
RESEARCH ARTICLE

Modeling sensory-motor decisions in

natural behavior

Ruohan ZhangID
1*, Shun Zhang2, Matthew H. Tong3, Yuchen Cui1,

Constantin A. Rothkopf4, Dana H. Ballard1, Mary M. Hayhoe3

1 Department of Computer Science, The University of Texas at Austin, Austin, TX, USA, 2 Computer Science

and Engineering, University of Michigan, Ann Arbor, MI, USA, 3 Center for Perceptual Systems, The

University of Texas at Austin, Austin, TX, USA, 4 Cognitive Science Center and Institute of Psychology,

Technical University Darmstadt, Darmstadt, Germany

* zharu@utexas.edu

Abstract

Although a standard reinforcement learning model can capture many aspects of reward-

seeking behaviors, it may not be practical for modeling human natural behaviors because of

the richness of dynamic environments and limitations in cognitive resources. We propose a

modular reinforcement learning model that addresses these factors. Based on this model, a

modular inverse reinforcement learning algorithm is developed to estimate both the rewards

and discount factors from human behavioral data, which allows predictions of human navi-

gation behaviors in virtual reality with high accuracy across different subjects and with differ-

ent tasks. Complex human navigation trajectories in novel environments can be reproduced

by an artificial agent that is based on the modular model. This model provides a strategy for

estimating the subjective value of actions and how they influence sensory-motor decisions

in natural behavior.

Author summary

It is generally agreed that human actions can be formalized within the framework of statis-

tical decision theory, which specifies a cost function for actions choices, and that the

intrinsic value of actions is controlled by the brain’s dopaminergic reward machinery.

Given behavioral data, the underlying subjective reward value for an action can be esti-

mated through a machine learning technique called inverse reinforcement learning.

Hence it is an attractive method for studying human reward-seeking behaviors. Standard

reinforcement learning methods were developed for artificial intelligence agents, and

incur too much computation to be a viable model for real-time human decision making.

We propose an approach called modular reinforcement learning that decomposes a com-

plex task into independent decision modules. This model includes a frequently overlooked

variable called the discount factor, which controls the degree of impulsiveness in seeking

future reward. We develop an algorithm called modular inverse reinforcement learning

that estimates both the reward and the discount factor. We show that modular reinforce-

ment learning may be a useful model for natural navigation behaviors. The estimated
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rewards and discount factors explain human walking direction decisions in a virtual-

reality environment, and can be used to train an artificial agent that can accurately repro-

duce human navigation trajectories.

Introduction

Modeling and predicting visually guided behavior in humans is challenging. In various con-

texts, it is unclear what information is being acquired and how it is being used to control

behaviors. Empirical investigation of natural behavior has been limited, largely because it

requires immersion in natural environments and monitoring of ongoing behavior. However,

recent technical developments have allowed more extensive investigation of visually guided

behavior in natural contexts [1]. At the empirical level it appears that complex behaviors can

be broken down into a set of subgoals, each of which requires specific visual information

[2–4]. In a complex task such as crossing a road, a person must simultaneously determine the

direction of heading, avoid tripping over the curb, locate other pedestrians or vehicles, and

plan for future trajectory. Each of these particular goals requires some visual evaluation of the

state of the world in order to make an appropriate action choice in the moment. A fundamen-

tal problem for understanding natural behavior is thus to be able to predict which subgoals are

currently being considered, and how these sequences of visuomotor decisions unfold in time.

A theoretical basis for modeling such behavioral sequences is reinforcement learning (RL).

Since the breakthrough work by [5], a rapidly increasing number of studies have used a formal

reinforcement learning framework to model reward-seeking behaviors. Numerous studies

have linked sensory-motor decisions to the underlying dopaminergic reward machinery [1, 6].

The basic mechanisms of reinforcement learning, such as reward estimation, temporal-differ-

ence error, model-free and model-based learning, and discount factor, have been linked to a

broad range of brain regions [7–16]. Because studies of the neural circuitry involve very

restrictive behavioral paradigms, it is not known how these effects play out in the context of

natural visually guided behavior. Similarly, the application of RL models to human behavior

has been restricted almost exclusively to simple laboratory paradigms, and there are few formal

attempts to model natural behaviors [17]. The goal of the presented work is to predict action

choices in a virtual walking setting by estimating the subjective value of some of the sub-tasks

that the sensory-motor system must perform in this context. We show that it is possible to esti-

mate the subjective reward values of behaviors such as obstacle avoidance and path following,

and accurately predict the trajectories walkers take through the environment. This demonstra-

tion suggests a potential analytical tool for the exploration of natural behavioral sequences.

Modular reinforcement learning for modeling natural behaviors

The primary focus of reinforcement learning has been on forward models that, given reward

signals, can learn to produce policies, which specify action choices when immersed in an envi-

ronment state. A state refers to information about the environment that is needed for decision

making. An important breakthrough of RL in behavior modeling is inverse reinforcement

learning (IRL), which aims to estimate the underlying subjective reward of decision makers

given behavioral data [18]. IRL is an appealing tool for modeling human behavior: A behav-

ioral model can be quantitatively evaluated by comparing human behaviors with reproduced

behaviors by an artificial agent trained using the RL model with the estimated reward

function.

Modeling sensory-motor decisions
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An important factor that makes standard RL difficult in modeling natural behaviors is its

sophistication and resulting computational burden as a model for general reward-seeking

behaviors. The natural environment has at least two features that could make RL/IRL algo-

rithms computationally intractable. First, a large number of task-relevant objects may be pres-

ent, hence the decision state space is likely to be high-dimensional. Standard RL suffers from

the curse of dimensionality with high-dimensional state space, where the computational burden

grows exponentially with the number of state variables [5, 19]. Second, the natural environ-

ment is ever-changing such that humans must make decisions under different situations

although these situations might have similar components. Living in a natural environment

requires a decision maker to be able to transfer knowledge learned from previous experience

to a new situation. In contrast an RL agent is often trained and tested repeatedly in a fixed

environment. The optimal behavior is obtained through either a model-based dynamic pro-

gramming approach that requires full knowledge of the environment, or a model-free learning

approach that requires a large amount of experience. Both approaches generally put a heavy

burden on memory storage or computation in order to calculate the optimal behavior. Conse-

quently both of them may not be suitable for the real-time decision-making strategy in natural

conditions since decision makers encounter new environment all the time and need to make

decisions with reasonable cognitive load. For these reasons, standard RL must be extended to

make computation tractable.

An extension of standard RL named modular reinforcement learning utilizes divide-and-

conquer as an approximation strategy [19–21]. The modular RL takes the statistical structure

present in the environment, decomposes a task into modules where each module solves a sub-

goal of the original task. Generally an arbitrator is required to synthesize module policies and

make final decisions. Modularization alleviates the problem of curse of dimensionality since

each module only concerns a subset of state variables. Introducing a new state variable may

not affect the entire state space and cause its size to grow exponentially. Additionally, the

decomposition naturally allows the decision maker to learn a behavior specifically for a mod-

ule and reuse it later in a new environment. Under the modular RL framework, a more sam-

ple-efficient IRL algorithm is possible [19], which matters for modeling natural human

behaviors since such behavioral data is often expensive to collect.

Recent studies have explored the plausibility of a modular architecture for natural visually

guided behavior where complex tasks can be broken down into concurrent execution of mod-

ules, or microbehaviors [4, 9, 22, 23]. Thus in the example of walking across the street, each

particular behavioral subgoal such as avoiding obstacles can be treated as an independent

module. This leads to a view of the human brain as the centralized arbitrator that divides and

coordinates these modules in a hierarchical manner. The current investigation explores the

modular architecture in more detail.

Estimating the discount factor

A frequently overlooked variable in RL is the discount factor that determines how much a

decision-maker weighs future reward compared to immediate reward. In the agent-environ-

ment interaction paradigm, a standard RL model typically treats the discount factor as a part

of the environment and as fixed. The alternative approach is to view the discount factor as a

subjective decision-making variable that is part of the agent and may vary. Behavioral neuro-

science studies suggest that the magnitude of the discount factor is correlated with serotonin

level in human subjects [24]. As a consequence decision-makers may exhibit between-subject

variations [25]. At the same time, between-task variation may also exist, i.e., the same decision

maker may use different discount factors for various tasks. An fMRI study by [16] suggests
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that different cortico-basal ganglia loops are responsible for reward prediction at different

time scales, allowing multiple discount factors to be implemented. Hence it is necessary to

extend the standard RL model to adapt discount factors to different human subjects and tasks.

A modular approach is ideal for this modeling effort. Allowing different modules to have their

own discount factors makes the model flexible in modeling potential variations in human

data.

Spatial navigation has been used as a canonical benchmark task for standard RL/IRL algo-

rithms in machine learning, and therefore is selected as the experimental domain for testing

our model. The task is an ideal testbed for modular RL since it is convenient for introducing

multiple (sub-)tasks. In following sections of this paper, computer simulations are conducted

first to validate the correctness of the proposed algorithm and to compare with existing meth-

ods. We then use human behavioral data previously collected in an immersive virtual environ-

ment [4] to show that the proposed sparse modular IRL algorithm allows prediction of human

walking trajectories by estimating the subjective reward values and discount factors of different

modules. By demonstrating the ability to model naturalistic human sensory-motor behavior

we lay the ground work for future analysis of similar behaviors.

Methods

We introduce the experimental designs and computational models first since they are neces-

sary to understand the results.

Experiments

Virtual reality (VR) and motion tracking were employed to create a naturalistic environment

with a rich stimulus array, while maintaining experimental control. Fig 1 shows the basic

setup. The subject wore a binocular head-mounted display (the nVisor SX111 by NVIS) that

showed a virtual room (8.5 × 7.3 meters). The subject’s eye, head, and body motion were

tracked while walking through the virtual room. Subjects were recruited from a subject pool of

Fig 1. The virtual-reality human navigation experiment with motion tracking. (A) A human subject wears a head mounted

display (HMD) and trackers for eyes, head, and body. (B) The virtual environment as seen through the HMD. The red cubes are

obstacles and the blue spheres are targets. There is also a gray path on the ground leading to a goal (the green disk). At the green disk

the subject is ‘transported’ to a new ‘level’ in a virtual elevator for another trial with a different arrangement of objects.

https://doi.org/10.1371/journal.pcbi.1006518.g001
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undergraduates at the University of Texas at Austin, and were naive to the nature of the experi-

ment. The human subject research is approved by the University of Texas at Austin Institu-

tional Review Board with approval number 2006-06-0085 [4].

Although we do not know the set of normal subtasks involved in walking through a room

like this, three plausible candidates might be following a path across the room, avoiding obsta-

cles, and perhaps heading towards target objects. To capture some of this natural behavior we

asked subjects to collect the targets (blue spheres) by intercepting them, follow the path (the

gray line), and/or avoid the obstacles (red cubes). Objects disappeared after collision. This type

of state transition function encourages subjects to navigate through the virtual room instead of

sticking at a single target.

The global task has at least three modules: following the path, collecting targets, and avoiding

obstacles. We gave subjects four types of instructions that attempt to manipulate their reward

functions (and potentially the discount factors), resulting in four experimental task conditions:

1. Task 1: Follow the path only

2. Task 2: Follow the path and avoid the obstacles

3. Task 3: Follow the path and collect the targets

4. Task 4: Follow, avoid, and collect together

There were no monetary rewards in the task. Since following paths, avoiding obstacles, and

heading towards targets are frequent natural behaviors, we assume that subjects have some

learned, and perhaps context-specific subjective values associated with the three task compo-

nents, and our goal was to modulate these intrinsic values using the instructions. The instruc-

tions were to walk normally, but to give some priority to the particular task components in the

different conditions. To encourage such prioritization, Subjects received auditory feedback

when colliding with obstacles or targets. When objects were task-relevant, this feedback was

positive (a fanfare) or negative (a buzzer), while collisions to task-irrelevant objects resulted in

a neutral sound (a soft bubble pop) [4]. The color of the targets and obstacles was counterbal-

anced in another version of the experiment and was found not to affect task performance or

the distribution of eye fixations so the control was not repeated in the present experiment [26].

The order of the task was Task 1, 2, 3, and 4. This order was chosen so as not to influence the

single task conditions by doing the double task. Thus it is possible there are some order effects.

In another experiment in the environment the order of the conditions was counterbalanced

and no obvious order effects were observed [26].

We analyze data collected from 25 human subjects. A single experimental trial consisted of

a subject traversing the room, with the trial ending when the goal at the end of the path is

reached. Objects’ positions and the path’s shape differed on every trial. Each subject performed

four trials for each task condition.

Data availability. This general paradigm of navigation with targets and obstacles has been

used to evaluate modular RL and IRL algorithms [2, 19] and to study human navigation and

gaze behaviors [4, 27]. The data that support the findings of this study are made public and

available at [28].

Modular reinforcement learning

Reinforcement learning basics. A standard reinforcement learning model is formalized

as a Markov decision process (MDP). The MDP models the interaction between the environ-

ment and a decision maker which will be referred as an agent. Formally, an MDP is defined as

a tuple hS;A;P;R; gi [5], where:

Modeling sensory-motor decisions
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• S is a finite set of environment states. Let st denote the agent’s state at discrete time step t.
The state encodes relevant information for an agent’s decision.

• A is a finite set of available actions. Let at be the action agent chooses to take at time t. The

agent interacts with the environment by taking an action in its observed state.

• P is the state transition function which specifies the probability P(s0|s, a), i.e., the probability

of entering state s0 when agent takes action a in state s. The state transition function describes

the dynamics of the environment that are influenced by an agent’s action.

• R is a reward function. rt denotes the scalar reward agent received at time step t.

• γ 2 [0,1) is a discount factor. The agent values future rewards less than an immediate reward,

therefore future rewards are discounted by parameter γ atevery discrete time step. γ = 0 indi-

cates that the agent is myopic and only seeks to maximize the immediate reward.

• p : S 7!A is called a policy of the agent, which specifies the probability of chosen each action

in each state.

In machine learning, the purpose of a reinforcement learning algorithm is to find an opti-

mal policy π� that maximizes the longterm cumulative reward. Many RL algorithms are based

on value function estimation. The action-value function (also called Q-value function) esti-

mates the expected longterm reward for taking an action in a given state, and follow policy π
afterwards. Formally, the Q-value function conditioned on policy π is defined as [5]:

Qpðs; aÞ ¼ Ep
X1

k¼0

gkrtþkþ1jst ¼ s; at ¼ a

)(

ð1Þ

Given the Q-value function it is convenient for an agent to select the action that maximizes

expected future returns.

Modular reinforcement learning. The divide-and-conquer approximation of RL leads to

modular reinforcement learning, in which a module is a subtask of the original task. Each

module is hence a simpler problem, so that its value function and policy can be learned or cal-

culated efficiently. A module is also modeled by an MDP hSðnÞ;A;PðnÞ;RðnÞ
; gðnÞi, where n is

the index of the nth module. Note that each module has its own state space, transition func-

tion, reward function, and discount factor, but the action space is shared between modules

because all modules reside in a single agent.

Let N be the number of modules and QðnÞpðnÞ denote module Q-value function of the nth

module conditioned on module policy π(n). For simplicity, we will drop π(n) and write Q(n). Let

Q without superscription denote the global Q function (also drop global policy π). Modular RL

sums module Q functions to obtain the global Q function [21, 29]:

Qðs; aÞ ¼
XN

n¼1

QðnÞðsðnÞ; aÞ ð2Þ

There can be multiple module objects of a module, e.g., several identical obstacles nearby to

avoid. The number of objects of each module is denoted as M(1), . . ., M(N). Note that for a

given module, its module objects share the same Q(n) since their module MDPs are identical.

But at a given time they could be in different states relative to the agent’s reference frame

which can be denoted as s(n,m) for module n object m. To generalize the above equation:

Qðs; aÞ ¼
XN

n¼1

XMðnÞ

m¼1

QðnÞðsðn;mÞ; aÞ ð3Þ

Modeling sensory-motor decisions
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This assumes independent transition functions between module objects [19]. A module

action-value function Q(n) may be calculated from solving Bellman equations using dynamic

programming or through standard learning algorithms with enough experience data, which

we argue to be infeasible for human performing natural tasks. Q(n) needs to be calculated effi-

ciently with reasonable cognitive load.

In our experiments, both the state transition function and reward function are determin-

istic hence the expectation in Eq (1) can be dropped. Since each module Q function only con-

siders a single source of reward from a single module object, and assuming a policy that leads

the agent directly to the module object, Q(n)(s(n,m), a) takes the following simple form:

QðnÞðsðn;mÞ; aÞ ¼ rðnÞðgðnÞÞdðs
ðn;mÞ ;aÞ

ð4Þ

where r(n) is the reward for the nth module, γ(n) is its discount factor, and d(s(n, m), a) is the spa-

tial or temporal distance between the agent and the module object m after taking action a at

state s(n, m). Note Eq (4) converts value function back to its simplest form in [15]. This simple

form allows a decision maker to calculate the action-value for a state efficiently when needed

instead of beforehand. This matters when humans need to make decisions fast and when it is

computationally expensive to calculate value functions using a standard RL algorithm. It is

also unlikely for a human to pre-compute the values for all future states and use dynamic pro-

gramming to obtain a global policy when they visit the environment for the first time. Doing

so would at least require a human to store Q-values for relevant states (a Q-table) in its mem-

ory system, which is convenient for an artificial agent but would be difficult for a real-time

human decision maker.

Why does modular RL alleviate the problem of curse of dimensionality? Consider the joint

state space of a standard RL which can be represented as the Cartesian product of the module

state spaces: S ¼ Sð1Þ � Sð2Þ � . . .. The computation cost for one iteration in value iteration

(a popular RL algorithm) is OðjSj2jAjÞ where |�| denotes the cardinality of a set [30]. When a

new module SðNÞ is added, the cost of standard RL becomes OðjSð1Þ � Sð2Þ � � � � � SðNÞj2jAjÞ,
while the cost of modular RL becomes OðjSð1Þj2jAjÞ þ OðjSð2Þj2jAjÞ þ � � � þ OðjSðNÞj2jAjÞ.
Therefore the computational cost increases additively in modular RL instead of multiplicatively.

Visualizing modular reinforcement learning. Eq (4) bridges modular RL with an impor-

tant planning method called artificial potential field [31–33]. Similar to a potential field, we

use a value surface to visualize the value function. Each module objects is associated with a

value surface. The module reward controls the maximum absolute height of the surface, and

the discount factor controls temporal or spatial discounting rates. Module value surfaces can

be composed directly by summation or integration to produce a multi-module value surface.

The concept of value surfaces and their combination is illustrated in Fig 2. Given a composed

value surface as in Fig 2F, a modular RL agent would choose actions that lead to a local minima

on the surface. A sequence of actions could construct a trajectory in Fig 3A which traverses

through a sequence of local minima.

Modular inverse reinforcement learning

While reinforcement learning aims at finding the optimal policy given a reward function,

inverse reinforcement learning (IRL) attempts to infer the unknown reward function given the

agent behavioral data in the form of state-action pairs (st, at) [18, 34–36]. Our work is largely

based on the modular IRL algorithm by [19] which pioneered the first modular IRL algorithm.

Given the modular RL formulation in the previous section, the goal of modular IRL is to esti-

mate the underlying reward and discount factor for each module to recover the value function,

Modeling sensory-motor decisions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006518 October 25, 2018 7 / 22

https://doi.org/10.1371/journal.pcbi.1006518


Fig 2. The concept of modular reinforcement learning illustrated using value surfaces. (A) The value surface is flat

without any reward signal. (B) A module object with positive reward has positive weight, and one with negative reward

has negative weight. They bend the value surface to have negative and positive curvatures respectively. Therefore, an

agent desires to follow the steepest descent to minimize energy, or equivalently, to maximize reward. (C) An object

with larger weight bends the surface more. (D) An object with greater discount factor γ has larger influence over

distance. (E,F) Composing different objects with different rewards and γs results complicated value surfaces that can

model an agent’s value function over the entire state space.

https://doi.org/10.1371/journal.pcbi.1006518.g002

Fig 3. Maximum likelihood modular inverse reinforcement learning. (A) From an observed trajectory (a sequence of

state-action pairs), the goal of modular IRL is to recover the underlying value surface. (B) Maximum likelihood IRL

assumes that the probability of observing a particular action (red) in a state is proportional to its Q-value among all

possible actions as in Eq (5).

https://doi.org/10.1371/journal.pcbi.1006518.g003
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given a sequence of observed state-action pairs, i.e., a trajectory that traverses through the state

space, as shown in Fig 3A.

We follow the Bayesian formulation of IRL [36, 37], Maximum Likelihood IRL [38], and

improve the modular IRL algorithm in [19]. These approaches assume that the higher the Q-

value for an action at in state st, the more likely action at is observed in behavioral data. Let η
denote the confidence level in optimality (the extent to which an agent selects actions greedily,

default to be 1), and let exp(�) denote the exponential function. The likelihood of observing a

certain state-action pair is modeled by the softmax function with Gibbs (Boltzmann) distribu-

tion, as illustrated in Fig 3B:

Pðatjst;Q; ZÞ ¼
expðZQðst; atÞÞP
a2AexpðZQðst; aÞÞ

ð5Þ

Let T denote the total length of the trajectory. The overall likelihood L for observed data D =

{(s1, a1), � � �, (sT, aT)} is the product of the likelihood of individual state-action pairs, given the

states are Markovian and action decisions are independent:

L ¼ PðDjQ; ZÞ ¼
YT

t¼1

expðZQðst; atÞÞP
a2A expðZQðst; aÞÞ

ð6Þ

Next, the global action-value function Q(st, at) is decomposed using Eq (3) with module Q

functions Q(1:N), therefore the likelihood becomes:

L ¼ PðDjQð1:NÞ; ZÞ

¼
YT

t¼1

QN
n¼1

QMðnÞt
m¼1 expðZQðnÞðs

ðn;mÞ
t ; atÞÞ

P
a2A

QN
n¼1

QMðnÞt
m¼1 expðZQðnÞðs

ðn;mÞ
t ; aÞÞ

ð7Þ

Take the log of the likelihood function:

log L ¼
XT

t¼1

 
XN

n¼1

XM
ðnÞ
t

m¼1

ZQðnÞðsðn;mÞt ; atÞ

� log
X

a2A

YN

n¼1

YM
ðnÞ
t

m¼1

expðZQðnÞðsðn;mÞt ; aÞÞ

!
ð8Þ

Substituting Eq (4) into Eq (8):

log L ¼
XT

t¼1

 
XN

n¼1

XM
ðnÞ
t

m¼1

ZrðnÞðgðnÞÞdðs
ðn;mÞ
t ;atÞ

� log
X

a2A

YN

n¼1

YM
ðnÞ
t

m¼1

expðZrðnÞðgðnÞÞdðs
ðn;mÞ
t ;aÞ
Þ

!
ð9Þ

The variables to be estimated from the data are module rewards r(1: N) and discount factors

γ(1: N). The number of modules N, the number of objects for each module Mð1Þ
t ; . . . ;MðNÞ

t , and

distances dðsðn;mÞt ; atÞ for each object are all state information and can be observed from the

environment. This formulation follows closely the work by [19], extending it to use the new

formulation of modular RL, handle multiple objects of each module, estimate the discount fac-

tors, and derive a slightly different objective function.
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Sparse modular inverse reinforcement learning. Modular IRL can only guess which

objects are actually being considered by the decision maker when chosen an action. To address

this problem, we can further add a L1 regularizer � l
PN

n¼1
jjrðnÞjj1 to Eq (9), which causes

some module rewards to become 0 so these modules would be ignored in decision making.

This is an extension of using a Laplacian prior in Bayesian IRL [36]. In addition to the benefit

from an optimization perspective, the regularization term has the following important inter-

pretation in terms of explaining natural behaviors.

A hypothetical module set is a set H ¼ f1; � � � ;Ng contains N modules that could poten-

tially be of an agent’s interest. However, due to the limitations in computational resource, the

agent can only consider a subset of H at a time, denoted H0
. In a rich environment many mod-

ules’ rewards would be effectively zero at current decision step, hence jH0
j � jHj. For

instance, a driving environment could contain hundreds of objects in H. But a driver may pay

attention to only a few. The regularization constant λ serves as a cognitive capacity factor that

helps determine H0
from the observed behaviors. Therefore the final objective function of

modular IRL is:

max
rð1:NÞ ;gð1:NÞ

XT

t¼1

 
XN

n¼1

XM
ðnÞ
t

m¼1

ZrðnÞðgðnÞÞdðs
ðn;mÞ
t ;atÞ

� log
X

a2A

YN

n¼1

YM
ðnÞ
t

m¼1

expðZrðnÞðgðnÞÞdðs
ðn;mÞ
t ;aÞ
Þ

!

� l
XN

n¼1

jjrðnÞjj1

s:t: 0 � gðnÞ < 1:

ð10Þ

Note that if we are to fit r(1:N) and γ(1:N) simultaneously, the above objective function is non-

convex. However, the objective becomes convex if only fitting r(1:N). Since γ(n) is in range

[0, 1), one can perform a grid search over values for γ(1:N) with step size � and fit r(1: N) at each

possible γ(1: N) value. This allows us to find a solution within �-precision of the true global

optimum.

An accessible evaluation of the proposed algorithms in an artificial multitask navigation

environment can be found in S1 Appendix. The environment is a 2D gridworld that resembles

the virtual room we use for the human experiments. The validity of the modular IRL is proved

empirically by showing its ability to recover true module rewards and discount factors with

high accuracy given enough behavioral data. Meanwhile it requires significantly less data sam-

ples to obtain high prediction accuracy comparing to a standard Bayesian IRL algorithm [36],

presumably because the state space is reduced significantly by modularization. Sparse modular

IRL is shown to further improve sample efficiency if task-irrelevant modules are present.

Unlike computer simulated experiments in which one can easily generate millions of behav-

ioral data, human experiments have a more expensive data collection procedure in general.

Therefore sample efficiency of sparse modular IRL is an important advantage in modeling nat-

ural human behaviors, which will be seen in the next section.

Results

Despite its computational advantages shown in simulation, the question remains whether

modular IRL can be used as a decision-making model to explain human behaviors in the

experiments. Sparse modular IRL (Eq (10)) is used as the objective function to estimate reward
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r and discount factor γ for the target, obstacle, and path modules. However the regularization

constant is found to be close to zero since there are only three modules. Recall that each subject

performs each task four times, and each time the path and the arrangement of objects are dif-

ferent. We use leave-one-out cross evaluation, where r, γ are estimated using all-but-one train-

ing trials that are from the same subject and same task condition and evaluated on the

remaining test trial. Since the parameter estimates are based on the other three trials, all of our

prediction results shown below are for a novel environment with similar components—this

requires the model to generalize across environments. The number of data samples obtained

from a single trial is typically around 100 hence sample efficiency is critical for the perfor-

mance of an algorithm.

Different r and γ are estimated for each subject under each task condition for each module,

hence there are 25 subjects × 4 conditions × 3 modules × 4 trials = 1,200 different pairs of r, γ
estimations. The state information for the model includes the distance and angle to the objects,

while the state space is discretized using grids of size 0.572 by 0.572 meters, a parameter chosen

empirically that produces the best modeling result. It also matches the approximate length of a

step in VR, so is a suitable scale for human direction decisions. Empirically, as long as the grid

size is within reasonable range of human stride length (0.3-0.9 meters) the algorithm’s perfor-

mance is fairly robust.

The path is discretized into a sequence of waypoints which are removed after being visited

(similar to the targets). The action space spans 360 degrees and is discretized to be 16 actions

using bins of 22.5 degrees. This is a suitable discretization of the action space, given the size of

the objects at the distance of 1-2 meters, where an action decision is most likely made.

Qualitative results and visualization

The most intuitive way to evaluate the modular RL model is to see whether the model can

accurately reproduce human navigation trajectories. The Q-value function of a modular RL

agent is calculated using r and γ estimated from human data. Next, the modular RL agent is

placed at the same starting position as the human subject and starts to navigate the environ-

ment until it reaches the end of the path. The agent chooses an action probabilistically based

on the Q-value of the current state, using a softmax action selection function as in Eq (5). The

reason to let the agent choose actions with a certain degree of randomness is that the Q-values

for multiple actions can be very close, e.g., turning left or turning right to avoid an obstacle,

consequently a human subject may choose either. Therefore, a single greedy trajectory may

not overlap with the actual human trajectory. The softmax action selection function generates

a distribution of hypothetical trajectories, i.e., a trajectory cloud, by running an agent many

times in the same environment. The actual human trajectory can be visualized in the context

of this distribution.

Fig 4 shows generated trajectory clouds together with actual human trajectories, along with

estimated rewards and discount factors. The agent trajectories are shown in semi-transparent

green hence darker area represents trajectories with higher likelihood, and the human trajec-

tory on that trial is shown in black. Each row of figures presents experimental trials from one

experimental condition (Task 1-4), and three trials within each row are from different subjects

but the same environment, i.e., the same arrangement of objects.

The figures demonstrate that the model’s generated trajectory clouds align well with

observed human trajectories. When a local trajectory distribution is multi-modal, e.g., in

Fig 4D, 4F, 4J, 4K, and 4L, the human trajectories align with one of the means. The next

important observation is the between-subject variation. Trials within each row are from the

same environment under the same task instruction. However, human trajectories can
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Fig 4. Bird’s-eye view of human trajectories and agent trajectory clouds across different subjects. Black lines:

human trajectories. Green lines: modular RL agent trajectory clouds generated using softmax action selection. The

green is semi-transparent hence darker area represents trajectories with higher likelihood. Yellow circles: end of the

path. Blue circles: targets. Red squares: obstacles. Gray dots: path waypoints used by the model (subjects see a

continuous path). Below each graph are the rewards and discount factors estimated from human and used by the

modular RL agent. The rewards and discount factors are shown in the order of (Target, Obstacle, Path). The module

rewards that correspond to task instructions are bold. Obstacle module has negative reward, but to compare with the

other two modules the absolute value is taken. Three trials within each row are from different subjects but the same
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sometimes exhibit drastically different choices, e.g., Fig 4E versus 4F and 4J versus 4K. These

differences are modeled by the underlying r and γ, and accurately reproduced by the distribu-

tions generated. This means that we can compactly model naturalistic, diverse human naviga-

tion behaviors using only a reward and a discount factor per module. The modeling power of

modular RL is demonstrated by the observation that varying these two variables can produce a

rich class of human-like navigation trajectories.

Between-task and between-subject differences

We then look at the way average reward estimates vary between different tasks when aggregat-

ing data from all subjects. The results are shown in Fig 5A. Overall, the estimated r values vary

in an appropriate manner with task instructions. Thus obstacles are valued higher when the

instructions prioritize this task, and targets are valued higher when that task is prioritized.

Note that the obstacle avoidance module is given some weight even when it is not explicitly

prioritized—this is consistent with the observation that subjects deviates from the path to

avoid obstacles even when obstacles are task-irrelevant. This may reflect a bias which is carried

over from natural behavior with real obstacles. The relatively high value for the path may indi-

cate that subjects see staying near the path as the primary goal.

The between-subject differences in reward are shown in S2 Appendix for all 25 subjects. At

each individual subject’s level, changing in the relative reward between the modules is also

consistent with task instructions. An one-way ANOVA test suggests that individual differences

are evident across subjects under the same task instruction (see S2 Appendix for details).

Fig 5B shows average discount factor estimates for different tasks. Although the reward evi-

dently reflects and agrees with task instructions, the interpretation of the discount factor is

more complicated. The discount factors vary across tasks for target and obstacle modules but

environment. (A,B,C) show trials from Task 1: follow the path. (D,E,F) show trials from Task 2: follow the path and

avoid obstacles. (G,H,I) show trials from Task 3: follow the path and collect targets. (J,K,L) show trials from Task 4:

follow the path, collect targets, and avoid obstacles.

https://doi.org/10.1371/journal.pcbi.1006518.g004

Fig 5. (A) Normalized average rewards across different task instructions. The error bar represents the standard error of the mean between

subjects (N = 25). The obstacle module has negative reward, but to compare with the other two modules its absolute value is taken. The

estimated reward agree with task instructions. (B) Average discount factors across different task instructions. The error bar represents the

standard error of the mean between subjects (N = 25).

https://doi.org/10.1371/journal.pcbi.1006518.g005
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are close to 1.0 and stable for the path module. This may also reflect the primacy of the task of

getting across the room, and the need to plan ahead. Although the instructions do not directly

manipulate discount factors, we will later show that estimating discount factors from data

instead of holding them fixed is important for modeling accuracy.

Stability of rewards and discount factors across tasks

An important observation from Fig 5 is that task-relevant module rewards and discount factors

are stable across task conditions. To show this quantitatively, for each subject, we combine

module rewards from Task 2 (path + obstacle) and Task 3 (path + target) to synthesize the

rewards for Task 4 (path + obstacle + target) in the following way:

rtask4 target ¼ rtask3 target ð11Þ

rtask4 obstacle ¼ rtask2 obstacle ð12Þ

rtask4 path ¼ ðrtask2 path þ rtask3 pathÞ=2 ð13Þ

Then the discount factors are synthesized in the similar way. The synthesized rewards (re-nor-

malized) and discount factors from Task 2 and 3 are found to be very close to those estimated

from Task 4, as shown in Table 1. However, task-irrelevant rewards and discount factors are

not stable. This result indicates that task-relevant module rewards and discount factors gener-

alize to a different task condition. Thus modules are independent and transferable in this par-

ticular scenario.

Quantitative results and comparisons to alternative models

Next we compare our model with several alternative hypotheses. The full modular IRL model

chooses the action greedily that maximizes the Q-value function of each state using both esti-

mated r and γ. An ablation study is conducted to demonstrate the relative importance of the

variables in the model. The binary reward agent estimates γ only, and uses a unit reward of 1

for the module that is task-relevant, e.g., in Task 2 the path and the obstacle modules would

have rewards of +1 and -1 respectively, and the target module would have a reward of 0. The

fixed γ agents estimate r only, and use fixed γ = 0.1, 0.5, 0.99. A Bayesian IRL agent without

modularization and assumes a fixed discount factor [36] is also implemented where the imple-

mentation details can be found in S3 Appendix.

We choose two performance metrics to evaluate these models. The first one is the number

of objects intercepted by the agent’s entire trajectory under different task conditions. Fig 6

shows the performance of different models ((A) targets and (B) obstacles). Overall, the modu-

lar IRL model has the closest performance to the human data across task conditions. Note that

the number of targets collected is only a little affected by the avoid instruction and obstacles

Table 1. Synthesized rewards and discount factors compared to the estimated ones. Rewards are re-normalized.

Results are presented as mean ± standard error between subjects (N = 25).

Target r Obstacle r Path r
Task 2+3 synthesized 0.177 ± 0.018 0.415 ± 0.028 0.408 ± 0.021

Task 4 0.180 ± 0.017 0.422 ± 0.029 0.398 ± 0.031

Target γ Obstacle γ Path γ

Task 2+3 synthesized 0.773 ± 0.017 0.689 ± 0.015 0.928 ± 0.006

Task 4 0.768 ± 0.009 0.679 ± 0.019 0.936 ± 0.006

https://doi.org/10.1371/journal.pcbi.1006518.t001
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avoided do not change very much with the target instruction, supporting the previous claim

that the modules in this experiment are independent hence task-relevant module values are

stable. Bayesian IRL and fixed γ = 0.99 models perform poorly—the number of objects hit

does not vary accordingly with task instructions. The binary reward model, γ = 0.1, 0.5 reflect

task instructions correctly but are less accurate than the full modular IRL model.

The second quantitative evaluation metric would be the angular difference, i.e., policy

agreement, which is obtained by placing an agent in the same state as a human and measuring

the angular difference between the agent’s action and the human subject’s action. This metric

differs from the previous one because it emphasizes more on the accuracy of local decisions

instead of the whole trajectory. Thus this angular difference is a local metric instead of a holis-

tic one. The comparison results are shown in Table 2. All modular RL agents are more accurate

in predicting human actions comparing to the traditional Bayesian IRL algorithm. Again the

full modular IRL model results in higher accuracy comparing to the alternative models. The

binary reward model has comparable performance and is in general better than the models

that have the discount factor fixed. This supports our claim that module-specific discount fac-

tor plays an important role in modeling human behaviors and should be estimated from data.

To summarize, we are able to predict human novel trajectories in different environments

on the basis of rewards and discount factors estimated from behavioral data. Since we do not

know the actual set of visual operations involved in walking through a cluttered room like this,

Fig 6. Average number of targets collected/obstacles hit when different models perform the navigation task across all trials. There are

12 targets/obstacles each in the virtual room. Error bars indicate standard error of the mean (N = 100).

https://doi.org/10.1371/journal.pcbi.1006518.g006

Table 2. Evaluation of the modular agent’s performance compared with baseline agents, measured by the average angular difference (in degrees) compared to actual

human decisions. The results are presented as mean ± standard error (N = 100). The agent that uses the full model outperforms all other models.

Task 1 Task 2 Task 3 Task 4

Bayesian IRL 53.87±2.54 53.37 ± 2.71 59.86 ± 2.00 51.09 ± 2.60

Fixed γ = 0.1 31.74±0.88 39.43±1.18 36.16±0.75 41.40±0.88

Fixed γ = 0.5 21.46±0.46 36.04±1.16 34.20±0.78 39.14±0.92

Fixed γ = 0.99 18.19±0.32 27.63±1.41 28.61±0.93 31.63±1.08

Binary Reward 17.66±0.38 27.66±1.44 29.97±0.72 29.80±0.95

MIRL (Full Model) 17.94±0.33 27.39±1.46 26.98±0.80 27.65±1.02

https://doi.org/10.1371/journal.pcbi.1006518.t002
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the fact that we can reproduce the trajectories suggests that the three chosen modules can

account for a substantial fraction of the behavior while vision may be used for other tasks. In

fact, close to half the fixations made by the subject are on regions of the environment other

than the path or objects [4]. This suggests that there may be other visual computations going

on but that they do not have much influence on the behavior. Thus the modular RL agents

generate reasonable hypotheses about underlying human decision-making mechanism.

These results provides a strong support for using modular RL as the model for explaining

such multitask navigation behaviors, and modular IRL as a sample efficient algorithm to esti-

mate rewards and discount factors. Bayesian IRL has to deal with a complex high-dimensional

state space and settle for its approximations for a dynamic multi-task problem with limited

data, while modular RL can easily reduce the dimensionality of the state-space by factoring out

sub-tasks. Therefore the algorithm significantly outperforms the previous standard IRL

method in terms of the accuracy in reproducing human behaviors.

Related work in reinforcement learning

The proposed modular IRL algorithm is an extension and refinement of [19] which introduced

the first modular IRL and demonstrated its effectiveness using an simulated avatar. The navi-

gation tasks are similar but we use data from actual human subjects. While they use a simu-

lated human avatar and moving from the straight path, our curved path proves quite different

in practice, as well, being significantly more challenging for both humans and virtual agents.

We then generalize the state space to let the agent consider multiple objects for each module,

while the original work assumes the agent considers one nearest object of each module.

Bayesian IRL was first introduced by [36] as a principled way of approaching an ill-posed

reward learning problem. Existing works using Bayesian IRL usually experiment in discretized

gridworlds with no more than 1000 states with an exception being the work of [39] which was

able to test on a goal-oriented MDP with 20,518 states using hierarchical Bayesian IRL.

The modular RL architecture proposed in this work is most similar to a recent work in [40],

in which they decompose the reward function in the same way as the modular reinforcement

learning. Their focus is not on modeling human behavior, but rather on using deep reinforce-

ment learning to learn a separate value function for each subtask and combining them to

obtain a good policy. Other examples of divide-and-conquer approach in RL include factored

MDP [41] and co-articulation [42].

Hierarchical RL [43, 44] utilizes the idea of temporal abstraction to allow more efficient

computation of the policy. [45] analyzes human decision data in spatial navigation tasks and

the Tower of Hanoi; they suggest that human subjects learn to decompose tasks and construct

action hierarchy in an optimal way. In contrast with that approach, modular RL assumes par-
allel decomposition of the task. The difference can be visualized in Fig 7. These two approaches

are complementary, and are both important for understanding and reproducing natural

behaviors. For example, a hierarchical RL agent could have multiple concurrent options
[43, 44] executing at a given time for different behavioral objectives. Another possibility is to

extend the modular RL to a two-level hierarchical system. Learned module policies are stored

and a higher-level scheduler or arbitrator decides which modules to activate or deactivate

given the current context and the protocol to synthesize module policies. An example of this

type of architecture can be found in [2].

Discussion

This paper formalizes a modular reinforcement learning model for natural multitask behav-

iors. Modular RL is more suitable for modeling human behaviors in natural tasks while
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standard RL serves as a general model for reward-seeking behaviors. The two important vari-

ables in modular RL are module-specific reward and discount factor, which can be jointly esti-

mated from behavioral data using the proposed modular IRL algorithm. A computer

simulation demonstrated the validity and sample efficiency of the modular IRL. In a virtual-

reality human navigation experiment, we showed multitask human navigation behaviors,

across subjects and under different instructions, can be modeled and reproduced using modu-

lar RL.

Modular RL/IRL makes it possible to estimate the subjective value of particular human

behavioral goals. Over the last 15 years it has become clear that the brain’s internal reward cir-

cuitry can provide a mechanism for the role of tasks on both gaze behavior and action choices.

It is thought that the ventromedial prefrontal cortex and basal ganglia circuits encode the sub-

jective values driving behavior [46–48]. The present work shows that it is possible to get a real-

istic estimate of the subjective value of goals in naturalistic behavior, and these values might

reflect the underlying reward machinery. Many of the reward effects observed for neurons

have very simple choice response paradigms. Thus it is important to attempt to link the pri-

mary rewards used in experimental paradigms and the secondary rewards that operate in natu-

ral behavior. Previous human experiments have typically used simple behaviors with money or

points as rewards. In our experiment we used instructions to bias particular aspects of basic

natural behavior with no explicit rewards.

The results provide support for a modular cognitive architecture when modeling natural

visually guided behaviors. Modularization reduces the size of state space and alleviates the

curse of dimensionality. Consequently modular IRL is more sample efficient than the standard

Bayesian IRL. In addition, modular RL estimates a discount factor for every module hence it is

more flexible and powerful than a standard RL model in which the discount factor is unitary

and fixed. The modeling result suggests having such flexibility is indeed helpful. It may also

explain why basal ganglia has the mechanism to implement multiple discount factors [16].

The decomposition of global task also allows humans to reuse a learned module later in a

new environment. This claim is supported by the observation that task-relevant module

rewards and discount factors are stable and generalize to a different task condition. When

immersed in a new environment, the simple form of Eq (4) allows value function to be com-

puted with reasonable cognitive load. It is possible that subjects learn stable values for the costs

of particular actions like walking and obstacle avoidance and these subjective values factor into

momentary action decisions [1]. For example, humans direct gaze to nearby pedestrians in a

simple uninstructed walking context with a probability close to 0.5, with small variability

between subjects [49] and a similar gaze distribution was found in a virtual environment [50].

These values may change in more complex contexts, as in the decoy effect for example [51].

Fig 7. Modular reinforcement learning (left) vs. hierarchical reinforcement learning (right). Modular RL assumes

modules run concurrently and do not extend over multiple time steps. Hierarchical RL assumes that a single option

may extend over multiple time steps.

https://doi.org/10.1371/journal.pcbi.1006518.g007
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The present work provides a way of testing the circumstances in which such subjective values

might change.

Modular RL allows intuitive interpretation for multitask behaviors, where relative impor-

tance and reward discounting rates can be compared between modules directly. We expect

this modular approach of RL can be applied to and can explain many natural tasks. [52] has

shown that a wide range of human behaviors can be modeled as consisting of microbehaviors,

so many behaviors are a mixture of simple modules and could potentially be modeled in this

way.

A question remains of how these modules are formed originally. The intuition for a modu-

larized strategy comes from two conjectures: learning is incremental and attentional resource

is limited. From a developmental perspective, a complicated natural task is often divided in to

subtasks when learning happens, e.g., curriculum learning [53], hence a real-time decision-

making rule is likely to be a combination of pre-learned subroutines. A subtask is attended

when needed to save computational resource.

Limitations of the model and future work

Although modular RL/IRL is able to produce trajectories that are similar to human behavior,

the match was imperfect as demonstrated by the angular difference. One difficulty with model-

ing human behavior is that we defined the state space and a set of modules by hand without

knowing the actual state representation or task decomposition that the human uses. This may

account for the discrepancy between the human and agent policies. Ideally, we could learn

state representation from data, but this involves the challenging task of combining representa-

tion learning and IRL. The work in [54] provides a potential method for inferencing goals and

states for the modules. Recent development in deep reinforcement learning [55] may possibly

lead to a data-driven approach to IRL that can learn state representation from data.

An important assumption about the centralized arbitrator of the modules needs to be exam-

ined more carefully in the future: In our model, an agent forms global Q-values by summing

up module Q-values [21, 29]. There has been work examining more sophisticated mechanisms

for global decision making [56, 57]. For example, one could schedule modules according to an

attention mechanism [56, 58]. Whether these mechanisms can better explain human behaviors

remains an open question that should be explored.

An important consequence of being able to get a quantitatively estimated subjective reward

and discount factor of a module is that it is possible to test whether these values are stable

across contexts. For example, the value of avoiding an obstacle should be stable across moder-

ate variations in the environment such as the changes in obstacle density or changes in the

visual appearance of the environment. If this is true, then it is possible to make predictions

about behavior in other contexts using learned modules. And it would also be possible to use

the prediction error to indicate that other factors need to be considered.

Estimates of the value of the underlying behaviors will also allow prediction of the gaze pat-

terns subjects make in the environment. It has been suggested that gaze patterns reflect both

the subjective value of a target and uncertainty about task-relevant state [2, 4, 59, 60]. For

example, gaze should be frequently deployed to look at pedestrians in a crowded environment

since it is important to avoid collisions and there is high uncertainty about their location. Also

gaze is deployed very differently depending on the terrain and the need to locate stable foot-

holds, reflecting the increased uncertainty of rocky terrain [61]. Estimates of the subjective

value might thus allow inferences about uncertainty as well.

In conclusion, we have demonstrated that modular reinforcement learning can plausibly

account for sequences of sensory-motor decisions in a natural context, and it is possible to
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estimate the internal reward value of behavioral components such as path following, target col-

lection, and obstacle avoidance. The estimated reward values and discount factors enabled us

to predict long walking trajectories in a novel environment. This framework provides a poten-

tially useful tool for exploring the task structure of natural behavior, and investigating how

momentary decisions are modulated by internal rewards and discount factors.
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