted. First,
25 DNA sequences were randomly selected in each of the
models with 4-, 5-, 6-, or 7-bp binding motifs. Then, the
number of 4-bp common DNA sequences in the four
models was counted. This procedure was repeated for
1,000 times, and a p-value for finding a particular number
of 4-bp core sequences was evaluated. The predicted
motifs were compared with the biologically known motifs
in the TRANSFAC database using the procedure previ-
ously published [23].

Comparison between the ant algorithm and REDUCE
In order to compare capabilities of the ant algorithm with
REDUCE [11], a benchmark dataset consisting of 200 arti-
ficial genes was generated and numerical simulations
were conducted. In the dataset the promoter sequences of
1000 bp in length were randomly generated and a set of
hypothetical binding motifs (6–10 bp long) with a known
functional level were embedded arbitrarily in the pro-
moter sequences The expression levels of 200 genes were
modelled using Eq. 2, and the predicted expression levels
using the ant algorithm and REDUCE were evaluated (see
additional file 1).

Authors' contributions
Both authors (YL and HY) participated in the design of the
study, analysis of the results and writing of the manu-
script. Both authors read and approved the final manu-
script.

Additional material

Acknowledgements
The authors appreciate Hui Zhao and Andy Chen for technical support. 
This study was in part supported by NIH R01 AR50008.

References
1. Collins FS, Green ED, Guttmacher AE, Guyer MS: A vision for the

future of genomics research.  Nature 2003, 422(6934):835-847.
2. Ideker T, Galitski T, Hood L: A new approach to decoding life:

systems biology.  Annu Rev Genomics Hum Genet 2001, 2:343-372.
3. Kitano H: Standards for modeling.  Nat Biotechnol 2002,

20(4):337.
4. de Jong H: Modeling and simulation of genetic regulatory sys-

tems: a literature review.  J Comput Biol 2002, 9(1):67-103.
5. Bonabeau E, Dorigo M, Theraulaz G: Inspiration for optimization

from social insect behaviour.  Nature 2000, 406(6791):39-42.
6. Kennedy J, Eberhart R: Particle swarm optimization: Novem-

ber 1995.   1995, 4:1942-1948.
7. Robinson J, Rahmat-Samii Y: Particle swarm optimization in

electromagnetics.  IEEE Transactions on Antennas and Propagation
2004, 52(2):397-407.

8. Dorigo M, Gambardella LM: Ant colony system: a cooperative
learning approach to the traveling salesman problem.  IEEE
Transactions on Evolutionary Computation 1997, 1(1):53-66.

9. Dorigo M, Maniezzo V, Colorni A: Ant system: optimization by a
colony of cooperating agents.  IEEE Transactions on Systems, Man,
and Cybernetics - Part B: Cybernetics 1996, 26(1):167-171.

10. Stützle T, Dorigo M: A short convergence proof for a class of
ACO algorithms.  IEEE Transactions on Evolutionary Computation
2002, 6(4):358-365.

11. Bussemaker HJ, Li H, Siggia ED: Regulatory element detection
using correlation with expression.  Nat Genet 2001,
27(2):167-171.

12. Pilpel Y, Sudarsanam P, Church GM: Identifying regulatory net-
works by combinatorial analysis of promoter elements.  Nat
Genet 2001, 29(2):153-159.

13. Xu XL, Olson JM, Zhao LP: A regression-based method to iden-
tify differentially expressed genes in microarray time course
studies and its application in an inducible Huntington's dis-
ease transgenic model.  Hum Mol Genet 2002, 11(17):1977-1985.

14. Wen X, Li Y, Hu K, Dai C, Liu Y: Hepatocyte growth factor
receptor signaling mediates the anti-fibrotic action of 9-cis-
retinoic acid in glomerular mesangial cells.  Am J Pathol 2005,
167(4):947-957.

15. Liu Y, Yokota H: Modelling and idenification of transcription-
factor binding motifs in human chondrogenesis.  Systems Biol-
ogy 2004, 1(1):85-92.

16. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ: In vitro cartilage for-
mation by human adult stem cells from bone marrow
stroma defines the sequence of cellular and molecular
events during chondrogenesis.  Proc Natl Acad Sci U S A 2002,
99(7):4397-4402.

17. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt
T, Pruss M, Reuter I, Schacherer F: TRANSFAC: an integrated
system for gene expression regulation.  Nucleic Acids Res 2000,
28(1):316-319.

18. Akaike H: A new look at the statistical model identification.
IEEE Trans Automatic Control 1974, AC-19(6):716-723.

19. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov
AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS,
Pavesi G, Pesole G, Regnier M, Simonis N, Sinha S, Thijs G, van Helden
J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z: Assessing
computational tools for the discovery of transcription factor
binding sites.  Nat Biotechnol 2005, 23(1):137-144.

20. Davuluri RV, Grosse I, Zhang MQ: Computational identification
of promoters and first exons in the human genome.  Nat Genet
2001, 29(4):412-417.

21. Mach V: PRESTA: associating promoter sequences with infor-
mation on gene expression.  Genome Biol 2002,
3(9):research0050.

22. Qian L, Liu Y, Sun HB, Yokota H: Systems analysis of matrix met-
alloproteinase mRNA expression in skeletal tissues.  Front Bio-
sci 2002, 7:a126-34.

23. Sun HB, Liu Y, Qian L, Yokota H: Model-based analysis of matrix
metalloproteinase expression under mechanical shear.  Ann
Biomed Eng 2003, 31(2):171-180.

Additional File 1
• Part I – Comparison between the ant algorithm and REDUCE. • Part 
II – List of genes included in the model. • Part III – Regulatory DNA 
sequences (1000 bp upstream of the transcription starting site) used in the 
model.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-7-221-S1.doc]
Page 10 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2164-7-221-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12695777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12695777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11923830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11911796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11911796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10894532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10894532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11175784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11175784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11547334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11547334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12165559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12165559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12165559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16192631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16192631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16192631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11917104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11917104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11917104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11726928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12627825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12627825

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Pheromone spectrum
	Reproducibility and selectivity
	Motif length analysis
	Biological relevance

	Discussion
	Conclusion
	Methods
	Biological model system
	Model-based analysis
	Ant algorithm
	Evaluation of reproducibility and selectivity
	Monte Carlo simulation and comparison to TRANSFAC database
	Comparison between the ant algorithm and REDUCE

	Authors' contributions
	Additional material
	Acknowledgements
	References

