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Abstract 13 

Somatic structural variations (SVs) in cancer can shuffle DNA content in the genome, relocate 14 

regulatory elements, and alter genome organization. Enhancer hijacking occurs when SVs 15 

relocate distal enhancers to activate proto-oncogenes. However, most enhancer hijacking studies 16 

have only focused on protein-coding genes. Here, we develop a computational algorithm 17 

“HYENA” to identify candidate oncogenes (both protein-coding and non-coding) activated by 18 

enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA 19 

detects genes whose elevated expression is associated with somatic SVs by using a rank-based 20 

regression model. We systematically analyze 1,148 tumors across 25 types of adult tumors and 21 

identify a total of 192 candidate oncogenes including many non-coding genes. A long non-22 

coding RNA TOB1-AS1 is activated by various types of SVs in 10% of pancreatic cancers 23 

through altered 3-dimension genome structure. We find that high expression of TOB1-AS1 can 24 

promote cell invasion and metastasis. Our study highlights the contribution of genetic alterations 25 

in non-coding regions to tumorigenesis and tumor progression. 26 
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Introduction 28 

At mega-base-pair scale, linear DNA is organized into topologically associating domains (TADs) 29 

1, and gene expression is regulated by DNA and protein interactions governed by 3D genome 30 

organization. Enhancer-promoter interactions are mostly confined within TADs 2–4. Non-coding 31 

somatic single nucleotide variants (SNVs) in promoters and enhancers have been linked to 32 

transcriptional changes in nearby genes and tumorigenesis 5. Structural variations (SVs), 33 

including deletions, duplications, inversions, and translocations, can dramatically change TAD 34 

organization and gene regulation 6 and subsequently contribute to tumorigenesis. Previously, we 35 

discovered that TERT is frequently activated in chromophobe renal cell carcinoma by relocation 36 

of distal enhancers 7, a mechanism referred to as enhancer hijacking (Fig. 1a). In fact, many 37 

oncogenes, such as BCL2 8, MYC 9, TAL1 10, MECOM/EVI1 11, GFI1 12, IGF2 13, PRDM6 14, and 38 

CHD4 15, can be activated through this mechanism. These examples demonstrate that genomic 39 

architecture plays an important role in cancer pathogenesis. However, the vast majority of the 40 

known enhancer hijacking target oncogenes are protein-coding genes, and few non-coding genes 41 

have been reported to promote diseases through enhancer hijacking. Here, we refer to non-42 

coding genes as all genes that are not protein-coding. They include long non-coding RNAs 43 

(lncRNAs), pseudogenes, and other small RNAs such as microRNAs, small nuclear RNAs 44 

(snRNAs), small nucleolar RNAs (snoRNAs), etc. They are known to play important roles in 45 

many biological processes 16 and some are known to drive tumorigenesis 17,18. In this study, we 46 

will focus on identifying oncogenes, including oncogenic non-coding genes activated by 47 

enhancer hijacking. 48 

Several existing algorithms can detect enhancer hijacking target genes based on patient cohorts, 49 

such as CESAM 13 and PANGEA 15. These two algorithms implemented linear regression and 50 

elastic net model (also based on linear regression) to associate elevated gene expression with 51 

nearby SVs, respectively. PANGEA also considers the effects of somatic SNVs on gene 52 

expression. However, a major drawback of these algorithms is that linear regression is quite 53 

sensitive to outliers. Outliers are very common in gene expression data from cancer samples and 54 

can seriously impair the performances of these algorithms. In addition, CESAM is optimized for 55 

microarray data, while PANGEA depends on annotation of tissue-specific promoter-enhancer 56 

pairs, which are not readily available for many tumor types. Cis-X 19 and NeoLoopFinder 20 can 57 

detect enhancer hijacking target genes based on individual samples. However, these tools have 58 

limitations in detectable genes and input data. Cis-X detects cis-activated genes based on allele-59 

specific expression, which requires the genes to carry heterozygous SNVs. NeoLoopFinder takes 60 

Hi-C, Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET), or similar data 61 

measuring chromatin interactions as input, which remain very limited. Furthermore, 62 

identification of recurrent mutational events that result in oncogenic activation requires large 63 

patient cohorts. Therefore, tools that use whole-genome and transcriptome sequencing data, 64 

which are available at much larger sample sizes, would be more useful in identifying SV-driven 65 

oncogene activation. Finally, no non-coding oncogenes have been reported as enhancer hijacking 66 

targets by the above algorithms. A recent study on SVs altering gene expression in Pan-Cancer 67 

Analysis of Whole Genomes (PCAWG) samples 21 only considered protein-coding genes but not 68 

non-coding genes.  69 
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Here, we developed Hijacking of Enhancer Activity (HYENA) using normal-score regression 70 

and permutation test to detect candidate enhancer hijacking genes (both protein-coding and non-71 

coding genes) based on tumor whole-genome and transcriptome sequencing data from patient 72 

cohorts. Among the 192 putative oncogenes detected by HYENA, we studied the oncogenic 73 

functions of a lncRNA, TOB1-AS1, and demonstrated that it is a regulator of cancer cell invasion 74 

in vitro and tumor metastasis in vivo. 75 
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Results 77 

HYENA workflow 78 

Conceptually, the SVs leading to elevated gene expression are expression quantitative trait loci 79 

(eQTLs). The variants are SVs instead of commonly used germline single nucleotide 80 

polymorphisms (SNPs) in eQTL analysis. With somatic SVs and gene expression measured from 81 

the same tumors through whole-genome sequencing (WGS) and RNA sequencing (RNA-Seq), 82 

we can identify enhancer hijacking target genes by eQTL analysis. However, the complexities of 83 

cancer and SVs pose many challenges. For instance, there is tremendous inter-tumor 84 

heterogeneity—no two tumors are identical at the molecular level. In addition, there is 85 

substantial intra-tumor heterogeneity as tumor tissues are always mixtures of tumor, stromal, and 86 

immune cells. Moreover, genome instability is a hallmark of cancer, and gene dosages are 87 

frequently altered 22. Furthermore, gene expression networks in cancer are widely rewired 23, and 88 

outliers of gene expression are common. 89 

Here, we developed an algorithm HYENA to overcome the challenges described above (see 90 

more details in Methods Section). We used a gene-centric approach to search for elevated 91 

expression of genes correlated with the presence of SVs within 500 kb of transcription start sites 92 

(Fig. 1b). Although promoter-enhancer interaction may occur as far as several mega-bases, 93 

mega-base-level long-range interactions are extremely rare. In addition, although duplicated 94 

enhancers can upregulate genes 24,25, we do not consider these as enhancer hijacking events since 95 

no neo-promoter-enhancer interactions are established. However, small deletions can remove 96 

TAD boundaries or repressive elements and lead to neo-promoter-enhancer interactions (Fig. 97 

1a). Therefore, small tandem duplications were discarded, and small deletions were retained. For 98 

each gene, we annotated SV status (presence or absence of nearby SVs) for all samples. Samples 99 

in which the testing genes were highly amplified were discarded since many of these genes are 100 

amplified by circular extrachromosomal DNA (ecDNA) 26, and ecDNA can promote accessible 101 

chromatin 27 with enhancer rewiring 28. Only genes with nearby SVs in at least 5% of tumors 102 

were further considered. In contrast to CESAM and PANGEA, we did not use linear regression 103 

to model the relationships between SV status and gene expression because linear regression is 104 

sensitive to outliers and many false positive associations would be detected 29. Instead, we used a 105 

rank-based normal-score regression approach. After quantile normalization of gene expression 106 

for both protein-coding and non-coding genes, we added small Gaussian noises to gene 107 

expression for tie breaking, ranked the genes based on quantile-normalized noise-added 108 

expression, and transformed the ranks to the quantiles of the standard normal distribution. We 109 

used the z scores (normal scores) of the quantiles as dependent variables in regression. In the 110 

normal-score regression model, tumor purity, copy number of the tested gene, patient age, and 111 

sex were included as covariates since these factors confound gene expression. We also included 112 

gene expression principal components (PCs) that were not correlated with SV status to model 113 

unexplained variations in gene expression. To deduce a better null distribution, we permuted the 114 

gene expression 100 times and ran the same regression models. All P values from the 115 

permutations were pooled together and used as the null distribution to calculate empirical P 116 

values. Then, multiple testing corrections were performed on one-sided P values since we are 117 
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only interested in elevated gene expression under the influence of nearby SVs. Finally, genes 118 

were discarded if their elevated expression could be explained by germline eQTLs. The 119 

remaining genes were candidate enhancer hijacking target genes. 120 

Benchmarking performances 121 

There is no gold standard available to comprehensively evaluate the performance of HYENA. 122 

We compared HYENA’s performance to two other algorithms—CESAM and PANGEA. All 123 

three algorithms were run on the same somatic SVs and gene expression data from six types of 124 

adult tumors profiled by the PCAWG (Supplementary Table S1): malignant lymphoma 125 

(MALY), stomach/gastric adenocarcinoma (STAD), chromophobe renal cell carcinoma (KICH), 126 

colorectal cancer (COAD/READ), thyroid cancer (THCA), and lung squamous cell carcinoma 127 

(LUSC) 21. Note that PANGEA depends on promoter-enhancer interactions predicted from cell 128 

lines which were not available for thyroid tissue. Therefore, thyroid cancer data were not 129 

analyzed by PANGEA. 130 

To compare the sensitivity of HYENA to the other algorithms, we used eight known enhancer 131 

hijacking target genes including MYC 9, BCL2 8, CCNE1 30, TERT 7, IGF2 13,30 (in two tumor 132 

types), IGF2BP3 31 and IRS4 13. We also expect immunoglobulin genes to be detected as 133 

enhancer hijacking candidates in malignant lymphoma due to V(D)J recombination since the 134 

lymphomas in the PCAWG are B-cell derived Burkitt lymphomas 32. In B cells, V(D)J 135 

recombination occurs to join different variable (V), joining (J) and constant (C) segments to 136 

produce antibodies with a wide range of antigen recognition ability. Therefore, certain segments 137 

have elevated expression and the recombination events can be detected as somatic SVs. Out of 138 

the eight known enhancer hijacking genes, HYENA detected five (MYC, BCL2, TERT, IGF2, 139 

and IGF2BP3) (Fig. 2a and Supplementary Fig. S1), CESAM detected three (MYC, BCL2, and 140 

TERT), and PANGEA did not detect any (Fig. 2a). In the five tumor types analyzed by all three 141 

algorithms, HYENA identified a total of 25 candidate genes, CESAM identified 19, whereas 142 

PANGEA identified 255 genes (Fig. 2b, Supplementary Tables S2, S3 and S4). Six genes were 143 

detected by both HYENA and CESAM, while PANGEA had little overlap with the other 144 

algorithms (Fig. 2b). Of the 16 genes detected by HYENA in malignant lymphoma, there were 145 

two immunoglobulin light chain genes from lambda cluster (IGLC7 and IGLJ7) 146 

(Supplementary Table S2). CESAM detected 11 genes with one being immunoglobulin gene 147 

(IGLC7) (Supplementary Table S3). In contrast, PANGEA detected 30 candidate genes, but 148 

none were immunoglobulin genes (Supplementary Table S4).  149 

The ability of the algorithms to detect known target genes seems to be sensitive to sample size. 150 

Both IGF2 and IRS4 were initially discovered by CESAM as enhancer hijacking target genes 151 

using copy number variation (CNV) breakpoints profiled by microarray with much larger sample 152 

sizes (378 colorectal cancers and 497 lung squamous cell carcinomas) 13. In the PCAWG, the 153 

sample sizes with both WGS and RNA-Seq were smaller (51 colorectal cancers and 47 lung 154 

squamous cell carcinomas). HYENA detected IGF2 in colorectal cancer but not IRS4, whereas 155 

CESAM and PANGEA detected neither. In stomach/gastric adenocarcinoma, IGF2 and CCNE1 156 

were identified as enhancer hijacking target genes in a cohort of 208 samples 30. Neither of these 157 

genes were detected by any of the algorithms because there were only 29 stomach tumors in the 158 
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PCAWG. Therefore, known target genes missed by HYENA were likely due to small sample 159 

size. In summary, HYENA had the best sensitivity of the three algorithms. 160 

To evaluate specificity of the algorithms, we ran each algorithm on 20 datasets generated by 161 

randomly shuffling gene expression data in both MALY and breast cancer (BRCA). Since these 162 

gene expression data were random, there should be no associations between SVs and gene 163 

expression, and all genes detected should be false positives. In malignant lymphoma with 164 

observed gene expression, HYENA, CESAM, and PANGEA detected 16, 11, and 30 candidate 165 

genes respectively (Supplementary Tables S2, S3 and S4). In the 20 random gene expression 166 

datasets for malignant lymphoma, HYENA detected an average of 0.5 genes per dataset (Fig. 167 

2c), and CESAM detected an average of 0.5 genes per dataset, whereas PANGEA detected an 168 

average of 40 genes per dataset (Supplementary Fig. S2). In breast cancer with observed gene 169 

expression, HYENA, CESAM, and PANGEA detected 61, 9, and 2,309 candidate genes, 170 

respectively (Supplementary Tables S2, S3 and S4). In 20 random gene expression datasets for 171 

breast cancer, HYENA, CESAM, and PANGEA detected 0.35, 0.9 and 2,296 genes on average 172 

(Fig. 2c and Supplementary Fig. S2). In both tumor types, the numbers of false positives called 173 

by PANGEA in random datasets were comparable to the numbers of genes detected with 174 

observed gene expression (Supplementary Fig. S2). In summary, HYENA predicted the least 175 

number of false positives among the three algorithms. 176 

Overall, HYENA has superior sensitivity and specificity in the detection of candidate enhancer 177 

hijacking target genes. 178 

Enhancer hijacking candidate genes in the PCAWG 179 

We used HYENA to analyze a total of 1,146 tumors across 25 tumor types in the PCAWG with 180 

both WGS and RNA-Seq data. When each tumor type was analyzed individually, we identified 181 

192 candidate enhancer hijacking target genes in total (Supplementary Tables S1 and S2), five 182 

of which were known enhancer hijacking targets (Fig. 3a). TERT was the only gene identified in 183 

two tumor types/cohorts (KICH from the US and renal cell carcinoma [RECA] from Europe). 184 

All other candidate genes were only detected in one tumor type, highlighting high tumor type 185 

specificity of the findings. The number of genes detected in each tumor type also differed 186 

dramatically (Fig. 3b). No genes were detected in bladder cancer (BLCA), cervical cancer 187 

(CESC), glioblastoma multiforme (GBM), or low-grade glioma (LGG), probably due to their 188 

small sample sizes. BRCA had the greatest number of candidate genes likely due to the large 189 

sample size as well as the abundance of SVs resulting from homologous recombination 190 

deficiency (HRD) 33. Although ovarian cancer (OV) also suffers from HRD and had a sample 191 

size comparable with breast cancer, there were many fewer enhancer hijacking target genes 192 

detected. Thyroid cancer genomes were among the most stable genomes in the PCAWG 34. 193 

However, the 15 enhancer hijacking target genes identified in thyroid cancer exceeded the 194 

number of candidate genes in ovarian cancer as well as many other tumor types. Among these 15 195 

genes, IGF2BP3 was a known oncogene activated by enhancer hijacking 31,35. There were two 196 

liver cancer cohorts with comparable sample sizes—LIHC from the US and LIRI from Japan. 197 

Interestingly, a total of 18 genes were identified in the US cohort whereas no genes were found 198 

in the Japanese cohort. One possible reason for such a drastic difference could be that hepatitis B 199 
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virus (HBV) infection is more common in liver cancer in Japan 36, and virus integration into the 200 

tumor genome can result in oncogene activation 37. In Chronic Lymphocytic Leukemia (CLLE), 201 

a total of nine genes were detected, and seven were immunoglobulin genes from both lambda 202 

and kappa clusters (Supplementary Tables S2). Given that sample size and genome instability 203 

can only explain a small fraction of the variations of enhancer hijacking target genes detected in 204 

different tumor types, the landscape of enhancer hijacking in cancer seems to be mainly driven 205 

by the underlying disease biology. Intriguingly, out of the 192 candidate genes, 73 (38%) were 206 

non-coding genes including lncRNAs and microRNAs (Fig. 3b). 207 

Neo-TADs formed through somatic SVs 208 

Next, we focused on the most frequently altered candidate non-coding enhancer-hijacking target 209 

gene in pancreatic cancer: TOB1-AS1 (Fig. 4a), a lncRNA. TOB1-AS1 was not detected as a 210 

candidate gene by either CESAM (Supplementary Table S3) or PANGEA (Supplementary 211 

Table S4) using the same input data. Seven (9.6%) out of 74 tumors had some forms of somatic 212 

SVs near TOB1-AS1 including translocations, deletions, inversions, and tandem duplications 213 

(Fig. 4b and Supplementary Table S5). For example, tumor 9ebac79d-8b38-4469-837e-214 

b834725fe6d5 had a translocation between chromosomes 17 and 19 (Fig. 4c). The breakpoints 215 

were upstream of TOB1-AS1 and upstream of UQCRFS1 (Fig. 4d). In tumor 748d3ff3-8699-216 

4519-8e0f-26b6a0581bff, there was a 19.3 Mb deletion which brought TOB1-AS1 next to a 217 

region downstream of KCNJ2 (Fig. 4c and 4e).  218 

We used Akita 38, a convolutional neural network that predicts 3D genome organization, to 219 

assess the 3D architecture of the loci impacted by SVs. While 3D structures are dynamic and 220 

may change with cell-type and gene activity, TAD boundaries are often more stable and remain 221 

similar across different cell-types 1. TAD boundaries are defined locally by the presence of 222 

binding sites for CCCTC-binding factor (CTCF), a ubiquitously expressed DNA-binding protein 223 

1,39, and TAD formation arises from the stalling of the cohesin-extruded chromatin loop by 224 

DNA-bound CTCF at these positions 40. For this reason, one can reliably expect that upon 225 

chromosomal rearrangements, normal TADs can be disrupted, and new TADs can form by 226 

relocations of TAD boundaries. This assumption has been validated with direct experimental 227 

evidence from examining the “neo-TADs” associated with SVs at different loci 41–43. The 228 

wildtype TOB1-AS1 locus had a TAD between a CTCF binding site in RSAD1 and another one 229 

upstream of SPAG9 (Fig. 4d and Supplementary Fig. S3). There were TADs spanning 230 

UQCRFS1 and downstream of KCNJ2 in the two partner regions (Fig. 4d, 4e and 231 

Supplementary Fig. S3). In tumor 9ebac79d-8b38-4469-837e-b834725fe6d5, the translocation 232 

was predicted to lead to a neo-TAD resulting from merging the TADs of TOB1-AS1 and 233 

UQCRFS1 (Fig. 4d). In tumor 748d3ff3-8699-4519-8e0f-26b6a0581bff, another neo-TAD was 234 

predicted to form as a result of the deletion that merged the TADs of TOB1-AS1 and the 235 

downstream portion of KCNJ2 (Fig. 4e). In both cases, within these predicted neo-TADs, Akita 236 

predicted strong chromatin interactions involving several CTCF binding sites and H3K27Ac 237 

peaks between TOB1-AS1 and its two SV partners (Fig. 4d and 4e black arrows in the right 238 

panels), indicating newly formed promoter-enhancer interactions. In the vicinity of the TOB1-239 

AS1 locus, TOB1-AS1 was the only gene with significant changes in gene expression. Similar 240 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.01.09.523321doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523321
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

neo-TADs could be observed in two additional tumors (Supplementary Fig. S4). In two tumors 241 

harbored tandem duplications of TOB1-AS1 of 317 kb and 226 kb, the TOB1-AS1 TADs were 242 

expanded (Supplementary Fig. S5a). However, not all SVs near TOB1-AS1 led to alterations in 243 

TAD architecture; for example, in tumor a3edc9cc-f54a-4459-a5d0-097879c811e5, TOB1-AS1 244 

was predicted to remain in its original TAD after a 4 Mb tandem duplication (Supplementary 245 

Fig. S5b). In summary, at least four out of the seven tumors harboring somatic SVs near TOB1-246 

AS1 were predicted to result in neo-TADs including TOB1-AS1. We then used another deep-247 

learning algorithm called Orca 44 to predict 3D genome structure based on DNA sequences. 248 

Orca-predicted 3D genome architectures were very similar to Akita predictions (Supplementary 249 

Fig. S6) in neo-TAD formation due to SVs in the TOB1-AS1 locus. 250 

To further study the 3D genome structure of TOB1-AS1 locus, we performed high-resolution in 251 

situ Hi-C sequencing for four pancreatic cancer cell lines. Among these, two cell lines (Panc 252 

10.05 and PATU-8988S) had high expression of TOB1-AS1, whereas the other two (PANC-1 253 

and PATU-8988T) had low expression (Fig. 5a). At mega-base-pair scale, three cell lines (Panc 254 

10.05, PATU-8988S and PATU-8988T) carried several SVs (black arrows in Fig. 5b). In Panc 255 

10.05, a tandem duplication (chr17:43,145,000-45,950,000) was observed upstream of TOB1-256 

AS1 (Fig. 5b black arrow in the left most panel and Supplementary Table S6). However, the 257 

breakpoint was too far away (2 Mb) from TOB1-AS1 (chr17:48,944,040-48,945,732) and 258 

unlikely to regulate its expression. A neo chromatin loop was detected by NeoLoopFinder 20 near 259 

TOB1-AS1 (chr17:34,010,000-48,980,000) driven by a deletion (chr17:34,460,000-47,450,000) 260 

detected by EagleC 45 (Supplementary Fig. S7a, Supplementary Tables S6 and S7). The 261 

deletion breakpoint was also too far away (1.5 Mb) from TOB1-AS1 and unlikely to regulate its 262 

expression either. No other SVs or neo chromatin loops were detected near TOB1-AS1 263 

(Supplementary Tables S6 and S7). Interestingly, there was a CNV breakpoint 264 

(chr17:48,980,000) 36 kb downstream of TOB1-AS1 (Fig. 5c left most panel) which was also the 265 

boundary of the neo chromatin loop. In the high copy region (upstream of the CNV breakpoint), 266 

heterozygous SNPs were present with allele ratios of approximately 4:1 (Supplementary Fig. 267 

S8a), whereas in the low copy region (downstream of the CNV breakpoint), all SNPs were 268 

homozygous (Supplementary Fig. S8b). These suggested that the DNA copy number changed 269 

from five copies to one copy at the CNV breakpoint. The gained copies must connect to some 270 

DNA sequences since there should not be any free DNA ends other than telomeres. Given that 271 

no off-diagonal 3D genome interactions were observed at chr17:48,980,000, we considered the 272 

possibilities that the high copy region was connected to repetitive sequences or to sequences that 273 

were not present in the reference genome. If so, reads mapped to the high copy region should 274 

have excessive amount of non-uniquely mapped mates or unmapped mates. However, this was 275 

not the case (Supplementary Fig. S9). The only possible configuration was a foldback inversion 276 

in which two identical DNA fragments from the copy gain region were connected head to tail 277 

(Fig. 5d bottom left panel). As a result, in Panc 10.05, there was a wildtype chromosome 17, two 278 

foldback-inversion-derived chromosomes, and a translocation-derived chromosome (Fig. 5d 279 

bottom left panel and Supplementary Fig. S7b). Foldback inversions are very common in 280 

cancer. If DNA double strand breaks are not immediately repaired, following replication, the two 281 

broken ends of sister chromatids can self-ligate head to tail and sometimes result in dicentric 282 

chromosomes 46,47. Algorithms, such as hic-breakfinder 48 and EagleC 45, rely on off-diagonal 3D 283 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.01.09.523321doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523321
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

genomic interactions in Hi-C contact matrix to detect SVs. However, foldback inversions do not 284 

form any off-diagonal interactions since the two connected DNA fragments have the same 285 

coordinates, so they are not detectable by existing algorithms. The 3D genome structure of 286 

TOB1-AS1 locus in Panc 10.05 was quite distinct from the other three cell lines (Fig. 5c). The 287 

region immediately involved in the foldback inversion had homogeneous 3D interactions (Fig. 288 

5c dashed blue triangle in the left most panel) suggesting that a neo-subdomain was formed (Fig. 289 

5d right panel). The high expression of TOB1-AS1 in Panc 10.05 was likely a combined effect of 290 

the copy gain and the neo-subdomain. In PATU-8988S and PATU-8988T, a shared SV 291 

(chr17:48,880,000-52,520,000) near TOB1-AS1 was detected (Fig. 5b two right panels) since the 292 

two cell lines were derived from the same pancreatic cancer patient 49. This shared SV could not 293 

regulate TOB1-AS1 because it pointed away from TOB1-AS1 (Supplementary Fig. S10). No 294 

other SVs were found near TOB1-AS1 in these two cell lines. The high expression of TOB1-AS1 295 

in PATU-8988S was likely due to transcription regulation since the promoter of TOB1-AS1 in 296 

PATU-8988S was more accessible than that in PATU-8988T (Fig. 5e). This result was 297 

consistent with a handful of patient tumors that had high expression of TOB1-AS1 without any 298 

SVs (Fig. 4a). 299 

Taken together, our results demonstrated that HYENA can detect genes activated by 300 

reorganization of 3D genome architecture. 301 

Oncogenic functions of TOB1-AS1 302 

TOB1-AS1 has been reported as a tumor suppressor in several tumor types 50,51. However, 303 

HYENA predicted it to be an oncogene in pancreatic cancers. To test the potential oncogenic 304 

functions of TOB1-AS1 in pancreatic cancer, we performed both in vitro and in vivo 305 

experiments. We surveyed pancreatic cancer cell line RNA-Seq data from Cancer Cell Line 306 

Encyclopedia (CCLE) and identified that the commonly transcribed isoform of TOB1-AS1 in 307 

pancreatic cancers was ENST00000416263.3 (Supplementary Fig. S11). The synthesized 308 

TOB1-AS1 cDNA was cloned and overexpressed in two pancreatic cancer cell lines, PANC-1 309 

and PATU-8988T, both of which had low expression of TOB1-AS1 (Fig. 5a and Supplementary 310 

Fig. S12a). In both cell lines, overexpression of TOB1-AS1 (Fig. 6a) promoted in vitro cell 311 

invasion (Fig. 6b). In addition, three weeks after tail vein injection, PANC-1 cells with TOB1-312 

AS1 overexpression caused higher metastatic burden in immunodeficient mice than the control 313 

cells (Fig. 6c). Six weeks after orthotopic injection, mice carrying TOB1-AS1 overexpressing 314 

PANC-1 cells showed exacerbated overall tumor burden (Fig. 6d), elevated primary tumor 315 

burden, and elevated metastatic burden in the spleen (Fig. 6e and Supplementary Fig. S12b). 316 

Liver metastasis was not affected (Supplementary Fig. S12c). In addition, we knocked down 317 

TOB1-AS1 in two other pancreatic cancer cell lines Panc 10.05 and PATU-8988S, both of which 318 

had high expression of TOB1-AS1 (Fig. 5a and Supplementary Fig. S12a), using two antisense 319 

oligonucleotides (ASOs) (Fig. 6f). TOB1-AS1 expression was reduced by approximately 50% by 320 

both ASOs (Fig. 6g). Knockdown of TOB1-AS1 substantially suppressed cell invasion in vitro 321 

(Fig. 6h). Note that PATU-8988T and PATU-8988S were derived from the same liver metastasis 322 

of a pancreatic cancer patient, and they had drastic difference in TOB1-AS1 expression (Fig. 5a 323 

and Supplementary Fig. S12a). It was reported that PATU-8988S can form lung metastasis in 324 
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vivo with tail vein injection of nude mice, whereas PATU-8988T cannot form any metastasis in 325 

any organ 49. By altering the expression of TOB1-AS1, we were able to reverse the cell invasion 326 

phenotypes in these two cell lines (Fig. 6b and 6h). These results suggested that TOB1-AS1 327 

carries important function in regulating cell invasion.  328 

It is possible that TOB1-AS1, as an anti-sense lncRNA, transcriptionally regulates the expression 329 

of the sense protein-coding gene TOB1. However, we did not find consistent correlations 330 

between TOB1-AS1 and TOB1 expression in different pancreatic cancer cohorts and pancreatic 331 

cancer cell lines (Supplementary Fig. S12d). Hence, it is unlikely that TOB1-AS1 functions 332 

through transcriptional regulation of TOB1. Although knocking down TOB1-AS1 resulted in 333 

down regulation of TOB1 expression, an expected result given that the ASOs also targeted the 334 

introns of TOB1 (Fig. 6f), the decrease in TOB1 expression was relatively mild at 10-20% (Fig. 335 

6g). Overexpression of TOB1-AS1 did not have major impact on TOB1 expression (Fig. 6a). 336 

Therefore, the oncogenic functions of TOB1-AS1 that we observed in vitro and in vivo are likely 337 

independent of TOB1. To gain further insights into the pathway that TOB1-AS1 is involved in 338 

and its downstream targets, we performed RNA-Seq on PANC-1-generated mouse tumors with 339 

TOB1-AS1 overexpression and found that the most significantly differentially expressed gene 340 

was CNNM1 (Supplementary Fig. S12e). CNNM1 is a cyclin and CBS domain divalent metal 341 

cation transport mediator and is predicted to be involved in ion transport 52. How TOB1-AS1 342 

promotes cell invasion and tumor metastasis and whether CNNM1 plays any roles require further 343 

study.  344 

Our results showed that the lncRNA TOB1-AS1 is oncogenic and has a pro-metastatic function in 345 

pancreatic cancer, and HYENA is able to detect novel proto-oncogenes activated by distal 346 

enhancers. 347 

  348 
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Discussion 349 

Here, we report a computational algorithm HYENA to detect candidate oncogenes activated by 350 

distal enhancers via somatic SVs. These SV breakpoints fell in the regulatory regions of the 351 

genome and caused shuffling of regulatory elements, altering gene expression. The candidate 352 

genes we detected were not limited to protein-coding genes but also included non-coding genes. 353 

Our in vitro and in vivo experiments showed that a lncRNA identified by HYENA, TOB1-AS1, 354 

was a potent oncogene in pancreatic cancers. 355 

HYENA detects candidate genes based on patient cohorts rather than individual samples. Genes 356 

need to be recurrently rearranged in the cohort to be detectable, and HYENA aims to identify 357 

oncogenes recurrently activated by somatic SVs since these events are under positive selection. 358 

Therefore, sample size is a major limiting factor. Of the eight ground truth cases, HYENA only 359 

detected five (Fig. 2a); undetected genes were likely due to small sample size. However, genes 360 

detected in individual tumors by tools such as cis-X and NeoLoopFinder may not be oncogenes, 361 

and recurrent events would be required to identify candidate oncogenes. 362 

The candidate genes identified by HYENA have statistically significant associations between 363 

nearby somatic SVs and elevated expression. However, the relationship may not be causal. It is 364 

possible that the presence of SVs and gene expression are unrelated, but both are associated with 365 

another factor. We modeled other factors to the best of our ability including gene dosage, tumor 366 

purity, patient sex, age, and principal components of gene expression. In addition, it is also 367 

possible that the high gene expression caused somatic SVs. Open chromatin and double helix 368 

regions unwound during transcription are prone to double-strand DNA breaks which may 369 

produce somatic SVs. Therefore, it is possible that some of the candidate genes are not 370 

oncogenes. Functional studies are required to determine the disease relevance of the candidate 371 

genes. 372 

Note that the predicted 3D genome organization is not cell-type-specific. Akita was trained on 373 

five high quality Hi-C and Micro-C datasets (HFF, H1hESC, GM12878, IMR90 and HCT116) 38 374 

and predicts limited cell-type-specific differences. Therefore, the predicted TADs reflect 375 

conserved 3D genome structure in the five cell types (foreskin fibroblast, embryonic stem cell, 376 

B-lymphocyte, lung fibroblast and colon cancer). There were minor differences between HFF 377 

and H1hESC (Supplementary Fig. S3) in genome organization. For example, the left boundary 378 

of the TAD at the UQCRFS1 locus was different between HFF and H1hESC (Supplementary 379 

Fig. S3a). Nonetheless, the translocation between chromosomes 17 and 19 removed the left 380 

boundary and merged the right side of the UQCRFS1 TAD with the TOB1-AS1 TAD (Fig. 4d). 381 

Therefore, the cell-type difference likely does not have major impact on our results. 382 

  383 
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Methods 384 

Datasets 385 

This study used data generated by the Pan-Cancer Analysis of Whole Genomes (PCAWG). We 386 

limited our study to a total of 1,146 tumor samples for which both whole-genome sequencing 387 

(WGS) and RNA-Seq data were available. The data set was composed of cancers from 25 tumor 388 

types including 23 bladder urothelial cancers (BLCA), 88 breast cancers (BRCA), 20 cervical 389 

squamous cell carcinomas (CESC), 68 chronic lymphocytic leukemias (CLLE), 51 colorectal 390 

cancers (COAD/READ), 20 glioblastoma multiforme (GBM), 42 head and neck squamous cell 391 

carcinomas (HNSC), 43 chromophobe renal cell carcinomas (KICH), 37 renal clear cell 392 

carcinomas from United States (KIRC), 31 renal papillary cell carcinomas (KIRP), 18 low-grade 393 

gliomas (LGG), 51 liver cancers from United States (LIHC), 67 liver cancers from Japan (LIRI), 394 

37 lung adenocarcinomas (LUAD), 47 lung squamous cell carcinomas (LUSC), 95 malignant 395 

lymphomas (MALY), 80 ovarian cancers (OV), 74 pancreatic cancers (PACA), 19 prostate 396 

adenocarcinomas (PRAD), 49 renal clear cell carcinomas from European Union/France (RECA), 397 

34 sarcomas (SARC), 34 skin cutaneous melanomas (SKCM), 29 stomach adenocarcinomas 398 

(STAD), 47 thyroid cancers (THCA), and 42 uterine corpus endometrial carcinomas (UCEC). 399 

More detailed information on the sample distribution and annotation can be found in 400 

Supplementary Table S1.  401 

WGS and RNA-Seq data analysis of tumor and normal samples were performed by the PCAWG 402 

consortium as previously described 21. Somatic and germline SNVs, somatic CNVs, SVs, and 403 

tumor purity were detected by multiple algorithms and consensus calls were made. Genome 404 

coordinates were based on the hg19 reference genome and GENCODE v19 was used for gene 405 

annotation. Gene expression was quantified by HT-Seq (version 0.6.1p1) as fragments per 406 

kilobase of million mapped (FPKM). Clinical data such as donor age and sex were downloaded 407 

from the PCAWG data portal (https://dcc.icgc.org/pcawg). TOB1 and TOB1-AS1 expression data 408 

in CCLE pancreatic cancer cell lines were downloaded from DepMap Public 22Q2 version 409 

(https://depmap.org/portal/download/all/). Gene expression data of the Cancer Genome Atlas 410 

(TCGA) PAAD cohort (TCGA.PAAD.sampleMap/HiSeqV2_PANCAN) and International 411 

Cancer Genome Consortium (ICGC) PACA-CA cohort for 45 samples of which “analysis-id” 412 

were labeled as “RNA” were downloaded from Xena Data Hubs 413 

(https://xenabrowser.net/datapages/) and ICGC data portal (https://dcc.icgc.org/projects/PACA-414 

CA) respectively. 415 

Significant eQTL-gene pairs (v8) were downloaded from the Genotype-Tissue Expression 416 

(GTEx) data portal (https://gtexportal.org/home/datasets). Only those eQTLs that had a hg19 417 

liftover variant ID were included in the analysis and hg38 variants with no corresponding hg19 418 

annotation were discarded. 419 

The raw sequencing data for Hi-C and ATAC-Seq were available through NCBI Sequence Read 420 

Archive (SRA) with accession number PRJNA1036282. The raw sequencing data for mouse 421 

xenograft tumor RNA-Seq were available through NCBI SRA with accession number 422 

PRJNA1011356. 423 
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 424 

HYENA algorithm 425 

First, small tandem duplications (<10 kb) were discarded since they are unlikely to produce new 426 

promoter-enhancer interactions. The remaining SVs were mapped to the flanking regions (500 427 

kb upstream and downstream of transcription start sites [TSSs]) of annotated genes. SVs that fall 428 

entirely within a gene body were also discarded. The SV status of each gene was defined by the 429 

presence or absence of SV breakpoints within the gene or its flanking regions for each tumor. 430 

The binary variable SV status was used in the normal-score regression model below. Only genes 431 

carrying SVs in at least 5% samples carrying SVs were tested. For each gene, samples with that 432 

gene highly amplified (>10 copies) were removed from the regression model. 433 

Gene expression normal scores 434 

Gene expression quantifications (fragments per kilobase per million [FPKM]) were quantile 435 

normalized (FPKM-QN) using the quantile.normalize() function from the preprocessCore R 436 

package to enhance cross-sample comparison. To break the ties for genes with identical FPKM-437 

QN values in multiple samples (especially those caused by FPKM of zero) during ranking, very 438 

small Gaussian noises were added to all the FPKM-QN values in all samples by 439 

add.Gaussian.noise(mat, mean = 0.000000001, stddev = 0.000000001, symm = F) from the 440 

RMThreshold R package. Since the mean and standard deviation of the noises added were small, 441 

the rankings of the non-identical values were not affected. For each gene, samples were ranked 442 

based on their noised-added expression values, the ranks were mapped to a standard normal 443 

distribution and the corresponding z scores were gene expression normal scores. Normal-score 444 

conversion forced the expression data into a Gaussian distribution, allowing for parametric 445 

comparisons between samples. 446 

Normal-score regression 447 

A generalized linear model was used to test associations between gene expression normal scores 448 

and SV status and control for confounding variables such as gene copy number, tumor sample 449 

purity, donor age, and sex. To capture unobserved variations in gene expression, the first n 450 

principal components (PCs) of the expression data were also included in the regression model, 451 

where n was determined as 10% of the sample size of the cohort and up to 20 if the sample size 452 

was more than 200. The regression model was as shown below: 453 

Expression_normal_score ~ sv_status + copy_number + purity + age + sex + PC1 + PC2 …+ PCn 454 

For each gene, all PCs were tested for associations with the SV status of that gene, and those PCs 455 

that significantly correlate (Mann-Whitney test, P<0.05) with SV status were not used in 456 

regression. 457 

Calculating empirical P values and model selection 458 

Gene expression data were permuted 100 times by randomly shuffling expression values within 459 

the cohort. The normal-score regression was performed in the same way on observed gene 460 

expression and permuted expression. P values for SV status from permuted expression were 461 
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pooled as a null distribution. Then the P values for SV status from observed expression and the 462 

P-value null distribution were used to calculate empirical P values. One-sided P values were 463 

used since we were only interested in elevated gene expression. False discovery rates (FDRs) 464 

were calculated using the Benjamini-Hochberg procedure. Genes with FDR less than 0.1 were 465 

considered candidate genes. For example, in MALY, there were 1,863 genes reaching 5% SV 466 

frequency and 1,863 P values were obtained in each permutation. After 100 permutations, 467 

186,300 P values were generated and should represent the null distribution very well. Empirical 468 

P values were calculated using these 186,300 permuted P values. To test whether more 469 

permutations could be beneficial, we performed 1000 permutations in five benchmarking tumor 470 

types (COAD/READ, KICH, LUSC, MALY, and THCA). A total of 44 candidate genes were 471 

detected in 100 permutations. Four more genes were detected in 1000 permutations and two 472 

genes detected in 100 permutations were missed in 1000 permutations. The FDRs for the shared 473 

candidate genes from 100 and 1000 permutations were nearly identical (Supplementary Fig. 474 

S13). Therefore, 100 permutations were sufficient. 475 

The above empirical P value calculation and candidate gene detection were performed iteratively 476 

with no PCs and up to n PCs in the regression model. When different numbers of PCs were 477 

included in the model, the numbers of candidate genes varied. The regression model with the 478 

lowest number of PCs reaching 80% of the maximum number of candidate genes in all 479 

regression models tested was selected as the final model to avoid over fitting. For example, the 480 

sample size for PCAWG BRCA was 88; therefore, we tested from 0 to 9 PCs. Among these, the 481 

model including 8 PCs gave the highest number (82) of candidate genes. Therefore, the model 482 

including 7 PCs with 68 candidate genes was selected as the final model since it had the lowest 483 

number of PCs reaching 80% of 82 candidate genes (Supplementary Table S8). 484 

In our normal-score regression, we essentially attempt to model variations in gene expression. 485 

Including confounding factors will improve performance. Tumor purity, gene copy number, 486 

patient age, and sex are factors known to affect gene expression. Therefore, they are included in 487 

the regression model. Unobserved variations may include tumor subtype, tumor stage, patient 488 

ethnicity, smoking status, alcohol consumption, and other unknown factors that may alter gene 489 

expression. Since HYENA is designed for wide applications, we do not require users to provide 490 

information on tumor subtype, tumor stage, patient ethnicity, smoking status, alcohol 491 

consumption, etc. Principle component analysis is a linear decomposition of gene expression 492 

variations. Therefore, including PCs in a regression model is suitable for removing systematic 493 

variations and can better model the effects of SV status. However, some enhancer hijacking 494 

target genes are master transcription factors, such as MYC, and have profound impact on gene 495 

expression of multiple pathways. Hence, it is possible that some PCs capture the activities of 496 

transcription factors. If these transcription factors are activated by somatic SVs, the PCs will be 497 

correlated with SV status. Including these PCs will diminish our ability to detect the effects of 498 

SV status. Therefore, we do not include these PCs in the regression model. 499 

Testing eQTL-SV associations 500 

Known germline eQTLs from the matching tissues were obtained from GTEx (Supplementary 501 

Table S9). The associations between germline genotypes of eQTLs and SV status of the 213 502 
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candidate genes in the PCAWG cohort were tested using a Chi-squared test. Genes with 503 

significant correlations (P<0.05) between their SV status and at least one eQTL were removed. 504 

The remaining genes were our final candidate enhancer-hijacking target genes. 505 

 506 

Benchmarking 507 

Known enhancer hijacking target genes in PCAWG tumor types were selected to test the 508 

sensitivity of HYENA, CESAM and PANGEA. The genes included MYC in malignant 509 

lymphoma, BCL2 in malignant lymphoma, CCNE1 in stomach/gastric adenocarcinoma, TERT in 510 

chromophobe renal carcinoma, IGF2 in colorectal cancer, IGF2 in stomach/gastric 511 

adenocarcinoma, IGF2BP3 in thyroid cancer, and IRS4 in lung squamous cell carcinoma. The 512 

same SVs, CNVs, and SNVs were used as input for all three algorithms. For CESAM and 513 

PANGEA, upper-quantile normalized fragments per kilobase per million (FPKM-UQ) were 514 

normalized by tumor purity and gene copy number, and then used as gene expression inputs. 515 

CESAM was run using default parameters, and FDR of 0.1 was used to select significant genes. 516 

PANGEA requires predicted enhancer-promoter (EP) interactions based on ChIP-Seq and RNA-517 

Seq data. The EP interactions were downloaded from EnhancerAtlas 2.0 518 

(http://www.enhanceratlas.org/) (Supplementary Table S10). EP interactions from multiple cell 519 

lines of the same type were merged. PANGEA was run with default parameters as well and 520 

significant genes were provided by PANGEA (multiple testing adjusted P value <0.05). To test 521 

false positives for HYENA, CESAM, and PANGEA, 20 random gene expression datasets for 522 

malignant lymphoma and breast cancer were generated by randomly shuffling sample IDs in 523 

gene expression data. HYENA, CESAM, and PANGEA were run with random expression in the 524 

same way as above. 525 

 526 

Predicting 3D genome organization 527 

A 1 Mb sequence was extracted from the reference genome centered at each somatic SV 528 

breakpoint and was used as input for Akita 38 to predict the 3D genome organization. Two 500 529 

kb sequences were merged according to the SV orientation to construct the sequence of the 530 

rearranged genome fragments. Akita was used to predict the genome organization for the 531 

rearranged sequence. High-resolution Micro-C data obtained from human H1-ESCs and HFF 532 

cells 53 were used to facilitate TAD annotation together with predicted genome organization. 533 

H3K27Ac and CTCF ChIP-Seq data from the PANC-1 cell line were downloaded from the 534 

ENCODE data portal (https://www.encodeproject.org/). SV breakpoints were provided to Orca 44 535 

to predict 3D genome structures through its web interface (https://orca.zhoulab.io/). 536 

 537 

In situ Hi-C and ATAC-Seq  538 

Ten million cells of Panc 10.05, PANC-1, PATU-8988S, and PATU-8988T cell lines were 539 

collected to construct Hi-C libraries 39. The Hi-C libraries were sequenced on Illumina NovaSeq 540 
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X Plus platform with 1% phix. About 2 billion reads were obtained from Panc 10.05, PATU-541 

8988S, and PATU-8988T, and 1 billion reads were obtained from PANC-1. The paired-end reads 542 

were aligned to chromosomes 1-22, X, Y and M by bwa-mem. SVs were identified by EagleC 45 543 

at 5 kb, 10 kb and 50 kb resolutions. The non-redundant SVs in Supplementary Table S6 were 544 

combined for the three resolutions. Chromatin loops were identified by NeoLoopFinder 20. A 545 

probability threshold of 0.95 was used, and default values were used for all other parameters. 546 

Fifty thousand cells of Panc 10.05, PATU-8988S, and PATU-8988T cell lines were harvested to 547 

construct ATAC-Seq libraries 54. The libraries were sequenced using Illumina NovaSeq. About 548 

60 million reads were generated from each library. The paired-end reads were aligned to the 549 

reference genome by hisat2. Hi-C and ATAC-Seq read coverages were generated by deepTools 550 

with 10 bp bin-size, RPGC normalization, and an effective genome size of 2,864,785,220. 551 

 552 

Cell lines 553 

HEK293T, PANC-1, and PATU-8988T cells were obtained from Dr. Alexander Muir 554 

(University of Chicago). Panc 10.05 was purchased from ATCC (American Type Culture 555 

Collection, USA) (https://www.atcc.org/products/crl-2547) and PATU-8988S was purchased 556 

from DSMZ (https://www.dsmz.de/collection/catalogue/details/culture/ACC-204). All cell lines 557 

were cultured at 37°C/5% CO2. HEK293T cells and PANC-1 cells were cultured in Dulbecco’s 558 

Modified Eagle Medium (DMEM) (Gibco, 21041025) containing 10% fetal bovine serum (FBS) 559 

(Gibco, A4766), and Panc 10.05 cells were cultured in RPMI-1640 medium (Gibco, 11875093) 560 

containing 10% FBS, as per ATCC instructions (https://www.atcc.org/products/crl-3216, 561 

https://www.atcc.org/products/crl-1469, https://www.atcc.org/products/crl-2547). PATU-8988T 562 

and PATU-8988S cells were cultured with DMEM containing 5% FBS, 5% horse serum (Gibco, 563 

26050088), and 2 mM L-glutamine as recommended by DSMZ (Deutsche Sammlung von 564 

Mikroorganismen and Zellkulturen, Germany) 565 

(https://www.dsmz.de/collection/catalogue/details/culture/ACC-162). All cell lines have been 566 

regularly monitored and tested negative for mycoplasma using a mycoplasma detection kit 567 

(Lonza, LT07-218). 568 

 569 

TOB1-AS1 and luciferase overexpression 570 

A 1,351 bp TOB1-AS1 cDNA (ENST00000416263.3) was synthesized by GenScript (New 571 

Jersey, USA) and subcloned into the lentiviral pCDH-CMV-MCS-EF1-Puro plasmid (SBI, 572 

CD510B-1). The cDNA sequence in the plasmid was verified by Sanger sequencing at 573 

University of Chicago Medicine Comprehensive Cancer Center core facility. The TOB1-AS1 574 

overexpression plasmid was amplified by transforming Stellar™ Competent Cells (Takara, 575 

636763) with the plasmid as per instructions and isolated by QIAGEN HiSpeed Plasmid Midi 576 

Kit (QIAGEN, 12643). LucOS-Blast vector was obtained from Dr. Yuxuan Phoenix Miao 577 

(University of Chicago), cloned, and amplified as described above.  578 
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HEK293T cells were plated in T-25 flasks and grown to 75% confluence prior to transfection. 579 

For each T-25 flask, 240μl Opti-MEM (Gibco, 31985070), 1.6μg pCMV-VSV-G, 2.56μg 580 

pMDLg/pRRE, 2.56μg pRSV-Rev, 3.4μg TOB1-AS1 overexpression vector and 22.8μl TransIT-581 

LT1 Transfection Reagent (Mirus, MIR 2306) were mixed and incubated at room temperature 582 

for 30 minutes, then added to the plated HEK293T cells with fresh medium. The luciferase 583 

vector was packaged into lentivirus with the same method. Upon 48 hours of incubation, 584 

lentiviral supernatant was collected, filtered through 0.45-μmpolyvinylidene difluoride filter 585 

(Millipore), and mixed with 8μg/ml polybrene. PANC-1 or PATU-8988T cells at 60% 586 

confluence were transduced with the lentiviral supernatant for 48 hours followed by three rounds 587 

of antibiotic selection with 4μg/ml puromycin for TOB1-AS1 overexpression and 10μg/ml 588 

blasticidin for the luciferase expression. TOB1-AS1 expression was validated by quantitative 589 

reverse transcription polymerase chain reaction (qRT-PCR), and luciferase expression was 590 

validated by in vitro bioluminescence imaging in black wall 96-well plates (Corning, 3603). D-591 

luciferin potassium salt (Goldbio, LUCK-100) solution with 0, 1.25, 2.5, 5 and 10μl 15mg/ml 592 

was added into the wells as serial dilutions, and imaging was obtained after 5 minutes. Finally, 593 

TOB1-AS1 overexpression or empty pCDH transduced cell lines with luciferase co-expression 594 

were built for both PATU-8988T and PANC-1 cells. 595 

 596 

TOB1-AS1 transient knock-down using antisense oligonucleotides (ASOs) 597 

Three Affinity Plus® ASOs were synthesized by Integrated DNA Technologies (IDT), with two 598 

targeting TOB1-AS1 and one non-targeting negative control. The ASO sequences were:  599 

Non-targeting ASO (NC): 5’ -GGCTACTACGCCGTCA- 3’ 600 

TOB1-AS1 ASO1: 5’ -GCCGATTTGGTAGCTA- 3’ 601 

TOB1-AS1 ASO2: 5’ -CTGCGGTTTAACTTCC- 3’ 602 

The ASOs were transfected into PATU-8988S and Panc 10.05 cells with LipofecatmineTM 2000 603 

(Invitrogen, 11668019) using reverse-transfection method according to IDT protocol 604 

(https://www.idtdna.com/pages/products/functional-genomics/antisense-oligos) with a final ASO 605 

concentration of 9 nM. Cells were transfected in 6-well plates and incubated for 48 hours to 606 

reach 60% confluence before RNA extraction or Transwell assay.  607 

 608 

RNA isolation and qRT-PCR 609 

Cells were plated in 6-well plates and allowed to reach 80% confluence, or transfected by ASOs 610 

as described above, prior to RNA extraction. After cells lysis in 300μl/well TRYzolTM 611 

(Invitrogen, 15596026), RNA samples were prepared following the Direct-zol RNA Miniprep kit 612 

manual (RPI, ZR2052). Reverse transcription was performed using Applied Biosystems High-613 

Capacity cDNA Reverse Transcription Kit (43-688-14) following manufacturer’s instructions. 614 

Quantitative PCR (qPCR) was conducted on StepOnePlus Real-Time PCR System (Applied 615 

Biosystems, 4376600), using PowerUp SYBR Green Master Mix (A25742) following the 616 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.01.09.523321doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523321
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

manufacturer’s instructions with a primer concentration of 300nM in 10μl reaction systems. 617 

Primers were ordered from Integrated DNA Technologies. Primer sequences used in this study 618 

are as follows:  619 

TOB1 forward: 5’ -GGCACTGGTATCCTG AAA AGCC- 3’ 620 

TOB1 reverse: 5’ – GTGGCAGATTGCCACGAACATC- 3’ 621 

TOB1-AS1 forward: 5’ -GGAGTGGTCAGGTGACTGATT- 3’ 622 

TOB1-AS1 reverse: 5’ -ATTCCACTCCTGTTTGCAACT- 3’ 623 

GAPDH forward: 5’ – ACCACAGTCCATGCCATCAC- 3’ 624 

GAPDH reverse: 5’ -TCCACCACCCTGTTGCTGTA- 3’ 625 

Relative expression levels for TOB1-AS1 and TOB1 were calculated by the 2^(-ΔΔCT) method 626 

based on GAPDH expression as an endogenous control. 627 

 628 

Transwell assay for cell invasion in vitro 629 

Transparent PET membrane culture inserts of 24-well plate (Falcon, 353097) were coated with 630 

Cultrex Reduced Growth Factor Basement Membrane Extract (BME) (R&D Systems, 3533-010-631 

02) at 50μg per membrane (200μl of 0.25mg/ml BME stock per membrane) at 37°C for an hour. 632 

A total of 100,000 PANC-1 cells/well, 50,000 PATU-8988T cells/well, 50,000 Panc 10.05 633 

cells/well, or 50,000 PATU-8988S cells were resuspended in serum-free, phenol-red free DMEM 634 

medium and seeded into the coated inserts. Phenol-red free DMEM of 500μl (Gibco, A1443001) 635 

with 10% FBS was added to the bottom of the wells and the cells were allowed to invade for 16 636 

hours. Additional wells with 500μl serum-free, phenol-red free DMEM medium without FBS in 637 

the bottom chamber were seeded with the same number of cells as indicated above as a negative 638 

control. At the end of the assay, the membranes were stained with 500μl 4μg/ml Calcein AM 639 

(CaAM) (Corning, 354216) for one hour at 37°C. The cells that failed to invade were removed 640 

from the top chamber with a cotton swab and all inserts were transferred into 1x Cell 641 

Dissociation Solution (Bio-Techne, 3455-05-03) and shaken at 150rpm for an hour at 37°C. 642 

Finally, CaAM signal from the invaded cells was measured by a plate reader (Perkin Elmer 643 

Victor X3) at 465/535nm.  644 

 645 

Tumor metastasis in vivo 646 

All animal experiments for this study were approved by the University of Chicago Institutional 647 

Animal Care and Use Committee (IACUC) prior to execution. Male NSG mice were ordered 648 

from the Jackson Laboratory (strain#005557). For tail vein inoculation, mice were injected 649 

intravenously through the tail vein with luciferase-expressing at 400,000 cells/mouse for PANC-650 

1 cells in cold phosphate buffered saline (PBS) (Gibco, 10010-023). For orthotopic inoculation, 651 

mice were injected with 200,000 PANC-1 cells/mouse into the pancreas under general 652 

anesthesia. Cells were resuspended in cold PBS containing 5.6mg/mL Cultrex Reduced Growth 653 

Factor BME (R&D Systems, 3533-010-02). Primary tumor and metastatic tumor burdens were 654 

measured weekly for 4 and 6 weeks for tail vein injection models and orthotopic models, 655 
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respectively, via bioluminescence imaging using Xenogen IVIS 200 Imaging System 656 

(PerkinElmer) at the University of Chicago Integrated Small Animal Imaging Research Resource 657 

(iSAIRR) Facility. Each mouse was weighed and injected intra-peritoneally with D-luciferin 658 

solution at a concentration of 150μg/g of body weight 14 minutes prior to image scanning ventral 659 

side up. 660 

 661 

Ex vivo IVIS imaging 662 

Ex vivo imaging was done for the PANC-1 orthotopic injection mice after 8 weeks of orthotopic 663 

inoculation. Mice were injected intra-peritoneally with D-luciferin solution at a concentration of 664 

150μg/g of body weight immediately before euthanasia. Immediately after necropsy, mice were 665 

dissected, and tissues of interest (primary tumors, livers and spleens) were placed into individual 666 

wells of 6-well plates covered with 300 μg/mL D-luciferin. Tissues were imaged using Xenogen 667 

IVIS 200 Imaging System (PerkinElmer) and analysis was performed (Living Image Software, 668 

PerkinElmer) maintaining the regions of interest (ROIs) over the tissues as a constant size.  669 

 670 

Tumor RNA sequencing and gene expression analysis 671 

RNA was isolated from mouse subcutaneous tumors (six TOB1-AS1 overexpression and six 672 

control mice) after 6 weeks of PANC-1 cell subcutaneous injection using Direct-zol RNA 673 

Miniprep kit (RPI, ZR2052). Quality and quantity of the RNA was assessed using Qubit. 674 

Sequencing was performed using the Illumina NovaSeq 6000. About 40 million reads were 675 

sequenced per sample. The pair-end reads were aligned to mouse genome (mm10) and human 676 

genome (hg19) with hisat2, and the reads mapped to mouse or human genomes were 677 

disambiguated using AstraZeneca-NGS disambiguate package. Gene counts were generated with 678 

htseq-count. Differential gene expression was analyzed using DESeq2. Differentially expressed 679 

genes were defined as genes with a FDR smaller than 0.1 and a fold change greater than 1.5.  680 

 681 

Code availability 682 

The HYENA package is available at https://github.com/yanglab-683 

computationalgenomics/HYENA. 684 

  685 
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Figure Legends 696 

Figure 1. Outline of enhancer hijacking and HYENA algorithm. a, Mechanisms of gene 697 

activation by SVs. SVs can activate genes by recruiting distal active enhancers (top panel) and 698 

by removing TAD boundaries and forming de novo enhancer-promoter interactions (bottom 699 

panel). b, HYENA workflow. Green and purple boxes denote input and output files, respectively. 700 

Orange boxes denote intermediate steps. Numbers in parentheses represent default values of 701 

HYENA. 702 

Figure 2. Benchmarking HYENA. a, Comparison of HYENA, CESAM, and PANGEA in 703 

detecting oncogenes known to be activated by enhancer hijacking in six tumor types from the 704 

PCAWG cohort. b, UPSET plot demonstrating candidate genes identified and shared among the 705 

three tools in five tumor types of PCAWG. The numbers of candidate genes predicted by three 706 

algorithms are shown on the bottom left (19, 25, and 255). On the bottom right, individual dots 707 

denote genes detected by one tool, and dots connected by lines denote genes detected by multiple 708 

tools. The numbers of genes detected are shown above the dots and lines. For example, the dot 709 

immediately on the right of “PANGEA” shows there are 254 candidate genes detected only by 710 

PANGEA but not CESAM and HYENA. The left most line connecting two dots indicates that 711 

there are six genes detected by both CESAM and HYENA but not by PANGEA. c, Number of 712 

genes detected by HYENA in two PCAWG tumor types using observed gene expression and 713 

randomized expression. Genes detected in random expression datasets are false positives.  714 

Figure 3. Enhancer hijacking candidate genes in PCAWG. a, Candidate genes detected by 715 

HYENA in individual tumor types of PCAWG. TERT is plotted twice since it is detected in two 716 

cancer types. Genes labelled as red are known enhancer hijacking targets. b, Diverse types of 717 

candidate genes identified by HYENA in PCAWG. Numbers after tumor type names denote 718 

sample size in the corresponding tumor types. 719 

Figure 4. TOB1-AS1 activated by various types of SVs in pancreatic cancer. a, Normalized 720 

expression of TOB1-AS1 in samples with (n=7) and without (n=67) nearby SVs in pancreatic 721 

cancers. The boxplot shows median values (thick black lines), upper and lower quartiles (boxes), 722 

and 1.5× interquartile range (whiskers). Individual tumors are shown as black dots. b, Circos plot 723 

summarizing intrachromosomal SVs (blue, n=5) and translocations (red, n=3) near TOB1-AS1. c, 724 

Diagrams depicting putative enhancer hijacking mechanisms that activate TOB1-AS1 in one 725 

tumor with a 17:19 translocation (left panel) and another tumor with a large deletion (right 726 

panel). d, Predicted 3D chromatin interaction maps of TOB1-AS1 (left panel), UQCRFS1 727 

(middle panel), and the translocated region in tumor 9ebac79d-8b38-4469-837e-b834725fe6d5 728 

(right panel). The downstream fragment of the chromosome 19 SV breakpoint was flipped in 729 

orientation and linked to chromosome 17. H3K27Ac and CTCF ChIP-Seq data of PANC-1 cell 730 

line are shown at the bottom. The expected level of 3D contacts depends on linear distance 731 

between two genomic locations. Longer distances correlate with fewer contacts. Akita predicts 732 

3D contacts based on DNA sequences. The heatmaps are showing the ratio between predicted 733 

and expected contacts. The darkest red represent regions having 100 times more contacts than 734 

expected given the distance between the regions. e, Predicted 3D chromatin interaction maps of 735 

TOB1-AS1 (left panel) and KCNJ2 (middle panel) loci without deletion as well as the same 736 

region following deletion in tumor 748d3ff3-8699-4519-8e0f-26b6a0581bff (right panel).  737 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.01.09.523321doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.523321
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

 738 

Figure 5. 3D genome structures in the TOB1-AS1 locus in pancreatic cancer cell lines. a, 739 

TOB1-AS1 expression in pancreatic cancer cell lines in CCLE. The cell lines in red are selected 740 

for further studies. b and c, 3D genomic interactions in four pancreatic cancer cell lines. Black 741 

arrows represent SVs with off-diagonal interactions. The locations of TOB1-AS1 are marked by 742 

blue lines. In Panc 10.05, the blue arrow points to the CNV breakpoint and the dashed blue 743 

triangle represents the neo-subdomain formed due to the foldback inversion. d, The reference 744 

chromosome 17 and derived chromosomes in Panc 10.05. The chromosomes are not to scale. 745 

TOB1-AS1 is shown as small blue boxes in the chromosomes. e, Open chromatin measured by 746 

ATAC-Seq in PATU-8988S and PATU-8988T at the TOB1-AS1 locus. 747 

Figure 6. TOB1-AS1 promotes cell invasion and tumor metastasis. a, TOB1-AS1 and TOB1 748 

relative expression levels in PATU-8988T and PANC-1 cells transduced with TOB1-AS1 749 

overexpression vector (n=3) or control vector (n=3). b, TOB1-AS1 overexpression in PATU-750 

8988T (4 biological replicates) and PANC-1 (3 biological replicates) promoted in vitro cell 751 

invasion using Transwell assay. Each biological replicate was an independent experiment with 7 752 

technical replicates per experimental group. The average fold change of cell invasion was 753 

calculated after the background invasion measured in the absence of any chemotactic agent was 754 

subtracted from each technical replicate. P values were calculated by two-sided student t test. c, 755 

TOB1-AS1 overexpression in PANC-1 cells promoted in vivo tumor metastasis in the tail vein 756 

injection model. d, TOB1-AS1 overexpression in PANC-1 cells exacerbated in vivo tumor 757 

growth and spontaneous metastasis in the orthotopic tumor model. Images of radiance in 758 

immunodeficient mice are shown on the left while the quantifications of radiance are shown on 759 

the right. Eight mice were used in both overexpression group and the empty vector control. The 760 

images were analyzed by setting the regions of interest (ROIs) to mouse torsos and measuring 761 

the average radiance level (in p/sec/cm2/sr). e, Primary tumor burden and spleen metastatic 762 

burden were higher in the mice that were orthotopically injected with TOB1-AS1 overexpression 763 

PANC-1 cells. The bar plots show quantified total radiance with a set area (in p/sec). f, Targeting 764 

TOB1-AS1 by two ASOs. g, TOB1-AS1 knockdown in Panc 10.05 and PATU-8988S cells 765 

transduced with ASO1 (n=3), ASO2 (n=3) or non-targeting control ASO (NC) (n=3). h, TOB1-766 

AS1 knockdown suppressed Panc 10.05 (3 biological replicates) and PATU-8988S (3 biological 767 

replicates) cell invasion in vitro. Cell invasion fold change calculation is the same as in b. Two-768 

sided student t test was used. Error bars in all panels indicate standard error of the mean. 769 

  770 
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