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The study of protein folding mechanisms continues to be one of the most challenging problems in computational
biology. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape
versus various reaction coordinates, such as the fraction of native contacts, the radius of gyration, RMSD from the
native structure, and so on. In this paper, we present a combinatorial pattern discovery approach toward
understanding the global state changes during the folding process. This is a first step toward an unsupervised (and
perhaps eventually automated) approach toward identification of global states. The approach is based on computing
biclusters (or patterned clusters)—each cluster is a combination of various reaction coordinates, and its signature
pattern facilitates the computation of the Z-score for the cluster. For this discovery process, we present an algorithm of
time complexity c2RO((Nþnm) log n), where N is the size of the output patterns and (n3m) is the size of the input with
n time frames andm reaction coordinates. To date, this is the best time complexity for this problem. We next apply this
to a b-hairpin folding trajectory and demonstrate that this approach extracts crucial information about protein folding
intermediate states and mechanism. We make three observations about the approach: (1) The method recovers states
previously obtained by visually analyzing free energy surfaces. (2) It also succeeds in extracting meaningful patterns
and structures that had been overlooked in previous works, which provides a better understanding of the folding
mechanism of the b-hairpin. These new patterns also interconnect various states in existing free energy surfaces versus
different reaction coordinates. (3) The approach does not require calculating the free energy values, yet it offers an
analysis comparable to, and sometimes better than, the methods that use free energy landscapes, thus validating the
choice of reaction coordinates. (An abstract version of this work was presented at the 2005 Asia Pacific Bioinformatics
Conference [1].)
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Introduction

Understanding protein folding is one of the most challeng-
ing problems in molecular biology [2–7]. The interest is not
only in obtaining the final fold (generally referred to as
structure prediction) [8–10] but also in understanding the
folding mechanism and folding kinetics involved in the actual
folding process. Many native proteins fold into unique
globular structures on a very short time scale. The so-called
fast folders can fold into the functional structure from
random coil in microseconds to milliseconds. Recent advan-
ces in experimental techniques that probe proteins at
different stages during the folding process have shed light
on the nature of the folding kinetics and thermodynamics
[11–17]. However, due to experimental limitations, detailed
protein folding pathways remain unknown. Computer simu-
lations performed at various levels of complexity, ranging
from simple lattice models to all-atom models with explicit
solvent, can be used to supplement experiment and fill in
some of the gaps in our knowledge about folding mechanisms.

Large-scale simulations about protein folding with realistic
all-atom models still remain a great challenge [3–5,7].
Enormous effort is needed for this grand problem; one
example is the recent IBM Blue Gene project, which is aimed
at building a supercomputer with hundreds-of-teraflop to
petaflop computing power to tackle the protein folding

problem. Meanwhile, effective analyses of the trajectory data
from the protein folding simulations, either by molecular
dynamics or Monte Carlo, remains yet another challenge due
to the large number of degrees of freedom and the huge
amount of trajectory data. [18,19] Currently, the protein
folding mechanism is often characterized by calculating the
free energy landscape versus the so-called reaction coordi-
nates [3,20,21]. We and others have used various reaction
coordinates [3,20,21], such as the fraction of native contacts,
the radius of gyration of the entire protein, the root mean
square deviation (RMSD) from the native structure, the
number of b-strand hydrogen bonds, the number of a-helix
turns, the hydrophobic core radius of gyration, and the
principal components (PC) from principal component
analysis [20,22]. Searching for better reaction coordinates is
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still of great interest in protein folding mechanism studies.
These analyses have provided important information for a
better understanding of protein folding. However, it often
requires a priori knowledge about the system under study,
and the free energy contour maps usually result in too much
information reduction due to their limit in dimensionality,
which is often as low as two or three. Thus, better or
complementary analysis tools are in great demand.

It is also known that the folding process of many proteins
takes the amino acid coil through different intermediate
states before stabilizing on the final folded state. Therefore, a
first step toward understanding the folding process is to
identify these states. In this paper, we propose the use of a
combinatorial pattern discovery technique to analyze protein
folding trajectory data from simulation experiments. A novel
aspect of the current algorithm is that it incorporates
arbitrary and possibly different distribution functions of
the data in each dimension and guarantees complete and
accurate solution to the clustering problem. The procedure
involves computations of clusters of the data: each cluster has
a signature pattern describing all the elements of the cluster.
The simplicity of the pattern leads to easy interpretation of
and thus better understanding of the underlying processes
and facilitates the computation of a Z-score for the cluster. By
appropriate redundancy checks, the number of clusters is
made manageably small. The results of this method are
threefold. Firstly, the method is validated by comparing its
results with previously published results with a free energy
landscape analysis. Secondly, the method succeeds in extract-
ing meaningful new patterns and structures that had been
overlooked before. These new structures provide a better
understanding of the folding mechanism of a b-hairpin,
which is used as a case study in this paper. These new patterns
also interconnect various states in existing free energy
contour maps versus different reaction coordinates. This
success encourages us to postulate that the automatic
discovery will lead to much greater understanding of the
folding process. Thirdly, the method validates the choice of
reaction coordinates since the pattern discovery analysis
based on these reaction coordinates compares well with the
previous free energy based approaches.

Results/Discussion

Description of Models
Well-known simulation methods exist to carry out the

folding of a protein. However, it is often not sufficient to

obtain a succinct understanding of the folding process. The
task here is to understand the folding mechanism by
recognizing structural patterns or intermediate states that
the folding process goes through. For example, the folding of a
small protein, a b-hairpin, could be understood at a global
level in terms of the states shown in Figure 1. Although we
would aim to understand the folding of every protein in this
simplistic form, the current state of the art is far from this goal.
At each step of the simulation process, a configuration of

the solvated protein can be computed. However, the simu-
lation may be carried for nanoseconds to microseconds in
units of femtoseconds (10�15), so the number of such
intermediate configurations could easily be millions in
number. Hence, the task is to identify and capture represen-
tative intermediate configurations. Since working in the
structure space of the protein is extremely complex, research-
ers often identify a few key characteristic features of the
protein, or often so-called reaction coordinates, and study the
trends and variations in these reaction coordinates [21,23].
In this paper, we utilize a four-step process toward

understanding the folding of a protein (Figure 2). The first
step involves the in silico simulation that gives rise to a large
collection of data points, each point being an array of the
characteristic features of the folding protein at that time
point. For example, the radius of gyration or the number of
hydrogen bonds could be such features. In the Results/
Discussion section, we study the b-hairpin folding as a show
case and describe seven such characteristic features that we
have used previously in the study of this particular protein.
In the second step, we study these data points to extract the

characteristic set of features that we call pattern clusters.
Again, in the case of the b-hairpin, the data points are seven-
dimensional, corresponding to the characteristic features of
the protein at each time interval (see Table 1 for a small
portion of the data as an example). In the third step, these
patterns are filtered to retain the most significant ones. It is
very difficult to model the significant patterns in this domain,
so we have combined the second and third steps and use
appropriate parameters to filter out possibly insignificant
patterns: we use cluster size (in terms of rows) and the Z-scores.

Figure 1. A Hypothetical State Diagram of a Folding of Protein

A schema of the folding process for a small protein, a b-hairpin. It starts
with an unfolded state, U state, undergoes to a hydrophobic core
collapsed H state, and then to a partially folded P state before finally
ending at the folded F state.
DOI: 10.1371/journal.pcbi.0010008.g001
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Synopsis

The study of protein folding mechanisms continues to be one of the
most challenging problems in computational biology. Currently, the
protein folding mechanism is often characterized by calculating the
free energy landscape versus various reaction coordinates, such as
the fraction of native contacts, the radius of gyration, RMSD from
the native structure, and so on. In this paper, the authors present a
combinatorial pattern discovery approach toward understanding
the global state changes during the folding process. This is a first
step toward an unsupervised (and perhaps eventually automated)
approach toward identification of global states. The authors apply
this approach to a b-hairpin folding trajectory and demonstrate that
this approach extracts crucial information about protein folding
intermediate states and mechanism.



The fourth step is to analyze the patterns. This involves
extracting the structure of the configuration using the time
coordinates and studying the correlation of the different
structures. For instance, one could observe that the hydro-
phobic core is formed before the b-strand hydrogen bonds,
or vice versa; and one can interconnect various free energy
states in different free energy surfaces by monitoring the
high-dimensional (multi-column) patterns. These findings can
provide a better understanding of the protein folding
mechanism. Further, the time correlation between various
patterns or states could be studied. For example, it is
extremely useful to know which pattern or state precedes
the other and by how much time.

Here, we describe in detail the second and third steps in
our approach, as shown in Figure 2. We model the extraction
problem as a combinatorial detection problem for at least
three specific reasons: (1) The data are obtained from a
replica exchange molecular dynamics (REMD) method [24]
(more details below). This method is essentially a Monte Carlo
method; thus, the time series is not strictly real time due to
the random Monte Carlo exchange process. Also, our interest
is in finding pattern clusters that are not necessarily
correlated in time. (2) This emphasizes that any probabilistic
(or non-deterministic) component can be isolated from the
algorithm and the problem. Any high-frequency noise can be
largely resolved through an introduction of a d function (see
below). (3) The signature pattern of the cluster helps
interpret the clusters quite easily. Also, in comparison to
the straightforward grouping or clustering algorithms in
previous publications [21,25], this provides a complete and
efficient (in linear time) method to find the signature
patterns. It must be pointed out that this is the critical
reason why we chose to use this method, since this enables us

to have a tighter control on an acceptable cluster that is also
meaningful in terms of the folding process.
A small but important protein systemhas been selected as an

example to demonstrate our approach to understanding the
folding process. This small protein is a 16-residue b-hairpin
(GEWTYDDATKTFTVTE) from the C-terminus of protein G
(residues 41–56 of PDB file 2gb1.pdb). Its folding mechanism
and folding free energy states have been studied extensively in
previous works [21,23]. The current study will use our new
approach to analyzing the existing trajectories from the
previous REMD simulations in explicit solvent [21,24]. The
REMDmethod couples molecular dynamics trajectories with a
temperature-exchange Monte Carlo process for efficient
sampling of the conformational space. In this method, replicas
are run in parallel at a sequence of temperatures ranging from
the desired temperature to a high temperature at which the
replica can easily surmount the energy barriers. From time to
time, the configurations of neighboring replicas are ex-
changed and this exchange is accepted by a Metropolis
acceptance criterion that guarantees the detailed balance.
Because the high-temperature replica can traverse high-
energy barriers, this provides a mechanism for the low-
temperature replicas to overcome the quasi-ergodicity they
would otherwise encounter in a single-temperature replica.
This b-hairpin has received much attention recently from

both experimental and theoretical fronts [11,13,14,18,20,26–
30]. The b-sheets and a-helices are the key secondary
structures in proteins. It is believed that understanding the
folding of these elements will be a foundation for investigat-
ing larger and more complex structures. The study of isolated
b-sheets has for a long time been limited by the lack of an
amenable experimental system. The breakthrough experi-
ments by Serrano [11] and Eaton [13] groups have recently

Table 1. A Small Portion of the Raw Data from the REMD
Sampling of the b-Hairpin Folding in Explicit Water

J1
Nb
HB

J2
Rcore
g

J3
Rg

J4
q

J5
PC-1

J6
PC-2

J7
RMSD

5.000 5.175 8.653 1.000 �7.819 �34.008 0.000

4.468 5.394 8.425 0.991 �7.908 �35.604 1.575

4.474 5.328 8.361 0.953 �7.972 �35.772 1.595

4.354 5.416 8.471 0.988 �7.899 �36.399 1.379

4.159 5.589 8.379 0.938 �8.171 �34.609 1.439

4.000 5.445 8.418 0.933 �8.724 �35.593 1.626

4.053 5.257 8.298 0.893 �8.373 �35.536 1.708

3.776 5.186 8.381 0.857 �7.777 �35.415 1.624

2.398 5.268 7.795 0.778 �2.749 �26.391 3.726

2.155 5.390 7.816 0.778 �2.277 �27.017 3.672

4.842 6.043 7.312 0.778 2.144 �33.772 5.208

0.000 8.466 10.134 0.249 �24.492 44.625 10.357

0.000 8.303 10.033 0.242 �27.075 43.521 10.163

2.047 5.132 7.628 0.776 �3.238 �24.998 3.927

3.797 5.990 7.514 0.728 �3.084 �30.185 4.838

2.898 5.483 7.775 0.778 �2.888 �26.254 3.904

..... ..... ..... ..... ..... ..... .....

For simplicity, we refer to J1, J2,. . .,J7 rather than the detailed reaction coordinate names in the following tables and text.

(1) Nb
HB : the number of native b-strand hydrogen bonds

(2) Rcore
g : radius of gyration of the hydrophobic core residues (TRP43, TYR45, PHE52, and VAL54)

(3) q: radius of gyration of entire protein (Rg)

(4) fraction of native contacts

(5) PC-1: the first PC from Principal Component Analysis [20–22]

(6) PC-2: the second PC

(7) RMSD: the backbone RMSD from the native structure

DOI: 10.1371/journal.pcbi.0010008.t001

Figure 2. The Flowchart of the Process of Understanding a Folding

Protein

Step 1 starts with millions of data points obtained from the simulation
experiments. Step 2 extracts the recurring patterns, reducing the size of
the data to be studied down to thousands. Step 3 further reduces down
this to a representative set of a handful states, which are studied in detail
in Step 4. The structures are extracted, and a possible state diagram
summarizing the path of the folding protein is elucidated.
DOI: 10.1371/journal.pcbi.0010008.g002

PLoS Computational Biology | www.ploscompbiol.org June 2005 | Volume 1 | Issue 1 | e80034

Pattern Discovery for Protein Folding



established this b-hairpin as the system of choice to study b-
sheets in isolation. These pioneering experiments inspired a
number of theoretical works on this system with various
models [18,20,21,26,27,31,32]. However, there are still a
number of important aspects that remain controversial, such
as the relative importance and time-sequential order between
the b-strand hydrogen bonds formation and the hydrophobic
core formation, and the existence of a-helical intermediates
during the folding.

Simulation Parameters
In this study, an all-atom model—The Optimized Potential

for Liquid Simulations-All-Atom force field [33] with an
explicit solvent model, Simple Point Charge model [34]—is
used for the description of the protein solvated in water. A
total of 64 replicas of the solvated system consisting of 4,342
atoms is simulated with temperatures spanning from 270 K to
695 K. For each replica, a 3-nanosecond molecular dynamic
simulation is run with replica exchanges attempted every 400
femtoseconds. The reader is directed to [21,23] for details of
this simulation. For each conformation, seven different
reaction coordinates are used (Table 1). There are a total of
about 20,000 conformations saved for each replica. Table 1
lists a small portion of the data for the replica at 310 K, which
is the biological temperature.

These simulations have revealed a hydrophobic-core-
driven folding mechanism from free energy contour map
analysis [21]. Since this is a well-studied system and a large
amount of data is available, comparisons with other analysis
tools, such as the free energy contour map analysis, might be
easier and more straightforward. Various reaction coordi-
nates obtained from previous runs serve as the starting point.

Discovery Parameters
Although we developed the framework for a very general d

function, for simplicity, in this section we treat d(x) to be a
constant function. Thus, d(x) ¼ c for some constant c 2 R for
each x. The d functions for each column of Table 1 is given as
follows: d1(x)¼0.2, d2(x)¼0.6, d3(x)¼0.35, d4(x)¼0.15, d5(x)¼5.0,
d6(x) ¼ 16.5, d7(x) ¼ 1.0 for all x. Further, the quorum k is
defined to be 2,000. Table 2 lists some representative patterns
of size two with these parameters. The time sequences are not
shown due to the space constraints. These simple patterns can
be directly compared with the previous free energy states in
the three-dimensional free energy contour maps. These are
three-dimensional plots of free energy versus a pair of
reaction coordinates or data columns of Table 1.

One might often want to study detailed patterns or
structures in some predefined subregions such as the
structures in the unfolded ensemble. More evidence has
shown that the protein structures in unfolded states are not
fully extended but often have well-defined structures instead
[35]. This can also avoid the problem that important patterns
in these less populated areas are being overlooked due to a
smaller population than the predefined quorum k. Thus,
some less populated free energy states in free energy
landscapes can be recovered by reducing the quorum. Hence,
another set of parameters have been used, and here we
confine our search to data points with Nb

HB ¼ 0:0 and Rcore
g .

5.0 Å (see Table 1 for definitions of these reaction
coordinates) with k ¼ 100. Yet another set of parameters

have included Nb
HB ¼ 0:0 and Rcore

g . 9.0 Å with k¼50. A subset
of the results is shown later. Thus, this approach might be
useful for hierarchical pattern searches that gradually zoom
into the predefined subsets of data.

Analysis of Results
To obtain a representative structure(s) from a set of con-

figurations ci, the set is partitioned into a minimum number of
groups Gj such that for each Gj there exists a representative
cji 2 Gj, and for each ck 2 Gj the structure corresponding to ck is
at most 1 Å RMSD from c ji. Thus, each Gjwill be represented by
a structure corresponding to c ji [21,26].
Recovering known free energy states. Obviously, the first

question of importance is: Can we recover the previously
found free energy states in the new approach? The ‘‘time
sequence’’ of each pattern is then used to extract the
corresponding conformations of the protein. Figure 3A shows
a representative or most populated structure for the first
pattern ( J1ðNb

HBÞ¼4.8866 0.2, J2ðRcore
g Þ¼5.4486 0.6 ) in Table

2. This structure mimics the representative structure from the
folded state (F state) in the free energy contourmap versusNb

HB
and Rcore

g very well. Thus this pattern resembles the F state of
the free energy contour map. Similarly, the second pattern of
Table 2 ( J1ðNb

HBÞ ¼ 2.875 6 0.2, J2ðRcore
g Þ ¼ 5.448 6 0.6)

resembles the partially folded state, P state, in the same free
energy landscape. The structures for the two patterns are
shown in Figure 3. Thus, our approach recovers the most
populated states in the free energy landscape analysis.
The third and fourth patterns in Table 2 also resemble the F

state and P state, respectively, in the same free energy contour
mapversusNb

HB andR
core
g . Numerous other patterns have shown

similar results, i.e., recovering various previously found free
energy states in the free energy contour maps versus different
reaction coordinates. It should be noted, though, that many
patterns might be redundant, either because the d() function
values given for reaction coordinates are too wide, or because
some of the reaction coordinates are highly correlated. For
example, the fifth pattern of Table 2 is Rcore

g ¼4.9796 0.6, Rg ¼
8.1446 0.35. Clearly, these two reaction coordinates are highly
correlated, since Rcore

g measures the radius of gyration of four
key residues out of the total 16 that are measured by Rg.
However, for many other cases, it may not be so obvious.
Interconnecting various free energy landscapes. More

complicated patterns with many reaction coordinates are
also found in the current approach, which had been
previously undetected. In the traditional free energy land-
scape analysis, typically one or two reaction coordinates are
used at each time, since a two- or three-dimensional free

Table 2. Simple Patterns of Size Two

ID Size Cluster Pattern

(1) 2 J1 ¼ 4.886 6 0.2 J2 ¼ 5.448 6 0.6

(2) 2 J1 ¼ 2.875 6 0.2 J2 ¼ 5.448 6 0.6

(3) 2 J2 ¼ 4.979 6 0.6 J4 ¼ 0.816 6 0.15

(4) 2 J2 ¼ 5.871 6 0.6 J4 ¼ 0.686 6 0.15

(5) 2 J2 ¼ 4.979 6 0.6 J3 ¼ 8.144 6 0.35

These patterns can be easily compared to the three-dimensional free energy landscapes using a pair of

corresponding reaction coordinates.

DOI: 10.1371/journal.pcbi.0010008.t002
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energy contour map is usually plotted. It is extremely difficult
to visualize high-dimensional free energy landscapes in order
to identify the free energy basins or barriers. Table 3 lists
some of these complicated patterns with up to six reaction
coordinates. Of course, as pointed out earlier, some reaction
coordinates might be correlated, so the data in each reaction
coordinate may not be totally independent. Nevertheless, it
still reveals some interesting new findings. First of all, these
patterns can interconnect various free energy states in
different free energy landscapes. This might not be so
obvious in free energy surfaces themselves. For example,
the sixth pattern in Table 3, (Rg ¼ 8.144 6 0.35, q ¼ 0.815 6

0.15, PC-1 ¼�5.881 6 5.0, PC-2 ¼�33.574 6 16.5, RMSD ¼
3.292 6 1.0), interconnects the following two free energy
surfaces, one versus PC-1and PC-2 (Figure 4A), and the other
versus q and Rg (Figure 4B). The states corresponding to the
free energy well (of value ’�8 KT) near PC-1¼�5.9, PC-2¼
�33.6 in Figure 4A and q¼ 0.82, Rg¼ 8.1 in Figure 4B are the
same free energy state since they consist of the same clusters
in the same pattern. In this particular case, obviously they all
represent the folded state (F state).

Understanding folding mechanism better. More impor-
tantly, the new approach reveals important structures
overlooked previously, which might help understand the
folding mechanism better. Eaton and coworkers [13,14]
proposed a ‘‘hydrogen bond zipping’’ mechanism for this b-

hairpin, in which folding initiates at the turn and
propagates toward the tails by making b-strand hydrogen
bonds one by one, so that the hydrophobic core, from which
most of the stabilization derives, forms relatively late during
the folding. In our previous study, we proposed a different
folding mechanism, in which this b-hairpin undergoes a
hydrophobic core collapse first, then makes native b-strand
hydrogen bonds to make over the free energy loss due to the
loss of H-bonds between the backbone atoms and water.
Figure 5A shows a representative structure for the eighth
pattern in Table 3, (Nb

HB ¼ 4.950 6 0.2, Rg ¼ 8.013 6 0.35,
q ¼ 0.848 6 0.15, PC-1 ¼ �5.881 6 5.0, PC-2 ¼ �33.574 6

16.5, RMSD ¼ 3.292 6 1.0). The structure shows that all five
native b-strand H-bonds have been formed, but the hydro-
phobic core is not completely aligned yet. The loop region
also bends toward the hydrophobic core to somewhat offset
the non-perfect hydrophobic core. These structures with H-
bonds that are formed but with their hydrophobic core not
perfectly aligned (RMSDs up to 4 Å) imply that the hairpin
can also have a path to form b-strand hydrogen bonds
before the core is finalized. The current findings indicate
that the final hydrophobic core and b-strand hydrogen
bonds might be formed almost simultaneously. This can also
be seen from the low free energy barrier in free energy
landscapes as discussed before [21]. Interestingly, Thirumalai
et al. also found that the lag time between collapse and

Table 3. Complex Patterns of Size up to Six

ID Size Cluster Pattern

(1) 3 J2 ¼ 5.375 6 0.6 J3 ¼ 7.971 6 0.35 J5 ¼ �5.881 6 5.0

(2) 3 J2 ¼ 5.375 6 0.6 J4 ¼ 0.743 6 0.15 J5 ¼ �5.881 6 5.0

(3) 3 J1 ¼ 4.903 6 0.2 J4 ¼ 0.796 6 0.15 J6 ¼ �33.574 6 16.5

(4) 4 J1 ¼ 4.903 6 0.2 J2 ¼ 5.375 6 0.6 J4 ¼ 0.870 6 0.15 J6 ¼ �33.574 6 16.5

(5) 4 J1 ¼ 4.903 6 0.2 J2 ¼ 5.375 6 0.6 J5 ¼ �5.881 6 5.0 J6 ¼ �33.574 6 16.5

(6) 5 J3 ¼ 8.144 6 0.35 J4 ¼ 0.815 6 0.15 J5 ¼ �5.881 6 5.0

J6 ¼ �33.574 6 16.5 J7 ¼ 3.292 6 1.0

(7) 5 J3 ¼ 8.144 6 0.35 J4 ¼ 0.902 6 0.15 J5 ¼ �3.855 6 5.0

J6 ¼ �33.574 6 16.5 J7 ¼ 3.292 6 1.0

(8) 6 J1 ¼ 4.950 6 0.2 J3 ¼ 8.013 6 0.35 J4 ¼ 0.848 6 0.15

J5 ¼ �5.881 6 5.0 J6 ¼ �33.574 6 16.5 J7 ¼ 3.292 6 1.0

(9) 6 J2 ¼ 5.748 6 0.6 J3 ¼ 8.013 6 0.35 J4 ¼ 0.848 6 0.15

J5 ¼ �5.881 6 5.0 J6 ¼ �33.574 6 16.5 J7 ¼ 3.800 6 1.0

DOI: 10.1371/journal.pcbi.0010008.t003

Figure 3. Representative Structures for Two Patterns

Hydrophobic residues TRP43, TYR45, PHE52, and VAL54 are represented by spacefill, and the rest of the residues are represented by ribbons. (A) Pattern 1
in Table 2 captures the folded state (F state) in free energy contour map analysis [21]. (B) Pattern 2 in Table 2 captures the partially folded state (P state) in
the same free energy contour map.
DOI: 10.1371/journal.pcbi.0010008.g003
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hydrogen bond formation is very short and the two
processes occur nearly simultaneously [32]. It should be
pointed out that the turn (loop) formation is critical in this
b-hairpin folding mechanism, since the hydrophobic core
and b-strand hydrogen bonds need to be packed or formed
at right positions. Interestingly, this is also reported by other
groups [15–17]. For example, Gai and coworkers studied a
related b-hairpin, Trp-zipper hairpin, and found that the
rate-limiting event corresponds to the turn formation
[15,16]. Moreover, the authors pointed out that a stronger
turn-promoting sequence increases the stability of the
hairpin primarily by increasing its folding rate, whereas a
stronger hydrophobic cluster increases the stability primar-
ily by decreasing its unfolding rate [15,16].

Finally, the patterns of subsets of data in less populated
states, such as the unfolded state, are studied in detail by
zooming into these regions with a smaller quorum k and a
different set of d(). As mentioned earlier, more evidence has
shown that the protein structures in unfolded states are not

fully extended, but often have well-defined structures instead
[35]. The first pattern in Table 4 (Nb

HB ¼ 0.0, Rcore
g ¼ 5.448 6

0.5) resembles the previous H-state in free energy contour
map versus Nb

HB and Rcore
g , where the hydrophobic core is

largely formed but no native b-strand H-bonds have been
made yet. Figure 5B shows a representative structure of this
pattern, which mimics the structures from previous H-state
very well. Figure 5C shows a representative structure for the
sixth pattern in Table 4, (Nb

HB ¼ 0.0, Rcore
g ¼ 9.951 6 0.35, q ¼

0.050 6 0.15, PC-1 ¼�21.188 6 15.0, PC-2 ¼ 36.517 6 15.0,
RMSD ¼ 9.872 6 0.8). This is the most populated structure
of this b-hairpin in unfolded state. Even though not many
structural features are found in this structure, it is certainly
not fully extended either. Since this is a very small protein
with only one secondary structure in the native state, not
much has been identified in the unfolded state; for larger
and more complicated protein systems, such as lysozymes,
more structural features might be expected in the unfolded
state as found by recent experiments [35].

Figure 4. Free Energy Landscapes

Free energy landscapes versus (A) the principal components PC-1 and PC-2, and (B) the fraction of native contact q and the radius gyration of the
peptide Rg at 310 K. The interconnected free energy wells described by the pattern are near�8KT at PC-1¼�5.9, PC-2¼�33.6 in (A) and at q¼ 0.82,
Rg ¼ 8.1 in (B) (see text for more details).
DOI: 10.1371/journal.pcbi.0010008.g004

Figure 5. Representative Patterns and Structures

(A) Pattern 6 of Table 3, which represents a new class of structures previously overlooked in free energy landscape analysis.
(B) Pattern 1 of Table 4, which captures the H state (hydrophobic core formed but no b-strand H-bonds) in free energy contour map analysis [21].
(C) Pattern 2 in Table 2 captures the unfolded state (U state) in the same free energy contour map. The hydrophobic residues TRP43, TYR45, PHE52, and
VAL54 are represented by spacefill, and the rest are represented by ribbons.
DOI: 10.1371/journal.pcbi.0010008.g005
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Conclusion
In this paper, we have presented a method to enhance our

understanding of protein folding mechanisms. At the heart of
this method is a combinatorial pattern-discovery algorithm
that analyzes multi-dimensional data from the simulation of
the protein folding trajectory. The approach is based on
pattern computation, each pattern being defined by a cluster
of the reaction coordinates. A small but important protein
system, a b-hairpin from the C-terminus of protein G, is then
used to demonstrate this approach. It is shown that the
method not only reproduces the previously found free energy
states in free energy contour maps, but also reveals new
information overlooked previously in free energy landscape
analysis about the intermediate structures and folding
mechanism. It is also shown to be useful in making
interconnections between various three-dimensional free
energy surfaces versus different reaction coordinates and
also explains the mechanism behind the folding process. The
method also validates the choice of reaction coordinates as
the analysis without using free energy values compares well
with the ones that use them. The success with b-hairpin is
very encouraging, and we are currently exploring the
application of this method to other larger protein molecules.

As stated in the Introduction section, it is important to
study the time correlation between various patterns or states.
For example, it is extremely useful to know which pattern or
state precedes the other and by how much time. Of course,
this requires real-time trajectory data. The current study uses
the previous trajectories of REMD, which is a Monte Carlo
method; thus, the time sequence in the data points is not real
time. After this method’s success with the current data, we
believe that we will be able to garner time correlation of the
patterns, and we are currently investigating this.

Materials and Methods

We first define the problem at hand and then give a linear time
algorithm to solve the problem. The number of clusters can be easily
controlled by the use of an appropriate d() function (see below).

Combinatorial problem description. In this section, we describe the
combinatorial problem. Here, we also make some simple observations
that have quite useful and practical implications (such as linear
number of d-clusters and so on). They also indicate to the extent
different functions (such as the form of d()) can be relaxed without
sacrificing the general framework presented in this section. A reader
may skip the statements and the proofs of these observations without
any loss of continuity. Definitions 1 and 2 identify the pattern
discovery or the clustering problem used in this paper, and the
Results/Discussion section describes an output-sensitive algorithm to
discover them.

First, we begin with a general definition of the d-cluster and d()
function and also present the conditions under which the number of
patterns are small.

Definition 1. (d-cluster, maximal d cluster) Given d() : R ! Rþ,
vi 2 R, 1 � i � n and a quorum k. A d-cluster is collection of i with
vi 2 Vc, jVcj � k such that if v1; v2 2 Vc, then jv1 � v2j � 1

2 ðdðv1Þþ
dðv2ÞÞ. Further, Vc is maximal if there exists no Vc such that
Vc � Vc � V and Vc is a d-cluster.

Although using a general d() function opens the possibility of
various pre-processing of the data, it is important to identify a
reasonable d() function. We impose the following condition on d(),
calling it the constrained d function. Given any three data elements
with m1 , m2 , m3, if (v3 � d(v3)) � (v1 þ d(v1)) then (v2 � d(v2)) � (v3 �
d(v3)) and (v2 þ d(v2)) � (v1 þ d(v1)).

This is a reasonable condition on an acceptable d() function, as can
be seen from the consequence of the imposed constraint in Lemma 1.
A multitude of continuous functions satisfy this condition, and in the
rest of the paper we will assume that d() function we use also satisfies
this condition.

Lemma 1. A d-cluster on m1 , m2 , . . .mn
is of the form mi , miþ1,. . .,miþl.
Let V be a d-cluster with mmin (mi) as the minimum and mmax (miþl)

as the maximum elements. Since mmax and mmin are in the d-cluster,
mmax � d(mmax) � mmin þ d(mmin). Thus, for any vi 2 V , by the imposed
condition, then mi� d(mi) � mmax� d(mmax) and mi� d(mi) � mminþ d(mmin):

½vi � dðviÞ; vi þ dðviÞ� � ½vmin � dðvminÞ; vi þ dðvminÞ� \ ½vmax � dðvmaxÞ;

vi þ dðvmaxÞ�

Thus, the containment of the intervals is as shown; hence, for each
mi , mmin , mi , mmax, vi 2 d-cluster.

Lemma 2. The number of maximal d-clusters is no more than n
where d() is constrained.

By Lemma 1, any d-cluster is an interval (contiguous elements on the
sorted list) on the sorted list of data elements.Wewill show that any two
intervals that correspond to twomaximald-clusters cannotbe such that
one is contained in the other. Assume the contrary that one is con-
tained in the other. Clearly, by the definition ofmaximality, the smaller
interval is not maximal, leading to a contradiction. As no interval is
contained in the other, it is possible to assign a unique element on the
sorted data elements to each interval. Thus, the number of intervals
cannot exceed the number of data elements, hence the result.

Corollary 1. If d(x)¼ c for some c 2 R, then the number of d-clusters
is no more than n.

The bicluster takes into account the different columns or features
in the data: the natural definition of such a cluster is given below.

Definition 2. (bicluster, maximal bicluster) Given d j() : R ! Rþ,
quorum k and vij 2 R, 1� j� m, 1� i � n. A bicluster is collection i and
j with vij 2 Vc such that for each j, fvij 2 Vcj1 � i � ng is a dj-cluster.
Further, Vc is maximal if there exists no additional i9 or j9 with the
corresponding Vc with Vc � Vc � V such that Vc is a bicluster.

For ease of reference, the bicluster will be also called a pattern
cluster since a cluster can be represented by the signature pattern (J1
¼ c1, J2 ¼ c2,..., JL ¼ cL), where viJk 2 Vc, 1 � k � L. These J1, J2,..., JL
represent various reaction coordinates from the protein folding
trajectory (shown in Table 1). This representation is more suitable for
interpreting the results, as seen in other sections of this paper. The
size of the bicluster is L, and k is the number occurrences or quorum
of the cluster.

Table 4. Clusters with (1) J1 ¼ 0.0, J2 � 5.0, k ¼ 50 and (2) J1 ¼ 0.0, J2 � 10.0, k ¼ 100

ID Size Cluster Pattern

(1) 1 J2 ¼ 5.448 6 0.5

(2) 2 J3 ¼ 10.218 6 0.2 J4 ¼ 0.050 6 0.15

(3) 2 J3 ¼ 10.773 6 0.2 J5 ¼ �21.188 6 15.0

(4) 3 J3 ¼ 10.208 6 0.2 J4 ¼ 0.050 6 0.15 J7 ¼ 9.299 6 0.8

(5) 4 J2 ¼ 9.632 6 0.5 J3 ¼ 10.302 6 0.2 J5 ¼ �21.188 6 15.0 J7 ¼ 9.299 6 0.8

(6) 5 J2 ¼ 9.951 6 0.5 J4 ¼ 0.050 6 0.15 J5 ¼ �21.188 6 15.0

J6 ¼ 36.517 6 15.0 J7 ¼ 9.872 6 0.8

To avoid clutter, the J1 values are not shown.

DOI: 10.1371/journal.pcbi.0010008.t004
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Lemma 3. The following are a consequence of the maximality
constraint: (1) If a collection of i is such that vij 2 Vc where Vc is a
maximal d-cluster for some j, then there exist no other maximal d-
cluster Vc neVc such that vij 2 Vc. (2) If a collection of j is such that
vij 2 Vc where Vc is a maximal d-cluster for some j, then there exist no
other maximal d-cluster Vc neVc such that vij 2 Vc.

Lemma 4. Given vij 2 R, 1 � j � m, 1 � i � n. the number of
maximal biclusters is no more than n2m.

In a maximal bicluster Vc for some j, fvij 2 Vcg is not necessarily
maximal. The number of such clusters by Lemma 2 can be no more
than n2. By Lemma 3, this can belong to only one maximal bicluster.
Thus, there can be no more than n2m maximal biclusters, since there
are m columns.

The linear time algorithm. Similar descriptions of bicluster
detection appear in [36], in which the authors present only an
empirical time bound (linear with output size). G. Alexe and P.L.
Hammer also present an incremental polynomial time algorithm with
a total running time of O(Nnm2) (personal communication). N is the
number of patterns in the output, and (n3m) is the size of the input.
In this section, we present an output-sensitive algorithm that
computes all the maximal biclusters. The algorithm has two main
steps. In the first step, the maximal d-clusters are computed, and in
the second step, the maximal biclusters are computed using the
clusters of the first step.

Step 1: Maximal dj-cluster computation. For each j, 1 � j � m,
compute the maximal dj -cluster, V

j
l . For simplicity, let the number

of these be Lj and the clusters be V j
l , 1 � l � Lj and they are computed

as described below. We present a simple algorithm that does a linear
scan of the sorted entries vij for each fixed j using two pointers i and l:
i tracks the start of the cluster, and l tracks the end of the cluster. The
end pointer is incremented until it is no longer a cluster satisfying the
d() function, and only then the start pointer is incremented. The
pseudocode, Compute-Cluster(), describes the maximal d-cluster com-
putations, for each j. To avoid clutter, the end-of-input check is not
included in the code.

Compute-Cluster()
(1) Sort the mi’s to obtain m1, m2, . . ., mn
(2) i ‹ 1, l ‹ i þ 1
(3) If jvi � vlj � 1=2ðdðviÞ þ dðvlÞÞ
(4) Then l ‹ l þ 1, go to Step (3)
(5) Else Ci ¼ fvj ji � j, lg,
i ‹ i þ 1, go to Step (3)
Next, for each mij, 1 � i � n, 1 � j � m, a set of d-clusters v9ij is

computed as follows: v9ij ¼ fVj
‘jvij 2 Vj

‘; 1 � ‘ � Ljg:
Step 2: Maximal bicluster computation. The algorithm in this step

is based on the set intersection problem described previously [37] in
the context of computing redundant motifs from irredundant ones.
The algorithm works on v9ij,1 � i � n,1 � j � m, of the last step.

We describe a simple recursive algorithm to solve this problem.
This algorithm implicitly constructs a tree in a depth-first manner
where (1) each level corresponds to a distinct j, hence the height of the
tree is m, and (2) each non-leaf node at level l corresponds to j¼ (m� l)
(the root at level 0 corresponds to (j ¼ m), and has at most (Lj þ 1)
children, the ‘th child, 1 � ‘ � Lj , corresponds to the d-cluster Vj

c‘ and
the very last child ([Lj þ 1]th child) ignores the Vj

‘ d-clusters. The
algorithm is efficient due to the two following factors: (1) use of a data
structure (D in the pseudocode below) to store the maximal biclusters,
so that searching for an arbitrary one can be done quickly, and (2)
terminating the tree traversal appropriately. The data structure
suggested for use is a tree so that each query takes log n time. The
terminating condition (line [2.4] of the pseudocode) is such that each
leaf node corresponds to either the maximal bicluster defined by the
d-clusters (feature values)fVj1

cð:Þ;V
j2
cð:Þ; . . . ;V

jp
cð:Þg where j1 � j2 . . . � jp or

its variants of the form fVjq
cð:Þ;V

jqþ1

cð:Þ ; . . . ;V
jp
cð:Þg where 1 � q � q.

The pseudocode of the recursive routine Generate-Set() shown
below, describes the algorithm. Assume a function Add-set (R,C),
which inserts R, a subset of integers between one and n, in a tree data

structure D, along with the accompanying set C: then a query of the
form if a set R exists in D takes O(log n) time. The initial call is
Generate-Set (f1,2,. . .,ng,/,m)).

Generate-Set (R,C,j)
(1) If (j � 0) then exit
(2) For ‘ ¼ 1 . . .Lj

Let R‘ ¼ fi 2 RjVj
c‘ 2 v9ijg

Let C‘ ¼ C [ fVj
c‘g

If R9‘ exists in D (as (R0,C 0)), add C9‘ to C 0
Else
Add-set (R9‘;C‘) to D
Generate-Set (R9‘;C9‘; j � 1Þ
(3) Generate-Set (R,C,j � 1)
The maximal biclusters are fvij ji 2 R; ðVj

c‘ 2 CÞ 2 v9ijg, for each
computed (R,C) stored in D.

Analysis of the algorithm. We first show that the algorithm is
correct in computing all the maximal biclusters and next show that
the algorithm runs in time linear with the size of the output.

Correctness of the Algorithm. We first show that each computed
(R,C) is a bicluster. By the construction, for each j, fvij ji 2 Rg is a d-
cluster. Thus (R,C) is a bicluster. Next, we have to show that it is
maximal. Assume it is not. Then there exists vij such that
Vk ¼ R [ fvi9j jvij 2 R for some jg is a bicluster. Hence for each j,
fvij jvij 2 R9g is a d-cluster. Then in the subroutine call Generate-Set
(R,C,i9) of the pseudocode , this set must have been created, leading to
a contradiction. Hence, the assumption is wrong.

Next, assume there exists vij 9 such that R9 ¼ R [ fvij 9jvij 2 R
for some ig is a bicluster. Hence for each j, fvij jvij 2 R9g is a d-
cluster. Then in Step 3 of the subroutine call Generate-Set(R,C,i), Vd
corresponding to j9 must have been included, leading to a contra-
diction. Hence, the assumption is wrong. Thus, all the computed sets
are maximal biclusters. By similar arguments, it is easy to see that if
there is any maximal bicluster defined on the data set, it must one of
the computed R’s.

Complexity of the Algorithm. Assume the input elements are mij, 1
� i � n, 1 � j � m. Consider the first step of computing the d-clusters
for each j. The sorting of the elements mi, 1 � I � n takes O(n log n)
time. The algorithm works by scanning the input from left to right,
say i to Iþ s, where the set fmi , miþ1 ,. . ., miþs g is a maximal d-cluster.
Then the input is scanned from iþ1, iþ sþ1, iþ sþ2,. . . onwards and
so on. Thus, each data element is visited no more than twice.
Assuming the comparison can be made in constant time, this step of
the algorithm takes O(n log n þ n) ¼ O(n log n) time for each j.

Next, consider the second step of computing the maximal
biclusters. Notice that the search in Step (2.4) of the subroutine
Generate-Set can be done in log n time. In the recursive-call tree
structure (of the subroutine Generate-Set), each leaf node corresponds
to a maximal bicluster. In a tree, the number of internal nodes is
bounded by the number of leaf nodes and each leaf node is hit only as
many times as the number of features in each pattern, thus assuming
the output size is N (the total number of features in all the maximal
biclusters) and the second step of the algorithm takes O(N log n) time.
Thus, the time taken by the complete algorithm is O((nmþ N) log n),
where N is the size of the output and nm is the size of the input.
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