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A B S T R A C T   

It is estimated that greater than 1 million workers are exposed to welding fume (WF) by inhalation daily. The 
potentially toxic metals found in WF are known to cause multiple adverse pulmonary and systemic effects, 
including cardiovascular disease, and these metals have also been shown to translocate to the liver. This occu-
pational exposure combined with a high fat (HF) Western diet, which has been shown to cause hyperlipidemia 
and non-alcoholic fatty liver disease (NAFLD), has the potential to cause significant mixed exposure metabolic 
changes in the liver. The goal of this study was to use matrix assisted laser desorption ionization imaging mass 
spectrometry (MALDI-IMS) to analyze the spatial distribution and abundance changes of lipid species in Sprague 
Dawley rat liver maintained on a HF diet combined with WF inhalation. The results of the MALDI-IMS analysis 
revealed unique hepatic lipid profiles for each treatment group. The HF diet group had significantly increased 
abundance of triglycerides and phosphatidylinositol lipids, as well as decreased lysophosphatidic lipids and 
cardiolipin. Ceramide-1-phosphate was found at higher abundance in the regular (REG) diet WF-exposed group 
which has been shown to regulate the eicosanoid pathway involved in pro-inflammatory response. The results of 
this study showed that the combined effects of WF inhalation and a HF diet significantly altered the hepatic 
lipidome. Additionally, pulmonary exposure to WF alone increased lipid markers of inflammation.   

1. Introduction 

Inhalation of welding fumes (WF) is a common occupational expo-
sure. It has been estimated that 1.2 million workers are exposed to WF 
daily in the U.S. [1,2]. Even greater numbers of welders, believed to be 
in the millions, are exposed to WF worldwide. Generated WF are a 
mixture of micro- and nanoparticles composed of different potentially 
toxic metals, such as iron, manganese, chromium, and nickel [3–5]. The 
composition of the resulting welding fume is mostly dependent on the 
consumption of the welding electrode [6]. The toxicity of inhaled 
welding fumes has been shown to be mostly dependent on the type of 
welding electrode and specific welding parameters used [7,8]. Exposure 
to WF are known to cause of a variety of pulmonary disorders, such as 
lung cancer, bronchitis, pulmonary function changes, and metal fume 
fever [1]. Welding fume exposure has also been shown to increase the 
incidence of cardiovascular diseases, including: acute myocardial 

infarct, angina pectoris, chronic ischemic heart disease, cardiac arrest, 
and heart failure, in exposed workers [9]. Less is known about the 
extra-pulmonary effects in other organ systems, specifically the liver. 
Metals associated with WF have been shown to translocate to liver. 
Chromium accumulated in the livers of Sprague-Dawley rats after a 
weekly exposure to WF [10]. Also, acute inhalation exposure to WF has 
been observed to cause oxidative damage in the liver of rats as evidenced 
by increases in both DNA strand breakage and lipid peroxidation [11]. 
Manganese and iron are also found in welding fumes and are important 
cofactors for catalyzing many metabolic processes, such as insulin 
signaling and lipid metabolism [12]. The translocation of these metals 
from the lungs to the liver, after inhalation exposure to a welder, may 
also alter the hepatic lipid metabolism and insulin resistance [13]. 

Obesity is also important factor in the acute severity of cardiovas-
cular disorders after exposure to fine metal particulates found in welding 
fumes [14]. A modern, high fat (HF) western diet consists of elevated 
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levels of fats, carbohydrates, protein, and sodium [15]. Long-term 
consumption of a HF, western diet can predispose individuals to 
various metabolic diseases, such as hyperlipidemia, diabetes, and car-
diovascular disease [16]. The intake of a HF diet has been shown to 
cause an increase in lipid peroxidation in liver tissue and can also lead to 
non-alcoholic fatty liver disease (NAFLD) and hepatic steatosis [17]. The 
liver serves as the central organ for lipid homeostasis across many 
different organisms, and alterations in the species, concentrations, and 
oxidation of lipids within the liver have been shown to be indicators of 
hepatic injury or disease [18]. The increased storage of lipids in hepatic 
cells, known as steatosis, causes an increase in the occurrence of fibrosis, 
inflammation, cirrhosis, and hepatic cancer [19]. NAFLD and hepatic 
steatosis has also been shown to increase the prevalence of cardiovas-
cular disease [20]. 

Previously, our group reported that the combination of an exposure 
to inhaled WF and maintenance on a HF western diet increased lipid 
accumulation in the livers of exposed rats as well as the serum con-
centrations of alanine transferase (ALT) and aspartate transferase (AST), 
enzymes used to assess liver changes [21]. To date, there is no infor-
mation on the combined effects of an WF and HF diet maintenance on 
the hepatic lipidome, which is important because the obesity, metabolic 
disorders, and exposure to fine metal particulate are all factors in the 
severity of cardiovascular disorders that could directly impact exposed 
welders. The goal of the current study was to utilize matrix assisted laser 
desorption ionization imaging mass spectrometry (MALDI-IMS) to 
examine the abundance and spatial distribution of lipids in livers from 
animals exposed by inhalation to WF and fed a HF western diet. The 
results of this study will provide valuable insight by which an environ-
mental/occupational exposure and lifestyle choice (e.g., diet) potentially 
change the hepatic lipidome. 

2. Methods 

2.1. Animals and diet 

Male Sprague-Dawley rats were acquired from Hilltop Lab Animals 
(Scottdale, PA) at 5 wk of age and were free of viral pathogens, parasites, 
mycoplasmas, Helicobacter, and CAR Bacillus. Rats were fed ad libitum 
with water and irradiated Teklad 2918 regular (REG) rodent diet 
(Envigo Teklad Diets, Madison, WI) and acclimated for 1 wk in an ani-
mal facility that is specific pathogen-free, environmentally controlled, 
and accredited by AAALAC, International (Frederick, MD). Following 
the acclimation period, half of the rats were continued on the Teklad 
2918 REG diet. A second set of rats was started ad libitum on a custom 45 
% high fat (HF) Kcal, Western Diet (Envigo Teklad Diets, Madison WI). 
The Western Diet was supplemented with 21 % anhydrous milk fat and 
34 % sucrose. Soybean (2 %) was added to the HF diet to provide 
essential amino acids. Nutritional composition of the HF diet was 14.8 % 
protein, 40.6 % carbohydrate, and 44.6 % fat. All animal procedures 
used during the study were reviewed and approved by the CDC/NIOSH- 
Morgantown Institutional Animal Care and Use Committee. All methods 
were performed in accordance with the relevant guidelines and AAALAC 
International. 

2.2. Welding fume exposure 

At wk 7 during maintenance on the HF and REG diets, rats from each 
diet were exposed by inhalation to stainless steel WF (target concen-
tration of 20 mg/m3 × 3 h/d × 4 d/wk × 5 wk) or filtered air (control). 
Four experimental groups (n = 6 per group) were assessed in the study: 
(1) HF + WF, (2) HF + Air, (3) REG + WF, and (4) REG + Air. At wk 12, 
rats were humanely euthanized by an intraperitoneal injection of so-
dium pentobarbital euthanasia solution (>100 mg/kg body weight; 
Fatal-Plus Solution, Vortech Pharmaceutical, Inc., Dearborn, MI) fol-
lowed by exsanguination. The WF aerosol generator and animal expo-
sure system [7] as well as the characterization of the Stainless Steel (SS) 

fume [21] were previously described. Briefly, WF was composed (weight 
%) of Fe (57 %), Cr (20.2 %), Mn (13.8 %), Ni (8.8 %) and Cu (0.2 %). as 
determined by inductively coupled plasma atomic emission spectros-
copy according to NIOSH method 7300 [22]. The mass median aero-
dynamic diameter was 0.26 μm with a geometric standard deviation of 
1.4 as determined by a Micro-Orifice Uniform Deposit Impactor 
(MOUDI, MSP Model 110, MSP Corporation, Shoreview, MN) and a 
Nano-MOUDI (MSP Model 115). The actual animal chamber concen-
tration (mean + standard deviation) for the exposures was 20.3 ± 6.4 
mg/m3. 

2.3. Liver tissue preparation 

Extracted livers from each group were flash frozen in liquid nitrogen 
and stored at − 80 ◦C until cryo-sectioning and MALDI analysis. Fresh 
frozen livers were sectioned at 10 μm thickness on a NX70 Cryostar 
cryostat (Thermo Scientific, San Jose, CA) with a maintained tempera-
ture of − 20 ◦C. Liver sections were then thaw mounted on indium tin 
oxide (ITO) slides (Delta Technologies, Loveland, CA) and desiccated for 
12 h. Samples for MALDI-IMS analysis were scanned on an Epson V19 
flatbed scanner prior to matrix application for teaching locations prior to 
mass spectrometry analysis. 

Serial sections of each liver were cut at 5 μm thickness and thaw 
mounted to glass slides for Oil-red-O staining. Slides were air dried at 
room temperature for 10 min prior to staining. Slides were stained with 
Oil-Red-O for 10 min at 60 ◦C in an oven and then rinsed in distilled 
water. Propylene glycol rinses were then used for differentiation and 
then nuclei were stained with Gill’s hematoxylin solution for 30 s. 

2.4. Matrix application 

Liver slides were sprayed with 2,5-dihydroxybenzoic acid (DHB) 
(Sigma Aldrich, Darmstadt, Germany). DHB matrix was dissolved in 70 
% acetonitrile (Thermo Scientific, San Jose, CA) at a concentration of 40 
mg/mL for negative ion mode analysis, positive ion mode analysis used 
identical matrix solvent with the addition of 10 mM KCl. A TM-Sprayer 
(HTX Technologies, North Carolina) was used for matrix application. 
The TM sprayer was operated with a 0.1 mL/min flow rate in the 
serpentine deposition pattern with a 10 s drying time. The matrix was 
applied in 6 passes at a temperature of 75 ◦C. In order to reduce vari-
ability between slides, all slides were sprayed together. 

2.5. MALDI imaging mass spectrometry (IMS) 

Liver sections from each group were analyzed using a RapiFlex 
MALDI-ToF/ToF mass spectrometer (Bruker, Bremen, Germany). The 
laser was operated at 1 khz with 500 shots collected per location and 
spectra averaged for each location. Imaging locations were defined 
using the polygonal region tool in flexAnalysis software ver. 3.0. The 
spatial resolution was set to 100 μm for each imaging analysis. Prior to 
analysis the mass spectrometer was calibrated, and laser energy was 
adjusted to optimize signal intensity for the selected mass range. Tissues 
were analyzed in both positive and negative ion modes. The mass range 
for the imaging experiments was set at 500− 1500 Da. 

2.6. MALDI data analysis 

MALDI IMS data were processed using flex-Imaging software 
(Bruker, Bremen Germany). Mass images were generated for select lipid 
m/z’s. The data was normalized to root mean squares (RMS) for each 
image. Mass images were then exported as. tiff files for publication. 
Principal component analysis was performed on every spectrum 
collected from the imaging analysis and processed using SCiLs Pro 
(Bruker, Bremen, Germany) software package. 
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2.7. Statistical analysis and principal component analysis 

Mean peak intensities for each tissue and every location were im-
ported into SCiLS Lab 2019c Pro software (Bruker, Bremen, Germany) 
for statistical analysis. The spectral data generated for the control (RD +
Air) and all other treatments were combined into a single data file for 
each analysis (n = 3) in the SciLS software. The spectral data was 
normalized to total ion count (TIC). Principal component analysis was 
performed on the normalized spectral data and a pareto scaling was 
applied to the data. A one-way analysis of variance (ANOVA) was per-
formed on the m/z intensity values shown to be changed from the SciLS 
analysis to determine significance. Significance was determined by a p- 
value of <0.05. 

3. Results 

The serial liver sections stained with Oil-Red-O illustrated increased 
lipid deposition (red staining) in both HF groups (HF + WF and HF +
Air) compared with the rats maintained on the REG diet (REG + WF and 
REG + Air) (Fig. 1A–D). The percent body weight change from baseline 
measurements showed the highest body weight increase was observed in 
the HF + Air group, while the lowest was found in the REG + WF group 
(Fig. 1E). The MALDI-IMS analysis yielded unique lipid profiles for each 
treatment group. These unique lipidome groups were visualized in the 
principal component analysis (PCA) score plots (Fig. 2). There were 
clear separations between the two REG diet groups. However, there was 
visible overlap in the lipid profiles generated from the HF + WF with a 
subset of the HF + Air group. The MALDI-IMS analysis revealed differing 
lipid distributions across all four treatment groups in the right lobe (RL), 
left lobe (LL), and caudate lobe(CL) of the livers (Fig. 3). The HF diet 

Fig. 1. (A) Body weight percent change from baseline for all four treatment groups at 12 wk. Error bars represent standard error. (B–E)Snap frozen liver sections at 
12 wk from REG + WF (B), REG + Air (C), HF + WF (D), and HF + Air (E) groups. Images taken at 40x magnification. Bar =50 μm. 
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groups had lower abundance of shorter chain lyso-phosphatidylinositol 
(18:0) in their livers compared to the REG diet groups, whereas the 
abundance of this monoaryl lipid was higher in the REG + WF group 
than the REG + Air groups (Fig. 3A). Ceramide 1-phosphate (Cer1P) was 
observed at very high abundance in the liver of the REG + WF group 
when compared to the other three treatments (Fig. 3B). The HF diet 
groups had increased distribution of multiple triacyl glycerides. The two 
triacyl glycerides with the highest increase in signal across the liver 
tissue of the HF diet fed animals when compared to the REG + Air group 
were TG (14:12 /15:0) and TG (20:2)3 (Fig. 3C/D). These two TGs were 
found to be in significantly higher abundance in the HF diet animals 
than in the REG diet animals (Fig. 4). However, TG (14:12 /15:0) was 
shown to be in significantly lower abundance in the liver of the REG +

WF group compared to the REG + Air group (Fig. 4). The phosphati-
dylinositol lipid PI (18:0/20:4) was in higher abundance in the liver of 
the HF diet groups compared to the REG diet groups (Fig. 4). 

4. Discussion 

In this study, we utilized MALDI-IMS to examine the abundance and 
spatial distributions of lipids in the livers of rats exposed to WF through 
inhalation while being maintained on a REG or HF western diet. The Oil- 
Red-O staining revealed the presence of steatosis in the livers of both the 
HF + Air and HF + WF groups, while the REG diet groups showed no 
signs of excess lipid deposition in the liver tissue regardless of air or WF 
exposure. This indicated that WF exposure alone did not substantially 

Fig. 2. Principal component analysis of all spectra collected from spatial points across all liver tissues (n = 3 per group) at 12 wk for the HF + WF (red points), HF +
Air (black points), REG + Air (green points), and REG + WF (blue points) groups. Ellipses represent the 95 % confidence interval. 

Fig. 3. Ion maps showing spatial distribution and relative abundance of six lipids in livers at 12 wk from the 4 treatment groups. Lyso PI (18:0) m/z 585.2 (A), Cer-1- 
P m/z 729.1 (B), Cardiolipin (18:2)4 m/z 1447.7 (C), TG (14:12 /15:0) m/z 732.1 (D), PI (18:0/20:4) m/z 885.2 (E), TG (20:2)3 m/z 962.1 (F). LL = Left Lobe RL =
Right Lobe CL = Caudate Lobe. 
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impact the accumulation of excess lipid in the liver. After 12 wk of diet 
maintenance and a 5-wk WF exposure, MALDI-IMS analysis revealed the 
hepatic lipidomes were unique based on either inhalation exposure or 
diet. The two groups fed the REG diet clustered separately as assessed by 
PCA with the REG + WF group standing alone; however, there was 
overlap observed between the two HF diet groups (HF + Air and HF +
WF). 

MALDI-IMS analysis of the liver tissues showed a significant increase 
in the two triglycerides, TG (14:12 /15:0) and TG (20:2)3, in the HF diet 
groups. The increase in these triglycerides was observed ubiquitous 
across both HF diet groups, and this distribution aligned with the results 
of lipids in the oil-red-o stained liver sections. Abundance of these two 
triglycerides was not significantly different between the air- and WF- 
exposed HF diet animals; however, TG (14:12 /15:0) was significantly 
lower in the REG + WF group when compared to the REG + Air control 
group. Triglycerides that are stored in the liver are primarily derived 
from food intake, and the reduced abundance of this triglyceride in the 
REG + WF group could be caused by decreased food intake, as seen by 
the slight decrease in body weight for that group [23]. The significant 
increase of triglycerides in the HF groups is not surprising, as it has been 
shown that these lipids accumulate in liver tissues of animals maintained 
on this type of diet [24]. Triglyceride metabolism in the liver occurs by 
hydrolysis of the triglyceride to diglyceride by the adipose triglyceride 
lipase (ATGL) enzyme, which then is followed by a hydrolysis of the 
resulting diglyceride into a monoglyceride by the hormone sensitive 
lipase (HSL) enzyme [23]. Duarte et al. showed that a HF diet suppressed 
de novo lipogenesis in mice, but it did not suppress triglyceride 
biosynthesis [25]. This alteration of the lipid biosynthesis pathways 
could explain the significant increase of triglycerides observed in the HF 
diet groups compared the REG diet groups. The observed dyslipidemia 
in HF Diet groups leads to NAFLD which has been shown to increase the 
risk of cardiovascular disease [20]. NAFLD has been shown to increase 
the severity and mortality of cardiovascular disease through increased 
abdominal weight, hypertension, and insulin resistance [26]. 

The HF diet groups showed significantly lower abundance of lyso-PI 
(18:0) than the REG diet groups. Lysophospholipids are monoglycerides 
that serve multiple functions including: cellular membrane structure, 
cell signaling, and lipid homeostasis [27]. The decrease in the abun-
dance of lyso-PI (18:0) in the HF diet groups indicated a possible 
disruption in the hepatic lipid homeostasis, which was confirmed by the 
presence of steatosis shown by the Oil-Red-O staining. In comparing the 
REG + Air and REG + WF groups, the WF-exposed animals demon-
strated a significantly higher abundance of lyso-PI (18:0) than the REG 

+ Air group. It has been shown that increased levels of lyso-PI (18:0) in 
liver tissue is an indicator of hepatic inflammation [28]. The signifi-
cantly higher abundance of this lipid in the livers of REG + WF exposed 
rats compared to all other treatments indicated the inhalation exposure 
to WF likely resulted in hepatic inflammation. 

Ceramide-1-phosphate (Cer1P) was found in significantly higher 
abundance in the REG + WF group than the other treatment groups. 
Cer1P is a sphingolipid that is involved in multiple biological pathways. 
Interestingly, Cer1P plays a crucial role in signaling for the eicosanoid 
pathway [29]. The eicosanoid pathway is a primary mediator in the 
initiation and resolution of inflammation [30]. The increased level of 
Cer1P in the REG + WF group indicated the presence of hepatic 
inflammation and was supported by the increased level of serum AST 
observed in our previous study [21] Ceramide metabolism has also been 
shown to be disrupted by an excess of saturated fatty acids and this 
would explain the lower abundance of Cer1P in the HF diet groups [31]. 

Finally, the significant decrease in Cardiolipin (18:2)4 abundance in 
the HF diet animals compared to the REG diet groups regardless of 
exposure to air or WF may be explained through cardiolipin remodeling 
[32]. Sullivan et al. [32] showed that mice fed a HF diet displayed 
changes in the acyl chain lengths of their hepatic cardiolipins, and that 
acyl chain length remodeling is a process that occurs to maintain 
mitochondrial function in the presence of excess lipids. 

To summarize, the results of this study showed that the combined 
effect of diet and inhalation exposure influenced the hepatic lipidome of 
rats. The most significant and pronounced changes were observed in the 
abundance of multiple triglycerides in the livers of the animals main-
tained on the HF western diet. However, the increase of Cer1P in the 
REG + WF group showed the upregulation of the pro-inflammatory 
eicosanoid pathway. The influence of WF inhalation on the hepatic 
lipidome was most pronounced when not combined with the lifestyle 
influence of the HF diet. There are definitive interactions between the 
HF and WF effects, but the responses are less prominent in this group 
showing that the diet effect has the greater influence on the lipidome. 
This study revealed that occupational exposures, with and without HF 
diet, can influence the hepatic lipidome and lipid metabolism. Further 
investigation is warranted into the influence on primary and /or sec-
ondary health effects of the combined occupational and lifestyle 
exposure. 
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Fig. 4. Liver lipids relative abundance 
based on MALDI signal intensity from 
rats exposed to welding fumes or air and 
fed either high fat (HF) or regular diet 
(REG) at 12 wk. Values are signal in-
tensity means (n = 3), and standard 
error bars represent standard deviation. 
* indicate corresponding lipids within a 
group that are significantly higher (p <
0.05) than regular diet + air (REG +
Air) and # indicate corresponding lipids 
within a group that are significantly 
lower (p < 0.05) than regular diet + air 
(REG + Air).   
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