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Abstract
Mosquitoes	transmit	a	diverse	group	of	human	flaviviruses	including	West	Nile,	den-
gue,	 yellow	 fever,	 and	 Zika	 viruses.	 Mosquitoes	 are	 also	 naturally	 infected	 with	
insect-	specific	flaviviruses	 (ISFs),	a	subgroup	of	the	family	not	capable	of	 infecting	
vertebrates.	Although	ISFs	are	not	medically	important,	they	are	capable	of	altering	
the	mosquito’s	susceptibility	to	flaviviruses	and	may	alter	host	fitness.	Wolbachia	is	
an	endosymbiotic	bacterium	of	insects	that	when	present	in	mosquitoes	limits	the	
replication	 of	 co-	infecting	 pathogens,	 including	 flaviviruses.	 Artificially	 created	
Wolbachia-	infected	Aedes aegypti	mosquitoes	are	being	 released	 into	 the	wild	 in	a	
series	of	trials	around	the	globe	with	the	hope	of	interrupting	dengue	and	Zika	virus	
transmission	 from	 mosquitoes	 to	 humans.	 Our	 work	 investigated	 the	 effect	 of	
Wolbachia	on	ISF	infection	in	wild-	caught	Ae. aegypti	mosquitoes	from	field	release	
zones.	All	 field	mosquitoes	were	 screened	 for	 the	 presence	 of	 ISFs	 using	 general	
degenerate	flavivirus	primers	and	their	PCR	amplicons	sequenced.	ISFs	were	found	
to	be	common	and	widely	distributed	 in	Ae. aegypti	populations.	Field	mosquitoes	
consistently	had	higher	 ISF	 infection	 rates	and	viral	 loads	compared	 to	 laboratory	
colony	material	indicating	that	environmental	conditions	may	modulate	ISF	infection	
in Ae. aegypti.	 Surprisingly,	 higher	 ISF	 infection	 rates	 and	 loads	 were	 found	 in	
Wolbachia-	infected	mosquitoes	 compared	 to	 the	Wolbachia-free	 mosquitoes.	 Our	
findings	demonstrate	that	the	symbiont	is	capable	of	manipulating	the	mosquito	vi-
rome	and	 that	Wolbachia-	mediated	viral	 inhibition	 is	not	universal	 for	 flaviviruses.	
This	may	have	 implications	for	the	Wolbachia-based	DENV	control	strategy	 if	 ISFs	
confer	fitness	effects	or	alter	mosquito	susceptibility	to	other	flaviviruses.
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1  | INTRODUC TION

Mosquitoes	 transmit	 a	 wide	 range	 of	 pathogens	 including	 vi-
ruses	 deemed	 arboviruses	 that	 cause	widespread	morbidity	 and	

mortality	in	humans	and	animals	(Mackenzie,	Gubler,	&	Petersen,	
2004;	 Mackenzie	 et	al.,	 1994).	 These	 viruses	 belong	 to	 diverse	
families	 including	 the	 Flaviviridae	 (genus:	 Flavivirus)	 that	 are	
positive	 single-	stranded	 RNA	 viruses	 (Fauquet,	 Mayo,	 Maniloff,	
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Desselberger,	 &	 Ball,	 2005;	 Karabatsos,	 1978).	 Flaviviruses	 in-
clude	 Japanese	 encephalitis	 virus	 and	 Murray	 Valley	 encepha-
litis	 virus	 transmitted	 by	 Culex	 species	 (Erlanger,	 Weiss,	 Keiser,	
Utzinger,	 &	Wiedenmayer,	 2009;	 Kay,	 Fanning,	 &	 Carley,	 1984),	
West	 Nile	 virus	 (WNV)	 transmitted	 by	 a	 diverse	 group	 of	 mos-
quitoes	including	Aedes and Culex	species	(Mackenzie	et	al.,	2004)	
and	yellow	fever	virus	(YFV),	Zika	virus	(ZIKV),	and	dengue	virus	
(DENV)	that	are	all	transmitted	by	Aedes aegypti and Aedes albopic-
tus	 (Black	 et	al.,	 2002;	Hall-	Mendelin	 et	al.,	 2016;	Hayes,	 2009).	
Dengue	 fever	 caused	by	DENV	 is	 a	 severely	debilitating	disease	
with	40%	of	the	world’s	population	at	risk	of	infection	and	an	es-
timated	 300	 new	 infections	 reported	 yearly	 (Bhatt	 et	al.,	 2013).	
A	newly	emerging	threat	to	global	health	is	Zika	fever	caused	by	
the	ZIKV	with	outbreaks	reported	in	both	tropical	and	subtropical	
regions	(Pujhari	&	Rasgon,	2016;	Younger,	2016).

Mosquitoes	 are	 also	 known	 to	 naturally	 harbor	 flaviviruses	
that	 are	 incapable	 of	 infecting	 humans	 or	 other	 vertebrate	 ani-
mals	and	are	therefore	known	as	insect-	specific	flaviviruses	(ISFs).	
Cell	 fusing	 agent	 virus	was	 the	 first	 ISF	 to	be	discovered	 in	Ae.  
aegypti	in	1975	(Stollar	&	Thomas,	1975).	Since	then,	several	oth-
ers	have	been	described	 including	Culex flavivirus	 (CxFv)	 in	Culex 
pipiens,	Kamiti	River	virus	 in	Ae. aegypti,	and	Palm	Creek	virus	 in	
Coquillettidia xanthogaster	 mosquitoes	 (Crabtree,	 Sang,	 Stollar,	
Dunster,	 &	 Miller,	 2003;	 Hobson-	Peters	 et	al.,	 2013;	 Hoshino	
et	al.,	 2007).	 Even	 though	 ISFs	 are	 not	 directly	 associated	 with	
disease	 in	 vertebrates,	 there	 is	 growing	 interest	 in	 their	 effect	
on	co-	infecting	arboviruses.	 In	mosquito	cell	culture,	some	stud-
ies	 have	 shown	 that	 ISFs	 suppress	 flaviviruses,	 including	 WNV	
by	 CxFV	 and	 Murray	 Valley	 virus	 by	 Palm	 creek	 virus	 (Bolling,	
Olea-	Popelka,	Eisen,	Moore,	&	Blair,	2012;	Hobson-	Peters	et	al.,	
2013).	 However,	 this	 effect,	 known	 as	 superinfection	 exclusion	
(Billecocq,	 Vazeille-	Falcoz,	 Rodhain,	&	Bouloy,	 2000;	Geib	 et	al.,	
2003;	Karpf,	Lenches,	Strauss,	Strauss,	&	Brown,	1997;	McAlister	
&	Barrett,	 1977;	Nethe,	 Berkhout,	&	 van	 der	Kuyl,	 2005;	 Pesko	
&	Mores,	2009),	was	not	observed	 in	field	mosquito	populations	
where	a	positive	association	was	found	between	WNV	and	CxFV.	
This	 suggests	 that	 the	 presence	 of	 CxFV	may	make	mosquitoes	
more	 susceptible	 to	WNV	 (Newman	et	al.,	 2011).	Conflicting	 re-
sults	were	also	observed	in	other	studies	where	CxFV	did	not	have	
an	effect	on	replication,	transmission,	or	dissemination	of	WNV	in	
Culex quinquefaciatus	(Kent,	Crabtree,	&	Miller,	2010).

Wolbachia pipientis	 is	 an	 endosymbiotic	 bacterium	 of	 insects	
that	 is	 currently	 being	 developed	 as	 a	 biocontrol	 agent	 (Iturbe-	
Ormaetxe,	Walker,	&	LO’Neill,	2011;	Moreira	et	al.,	2009;	Walker	
et	al.,	2011).	Wolbachia	is	naturally	present	in	about	52%	of	arthro-
pods	and	is	maternally	inherited	(Weinart,	Arauju-	Jnr,	Ahamed,	&	
Welch,	2015).	The	symbiont	manipulates	host	reproduction,	such	
that	the	eggs	of	Wolbachia-	free	females	do	not	hatch	when	they	
have	been	fertilized	by	a	Wolbachia-	infected	male	(Serbus,	Casper-	
Lindley,	Landmann,	&	Sullivan,	2008).	This	phenomenon,	referred	
to	as	cytoplasmic	incompatibility	(CI),	leads	to	the	spread	and	inva-
sion	of	Wolbachia	into	wild	populations.	Another	desirable	pheno-
type	of	Wolbachia	is	its	ability	to	inhibit	infection	of	the	host	with	

other	pathogens	 (Bian,	Xu,	Lu,	Xie,	&	Xi,	2010;	Bian	et	al.,	2013;	
Frentiu	 et	al.,	 2014;	 Walker	 et	al.,	 2011).	 This	 “pathogen	 block-
ing”	 by	Wolbachia	 was	 first	 observed	 in	Drosophila melanogaster 
(Hedges,	 Brownlie,	 O’Neill,	 &	 Johnson,	 2008;	 Teixeira,	 Ferreira,	
&	Ashburner,	2008)	where	 flies	 infected	with	Drosophila	C	virus	
(DCV)	and	cricket	paralysis	virus	and	accumulated	virus	at	a	slower	
rate	 leading	 to	higher	survival	 rates	compared	 to	Wolbachia-free	
controls	(Hedges	et	al.,	2008).

While	 present	 in	 28%	 of	 mosquitoes	 such	 as	 Ae. albopictus, 
Cx. pipiens, and Cx. quinquefaciatus, Wolbachia	was	 not	 thought	 to	
be	 present	 in	 the	 malaria	 vectors	 (Anopheles	 species)	 or	 the	 pri-
mary	vector	of	DENV	(Ae. aegypti)	(Kittayapong,	Baisley,	Baimai,	&	
O’Neill,	2000).	There	have	been	recent	reports	however	of	sporadic	
infections	 in	 Anopheles coluzzii	 (Shaw	 et	al.,	 2016)	 and	 Anopheles 
gambiae	(Gomes	et	al.,	2017)	and	in	a	single	population	of	Ae. aegypti 
(Coon,	Brown,	&	Strand,	2016).	Over	the	last	decade	three	different	
Wolbachia	strains	have	been	artificially	 introduced	into	Ae. aegypti 
where	 they	 form	stably	 inherited	 infections.	These	are	wMelPop-	
CLA	 and	wMel	 from	Drosophila	 (McMeniman	 et	al.,	 2009;	Walker	
et	al.,	2011),	wAlbB	from	Ae. albopictus	(Xi,	Dean,	Khoo,	&	Dobson,	
2005),	 and	wMelwAlbB	 (Joubert	 et	al.,	 2016)	 that	 is	 a	 superinfec-
tion	 of	wMel	 and	wAlbB.	Wolbachia-	mediated	 pathogen	 blocking	
has	 now	 been	 observed	 for	 arboviruses	 such	 as	WNV	 (Glaser	 &	
Meola,	 2010),	YFV	 (van	den	Hurk	 et	al.,	 2012),	DENV	 (Bian	 et	al.,	
2010;	Frentiu,	Robinson,	Young,	McGraw,	&	O’Neill,	2010;	Moreira	
et	al.,	 2009;	Walker	 et	al.,	 2011),	 ZIKV	 (Aliota,	 Peinado,	 Velez,	 &	
Osorio,	2016;	Dutra	et	al.,	2016),	and	Chikungunya	virus	 (van	den	
Hurk	et	al.,	2012;	Moreira	et	al.,	2009).	Wolbachia	is	currently	being	
released	 into	populations	of	Ae. aegypti	globally	to	test	whether	 it	
may	 be	 effective	 at	 limiting	DENV	 and	 ZIKV	 transmission	 to	 hu-
mans	(Ritchie,	2014)	(see	www.eliminatedengue.com).	The	first	re-
leases	in	Australia	demonstrated	that	Wolbachia	was	able	to	invade	
wild Ae. aegypti	 populations	 and	 remain	 at	 near	 100%	 frequency	
(Hoffmann	et	al.,	2011).	Subsequent	releases	in	DENV	endemic	re-
gions	are	being	used	to	test	for	efficacy	of	human	infection	control	
(Ritchie,	2014).

Although	largely	consistent,	there	are	some	reports	of	Wolbachia 
enhancing	 rather	 than	 preventing	 pathogen	 co-	infection	 including	
Plasmodium	and	WNV	within	Anopheles gambiae and Culex tarsalis,	
respectively	(Dodson	et	al.,	2014;	Hughes,	Vega-	Rodriguez,	Xue,	&	
Rasgon,	2012).	In	both	of	these	instances,	however,	the	mosquitoes	
were	 only	 transiently	 infected	with	Wolbachia	 via	 artificial	micro-	
injection	and	so	may	not	be	representative	of	insects	with	germline	
tissue	infections	(Joubert	&	O’Neill,	2017).	Several	vectors	naturally	
infected	with	Wolbachia	 have	also	exhibited	 increased	 susceptibil-
ity	to	pathogens.	This	has	been	shown	in	Cx. pipiens and Spodoptera 
exempta	 (African	armyworm	moth)	with	 increased	susceptibility	 to	
Plasmodium	and	nucleopolyhedrovirus	(double-	stranded	DNA	virus),	
respectively	(Graham,	Grzywacz,	Mushobozi,	&	Wilson,	2012;	Zele	
et	al.,	 2014).	 In	 contrast,	 the	 natively	 infected	 Ae. albopictus	 ex-
hibits	 reduced	 susceptibility	 and	 transmission	 of	DENV	 (Mousson	
et	al.,	2012).	These	studies	suggest	that	Wolbachia-	mediated	patho-
gen	blocking	may	depend	on	several	factors	that	are	influenced	by	
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specific	Wolbachia	strain	and	pathogen–host	 interactions	including	
history	of	association.

The	mechanistic	basis	of	Wolbachia-	mediated	pathogen	blocking	
is	 still	not	well	understood	 (Terradas	&	McGraw,	2017).	Currently,	
pathogen	 blocking	 has	 been	 partly	 attributed	 to	 the	 ability	 of	
Wolbachia	 to	 increase	 the	 innate	 immune	 responses	 of	 the	 host,	
thereby	making	it	resist	subsequent	pathogen	infection	(Bian	et	al.,	
2010;	 Pan	 et	al.,	 2012;	 Rances,	 Ye,	 Woolfit,	 McGraw,	 &	 O’Neill,	
2012).	 It	 has	 also	 been	 hypothesized	 that	 competition	 between	
Wolbachia	 and	 pathogens	 for	 key	 host	 resources	 such	 as	 lipids	
(Caragata	et	al.,	2013)	and	intracellular	space	(Moreira	et	al.,	2009)	
may	underpin	blocking.	This	may	be	particularly	relevant	for	viruses	
that	require	 lipids	for	attachment	and	entry	 into	host	cells	and	for	
replication	 (Lu,	Cassese,	&	Kielian,	1999;	Mackenzie,	Khromykh,	&	
Parton,	2007).	Most	recently,	there	is	some	evidence	primarily	from	
Drosophila	that	Wolbachia	may	be	modifying	host	cellular	structures	
or	 organelles	 rendering	 them	 less	 hospitable	 to	 viral	 replication	
(Rainey	et	al.,	2016;	White	et	al.,	2017).	A	range	of	studies	also	point	
to	 a	 correlation	 between	Wolbachia	 densities	 and	 the	 strength	 of	
blocking	 (Frentiu	 et	al.,	 2010;	 Lu,	 Bian,	 Pan,	&	Xi,	 2012;	Osborne,	
Iturbe-	Ormaetxe,	Brownlie,	O’Neill,	&	Johnson,	2012),	a	trend	that	
would	be	expected	with	any	of	the	above	explanations	for	blocking.

While	Wolbachia	appears	to	shift	the	composition	of	the	microbi-
ome	in	mosquitoes	(Audsley,	Seleznev,	Joubert,	O’Neill,	&	McGraw,	
2018),	 little	 is	 known	about	 its	effects	on	 ISFs.	There	 is	 also	 little	
known	about	the	effects	of	ISFs	on	mosquito	health.	If	these	infec-
tions	affect	survival	or	reproduction,	Wolbachia-	infected	insects	in	
the	field	may	receive	an	advantage	in	carrying	the	symbiont.	For	ex-
ample,	native	viruses	in	Drosophila	such	as	DCV	and	cricket	paralysis	
virus	reduce	host	fitness	and	Wolbachia	infections	are	hence	bene-
ficial	(Hedges	et	al.,	2008).	A	survey	in	wild	populations	of	D. mela-
nogaster	demonstrated	that	Wolbachia	infection	was	not	associated	
with	changes	in	the	diversity	of	native	viruses	in	the	insect	(Webster	
et	al.,	 2015).	Wolbachia	 infections	 in	Ae. aegypti	 differ	 significantly	
from	those	found	in	D. melanogaster	however,	exhibiting	higher	sym-
biont	loads	(McGraw,	Merritt,	Droller,	&	O’Neill,	2002;	McMeniman	
et	al.,	2009;	Moreira	et	al.,	2009;	Walker	et	al.,	2011),	broader	tissue	
distributions	(Moreira	et	al.,	2009;	Walker	et	al.,	2011),	greater	acti-
vation	of	the	immune	response	(McGraw	et	al.,	2002;	McMeniman	
et	al.,	 2009;	Moreira	et	al.,	 2009;	Walker	et	al.,	 2011),	 and	greater	
fitness	costs	(McMeniman,	Hughes,	&	O’Neill,	2011;	Min	&	Benzer,	
1997).	 These	 discrepancies	 may	 result	 from	 different	 periods	 of	
association/evolutionary	 history,	 long	 (~5,000	years)	 in	 the	 case	
of	 D. melanogaster	 (Richardson	 et	al.,	 2012)	 and	 short	 (<10	years)	
in	 the	 case	of	 the	newly	 infected	Ae. aegypti	 (Walker	 et	al.,	 2011).	
Understanding	 the	 fitness	 consequences	 of	 Wolbachia	 for	 Ae.  
aegypti	is	necessary	to	effectively	model	the	long-	term	stability	and	
success	of	the	symbiont	as	a	biocontrol	agent	in	wild	populations.

Our	 work	 focused	 on	 determining	 if	Wolbachia-	mediated	 viral	
blocking	extends	 to	naturally	occurring	 flaviviruses	 in	mosquitoes.	
We	sampled	Wolbachia-	infected	mosquitoes	from	field	release	sites	
in	Cairns,	Australia,	and	symbiont-	free	mosquitoes	from	nearby	con-
trol	 areas	 outside	 of	 the	Wolbachia	 release	 zone.	 Using	 flavivirus	

general	degenerate	primers,	we	amplified	the	NS5	region	of	the	virus	
genome	 and	 sequenced	 the	 PCR	 amplicons	 of	 individual	 positive	
mosquitoes	using	Miseq	Illumina	sequencing.	We	further	screened	
laboratory	 colonies	 and	 field	 mosquitoes	 using	 primers	 designed	
specifically	 for	 several	 of	 the	 ISF	 sequences.	We	 found	 that	 ISFs	
are	common	and	widely	distributed	in	Ae. aegypti	populations	with	
infection	 rates	and	abundance	consistently	higher	 in	 field	mosqui-
toes	 compared	 to	 the	 laboratory	 colonies.	 This	 possibly	 indicates	
that	variations	 in	environmental	conditions	could	be	playing	a	role	
in	 controlling	 ISF	 infection	 in	Ae. aegypti.	Unexpectedly,	we	 found	
that	Wolbachia	enhanced	ISF	infection	rates	and	loads	in	Ae. aegypti 
demonstrating	that	the	antivirus	effect	associated	with	Wolbachia	is	
not	common	to	all	flaviviruses.	These	findings	may	have	implications	
for	Wolbachia-	DENV	control	if	ISFs	affect	host	fitness	or	play	a	role	
in	mosquito	susceptibility	to	flaviviruses.

2  | MATERIAL S AND METHODS

2.1 | Mosquito sampling

Wolbachia-infected	 and	 uninfected	 (wild-	type)	 Ae. aegypti	 mos-
quitoes	were	sampled	from	three	different	communities	 in	Cairns,	
Australia.	 The	 Wolbachia-	infected	 mosquitoes	 were	 sampled	 in	
2013	 from	 two	 sites	 where	 wMel	 mosquitoes	 were	 released	 in	
2011	 (Hoffmann	 et	al.,	 2011)	 and	 2013	 (Ritchie,	 2014).	 These	 are	
Gordonvale	(GV)	and	Parramatta	Park	(PP),	respectively.	Wild-	type	
mosquitoes	were	sampled	 from	Holloways	Beach	 (HB)	 that	 is	out-
side	the	original	release	zone.	BG-	sentinel	mosquito	traps	(Biogen,	
Germany)	were	set	randomly	 in	these	areas,	and	adult	mosquitoes	
were	collected	overnight.	Ae. aegypti	mosquitoes	were	morphologi-
cally	identified	and	placed	in	vials	containing	80%	ethanol.	A	total	of	
95	individual	mosquitoes	were	assessed	across	the	three	collection	
sites	(39	from	GV,	21	from	PP,	and	35	from	HB)	for	the	presence	of	
ISFs.

2.2 | Screening for insect- specific flaviviruses

RNA	 and	 DNA	 were	 simultaneously	 extracted	 from	 each	 mos-
quito	using	the	TRIzol®	method	from	Invitrogen	(Life	technologies,	
Carlsbad,	CA,	USA).	The	DNA	was	used	to	screen	for	the	presence	
of	Wolbachia	 infection	 via	 qPCR	 as	 previously	 described	 (Frentiu	
et	al.,	2014).	Two	samples	each	from	PP	and	GV	were	found	to	be	
Wolbachia	negative	and	were	excluded	from	further	analysis.	All	HB	
samples	were	confirmed	to	be	Wolbachia	negative	as	expected.	The	
RNA	was	 DNase-	treated	 to	 remove	 genomic	 DNA	 contamination	
using	DNase	1	recombinant	RNase-	free	(Roche,	Germany).	Reverse	
transcription	of	RNA	to	cDNA	and	the	PCR	amplification	of	the	NS5	
region	using	general	degenerate	flavivirus	primers	were	carried	out	
following	the	protocol	of	Sanchez-	Seco	et	al.	(2005).	Briefly,	reverse	
transcription	 of	 RNA	 to	 cDNA	 and	 subsequent	 first-	round	 ampli-
fication	were	carried	out	using	1	μg	of	RNA	 in	the	Access	RT-	PCR	
System	(Promega,	Madison,	WI,	USA).	Reverse	transcription	controls	
that	did	not	 include	enzyme	were	 included	 in	each	run	to	rule	out	



5444  |     AMUZU et Al.

genomic	DNA	contamination.	One	microliter	of	the	first-	round	am-
plification	was	then	used	for	 the	second	round	of	nested	PCR.	All	
PCR	products	were	run	 in	a	C1000™Thermal	Cycler	 (Bio-	Rad,	CA,	
USA).	 PCR	products	 (143	bp)	were	 analyzed	using	 gel	 electropho-
resis	on	a	2%	Agarose	gel	 (Sigma,	 Life	Science,	USA)	 stained	with	
RedSafe™	 (iNtRON	Biotechnology).	Products	were	 then	visualized	
on	the	Quantum	gel	documentation	system	(Fisher	Biotec).

2.3 | Sequencing of PCR products

A	subset	of	six	 individual	mosquitoes	 from	each	of	 the	 three	sites	
were	 selected	 for	 further	 processing	 for	 sequencing.	 To	 ensure	 a	
good	 representation	 of	 an	 area,	 the	 samples	 were	 selected	 from	
different	 traps	 that	were	not	 in	 close	proximity.	One	microliter	of	
the	 second-	round	PCR	 product	 of	 each	 of	 the	 selected	 individual	
samples	was	used	as	 the	template	 for	a	5-	cycle	amplification	with	
primers	 barcoded	 with	 Illumina	 sequence	 adapters	 (Berry,	 Ben	
Mahfoudh,	Wagner,	&	Loy,	2011).	The	PCR	amplicons	were	analyzed	
using	gel	electrophoresis	 as	described	above.	The	amplicons	were	
then	 excised	 and	 gel	 extracted	 using	 QIAquick	 gel	 extraction	 kit	
(Qiagen,	Germany)	 following	manufactures	 instructions.	 Extracted	
samples	were	then	paired-	end	sequenced	using	MiSeq	at	Ramaciotti	
sequencing	center,	NSW,	Australia.

2.4 | Processing and clustering of sequences

All	sequences	were	processed	with	cutadapt	 (Martin,	2011)	as	the	
very	 first	 step,	 to	 remove	 degenerate	 primers	 used	 for	 the	 PCR	
amplicons.	Cutadapt	was	run	with	the	following	settings;	minimum	
overlap	10	nucleotides,	minimum	read	 length:	1	nucleotide	 (this	 is	
mainly	 to	 allow	 downstream	 R1	 and	 R2	merging),	 and	 number	 of	
attempts	 to	 trim	a	primer	was	set	 to	2.	To	classify	sequences	 into	
Operational	 Taxonomical	 Units	 (OTUs),	 vsearch	 (Rognes,	 Flouri,	
Nichols,	Quince,	&	Mahe,	2016)	was	used	to	merge	reads	with	num-
ber	of	mismatches	 set	 to	 two	nucleotides,	 the	number	of	 allowed	
N’s	set	to	0,	and	the	minimum	overlap	set	to	32	bases.	This	was	fol-
lowed	by	filtering	reads	based	on	expected	error	of	1.	Identical	se-
quences	were	then	collapsed	into	a	single	sequence	(dereplication)	
and	then	clustered	using	97%	identity.	Contingency	table	of	cluster	
counts	 was	 subsequently	 generated	 using	 usearch	 (Edgar,	 2010).	
The	OTUs	were	finally	imported	into	the	flavivirus	Database	under	
The	Virus	Pathogen	Resource	(www.viprbrc.org)	and	the	Basic	Local	

Alignment	Search	Tool	(BLAST)	used	to	find	the	closest	match	or	hit	
of	each	OTU.

2.5 | Phylogenetic reconstruction

Individual	OTUs	were	aligned	with	 their	best	hits	using	 the	multi-
ple	sequence	comparison	by	log-	expectation	(MUSCLE)	tool	(Edgar,	
2004)	 provided	 by	 The	 European	 Bioinformatics	 Institute	 (EMBL-	
EBI).	 The	aligned	 sequences	were	manually	 trimmed	and	 then	 im-
ported	 into	Phylogeny.fr	 together	with	other	 common	 flaviviruses	
(Dereeper,	 Audic,	 Claverie,	 &	 Blanc,	 2010;	Dereeper	 et	al.,	 2008).	
The	one	click	mode	of	Phylogeny.fr	that	uses	MUSCLE	for	sequence	
alignment	 and	maximum	 likelihood	 (PhyML)	 for	 tree	 building	with	
aLRT	 (approximate	 likelihood-	ratio	 test)	 statistical	 test	 for	 branch	
support	values,	and	TreeDyn	for	tree	drawing	was	used	for	the	phy-
logeny	 tree	 (Anisimova	&	Gascuel,	 2006;	Chevenet,	 Brun,	 Banuls,	
Jacq,	&	Christen,	2006;	Guindon	&	Gascuel,	2003).

2.6 | Screening of field mosquitoes using  
OTU- specific primers

Primers	(Table	1)	were	designed	for	7	ISF	OTUs	that	were	selected	
based	on	their	abundance	and	diversity	 in	 the	sequenced	samples	
as	well	 as	 their	 phylogenetic	 positions.	All	 primers	were	 designed	
using	 the	 Primer3	 tool	 in	 The	 Virus	 Pathogen	 Resource	 database	
(viprbrc.org).	Quantitative	PCR	using	SYBR	Green	 (Roche,	Applied	
Science,	Switzerland)	 in	a	LightCycler480	 (Roche,	Applied	Science,	
Switzerland)	was	then	used	to	validate	the	presence	and	abundance	
of	 OTUs	 in	 all	 mosquitoes	 sampled	 from	 the	 field.	 This	 was	 per-
formed	using	1	μl	of	the	first-	round	amplification,	5	μl	of	5X	SYBR	
Green	master	mix,	and	0.5	μl	of	10	mmol/L	each	of	forward	and	re-
verse	primers	in	a	total	volume	of	10	μl.	The	cycling	conditions	were	
pre-	incubation	at	95°C	for	5	min,	45	amplification	cycles	of	95°C	for	
10	s,	60°C	for	10	s,	and	72°C	for	10	s	followed	by	a	melting	curve	
at	95°C	for	5	s,	65°C	for	1	min,	and	a	continuous	acquisition	mode	
at	97°C.	The	housekeeping	gene	RPS17	 (Cook	et	al.,	2006;	Thellin	
et	al.,	1999)	was	used	to	normalize	virus	abundance.

2.7 | Screening of laboratory mosquitoes

Wolbachia-	infected	and	wild-	type	lines	maintained	in	the	laboratory	
were	 screened	 for	 ISFs	 to	 ascertain	whether	 they	 showed	 similar	

OTUs Forward primer Reverse primer

OTU1 AGAAGCAACCGACCATAGCT CCAGATATCGACTTCCCAGCC

OTU2 AGAAGGAGAAAAAGCCCAGCC GCTAGAGCCTCAAATTCAAGGA

OTU3 TAGCTGGGGAGCCGAAAG GGCCTCATATTCCAGATATCGACT

OTU16 GTGTGCACAACATGATGGGG TTGAGGAAGCCCAATGGTCC

OTU20 TCAACACGGACCACTGGAAG TGTTGAGAAAGCCCATGGTGT

OTU21 TTCCTCAACACGGACCAGTG GTGGTCTTGTAGAGAAGCCCC

OTU25 GCCACTGGGAGCATTAACCT GTCCGTGTTAGAAAGCCCCA

TABLE  1 OTU-	specific	primer	pairs	
used	for	PCR	amplification

http://www.viprbrc.org
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patterns	as	seen	in	field-	caught	mosquitoes.	The	Wolbachia-	infected	
mosquitoes	 were	 previously	 sampled	 from	 field	 release	 sites	 in	
Cairns,	Australia	(Hoffmann	et	al.,	2011),	and	the	wild-	type	mosqui-
toes	was	from	Babinda,	Australia	(outside	the	release	zone).	To	avoid	
genetic	drift	between	the	two	 lines,	20%	of	wild-	type	males	were	
outcrossed	with	 the	Wolbachia-	infected	 females	 at	 every	 genera-
tion.	Mosquitoes	were	maintained	only	on	10%	sucrose,	and	4-		 to	
7-	day-	old	females	were	used	for	this	study.	RNA	was	extracted	from	
59	and	56	individual	mosquitoes	each	from	the	Wolbachia-	infected	
and	the	wild-	type	populations,	respectively.	The	RNA	extraction	and	
DNase	 treatment	were	 carried	 out	 as	 above.	Using	 random	prim-
ers	(125	ng/μl),	the	first-	strand	cDNA	synthesis	was	carried	out	with	
SuperScript	III	reverse	transcriptase	(Invitrogen,	California	USA)	fol-
lowing	the	manufacturer’s	instructions.	The	cDNA	synthesis	was	run	
in	a	C1000™	Thermal	Cycler	(Bio-	Rad,	California	USA).	Quantitative	
PCR	using	SYBR	Green	 (Roche,	Applied	Science,	 Switzerland)	was	
then	 carried	 out	 in	 a	 LightCycler480	 (Roche,	 Applied	 Science,	
Switzerland)	 using	1.5	μl	 of	 cDNA,	5	μl	 of	 5X	SYBR	Green	master	
mix,	 and	 0.5	μl	 of	 10	mmol/L	 each	 of	 forward	 and	 reverse	 OTU-	
specific	 primers	 in	 a	 total	 volume	 of	 10	μl.	 The	 cycling	 conditions	
were	as	above.

2.8 | Statistical analysis

To	 determine	 whether	 there	 was	 an	 association	 between	
Wolbachia	 infection	 and	 the	 presence/absence	 of	 ISFs,	 a	 binary	
logistic	regression	was	carried	out	with	presence/absence	of	ISFs	
as	a	dependent	variable	and	Wolbachia	 infection	status	as	a	pre-
dictor	 in	 a	 generalized	 linear	model	 to	 analyze	 the	 following:	 (1)	
infection	 rates	 in	 all	 the	 field	 mosquitoes,	 (2)	 infection	 rates	 in	
the	 sequenced	 mosquitoes,	 (3)	 infection	 rates	 in	 the	 field	 mos-
quitoes	 after	 RT-	qPCR,	 and	 (4)	 infection	 rates	 in	 the	 laboratory	
samples.	These	analyses	were	performed	in	SPSS®	(IBM	Statistics	
for	Windows,	Version	20.0).	Where	multiple	models	were	run	for	
individual	OTUs,	we	utilized	a	Bonferroni	multiple	test	correction.	
A	Mann–Whitney	test	in	GraphPad	Prism	(version	6)	was	used	to	
analyze	differences	in	ISF	abundance	between	the	wild-	type	and	
wMel	mosquitoes.

3  | RESULTS

3.1 | Wolbachia infection is associated with higher 
rates of ISF infection as measured by ISF generalist 
primers in PCR

We	observed	high	ISF	infection	rates	in	the	all	field-	collected	sam-
ples	as	measured	by	PCR;	100%	and	95%	for	GV	(Gordonvale)	and	
PP	 (Parramatta	 Park),	 respectively,	 and	 74%	 for	 HB	 (Holloways	
Beach).	If	we	test	for	the	effect	of	Wolbachia	 in	dictating	infection	
frequency,	we	see	that	it	is	significant	(Wald	=	7.80;	df	=	1;	p	=	.005).	
Our	findings	suggest	that	ISFs	are	a	common	feature	of	the	mosquito	
virome	and	that	Wolbachia	may	be	enhancing	the	frequency	of	infec-
tion	in	the	field.

3.2 | The ISFs include well- characterized viruses as 
well as what appear to be novel viruses

To	 identify	 specific	 ISFs	 in	 the	Ae. aegypti	 field	 populations,	we	
sequenced	 a	 subset	 of	 samples	 that	 were	 ISF	 positive	 for	 both	
the	 wild-	type	 (n	=	6)	 and	 wMel	 (n	=	12)	 mosquitoes.	 Following	
clustering	analysis,	a	 total	of	26	“unique”	 ISF	OTUs	were	 identi-
fied	 in	 the	 sequenced	 samples	 (Figure	1).	 A	 list	 of	 all	 the	OTUs	
and	 their	 sequences	 can	be	 found	 in	Table	S1.	Four	OTUs	 (1,	2,	
3,	and	13)	were	very	similar	(>80%,	Table	2)	to	the	previously	de-
scribed	ISFs	Kamiti	river	virus,	Cell	fusing	agent,	and	CbaAr4001.	
This	 group	 also	 forms	 a	 strongly	 supported	 (95%)	 phylogenetic	
cluster	 (Figure	1).	 OTU2’s	 closest	 relative	 (75%	 bootstrap	 sup-
port)	was	Cell	 fusing	agent.	The	majority	of	the	OTUs,	however,	
had	 low	 similarity	 (<50%)	 to	 known	 ISFs	 and	 OTUs	 25	 and	 26,	
which	had	no	match	(Table	2).	This	lack	of	close	relatives	is	reca-
pitulated	 in	 the	poor	 resolution	within	 the	phylogeny	 (Figure	1).	
There	 is	 some	 evidence	 of	 relatedness	 for	 OTU	 9	 that	 clusters	
with	a	group	containing	other	ISFs	including	Mosquito_flavivirus	
and	Marisma	 virus	 (90%	 support).	 The	 similarity	 of	OTUs	4,	 11,	
14,	21,	22,	24	with	one	another	suggest	they	may	all	be	variants	
of	a	single	virus.	In	summary,	our	results	show	evidence	of	several	
well-	characterized	ISFs	but	also	a	large	number	of	novel	viruses	in	
our Ae. aegypti	population.

3.3 | Wolbachia is often associated with higher ISF 
frequencies

All	 but	 five	 OTUs	 (16,	 20,	 21,	 23,	 and	 25)	 were	 fixed	 in	 wild-	
type	 and	 wMel-	infected	 field	 populations	 based	 on	 sequence	
analysis.	In	the	group	of	viruses	not	fixed,	we	found	a	significant	 
effect	 of	Wolbachia	 on	 infection	 frequency	 (Wald = 5.49,	df = 1,	
p	=	.019),	 suggesting	 that	Wolbachia	 was	 associated	with	 higher	
rates	of	 infection	 in	 the	 sequenced	 samples	 (Figure	2).	We	 then	
tested	whether	these	same	trends	were	also	present	in	the	total	
set	 of	 samples	 (sequenced	 and	 not,	n	=	93)	 from	 the	 field	 using	
RT-	qPCR	 primers	 designed	 specifically	 for	 seven	 of	 the	 OTUs	
(Table	1).	OTUs	1–3	were	selected	as	 they	are	closely	 related	to	
well-	characterized	ISFs	(Figure	1,	Table	2)	and	because	they	were	
fixed	 in	 both	 wMel	 and	 wild-	type	 populations.	 Four	 additional	
OTUs	(16,	20,	21,	and	25)	(Figure	2,	Table	1)	were	selected	given	
their	 differential	 distributions	 by	 sequencing.	 OTUs	 1–3	 were	
shown	 to	 be	 at	 100%	 frequency	 (Figure	3a)	 in	 the	 larger	 set	 of	
field	samples,	recapitulating	what	was	seen	by	sequence	analysis.	
We	then	tested	whether	the	frequencies	of	the	remaining	OTUs	
varied	with	respect	to	Wolbachia	infection	status	and	found	there	
was	a	significant	interaction	between	OTU	and	Wolbachia	infection	
status	 (Wald = 12.3,	df = 3,	p	=	.006)	 and	 so	proceeded	with	 the	
four	individual	comparisons	and	a	multiple	test	correction	(revised	
α	=	0.0125).	OTUs	16	(Wald	chi-	square = 6.9,	df = 1,	p	=	.009),	20	
(18.3,	df = 1,	p	<	.001),	and	21	(41.0,	df = 1,	p	<	.001)	were	signifi-
cantly	different,	whereas	OTU25	(5.26,	df = 1,	p	=	.022)	was	not.	
In	each	case	of	significance,	OTU	frequencies	were	higher	in	wMel	
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mosquitoes	(Figure	3a).	OTUs	16	and	21	that	were	previously	not	
found	in	the	sequenced	wild-	type	samples	were	detected	through	
RT-	qPCR.	 This	 may	 be	 due	 to	 the	 sensitivity	 cutoff	 employed	
with	 the	 sequence	 data	 whereby	 we	 excluded	 OTUs	 with	 <10	
sequence	reads.	Lastly,	we	then	determined	 if	 these	differences	
were	also	seen	in	laboratory	lines	of	wMel-	infected	and	wild-	type	
mosquitoes.	Unlike	in	the	field,	the	rates	of	infection	appear	simi-
lar	(Wald = 1.177;	p	=	.27)	between	the	two	lines	(Figure	3b).

3.4 | Wolbachia infection is associated with 
differences in abundance of ISFs

To	determine	whether	the	presence	of	Wolbachia	had	an	effect	on	
the	abundance	of	ISFs,	we	compared	the	viral	load	of	the	seven	se-
lected	OTUs	 between	 the	wild-	type	 and	wMel	mosquitoes	 under	
field	and	laboratory	conditions	by	RT-	qPCR.	Even	though	Wolbachia 
reduced	the	load	of	OTU2	in	the	field	(Figure	4a),	with	the	wild-	type	

F IGURE  1 Maximum	likelihood	tree	
for	the	26	ISF	OTUs,	their	best	reference	
hits,	and	key	flaviviruses.	Numbers	at	the	
nodes	depict	branch	support	values
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TABLE  2 OTUs	with	best	hits/match	reference

OTU Best match name
Best match 
accession Length of match Bits score e- score Identity % Similarity

1 Kamiti	River	virus DQ335465.1 124 178	(90) 5.00E-	44 106/110	(96%) 96.00

2 Cell	fusing	agent	
virus

EU074056.1 229 190	(96) 9.00E-	48 99/100	(99%) 99.00

3 Flavivirus	
CbaAr4001

DQ232622.1 87 155	(78) 5.00E-	37 84/86	(97%) 97.67

4 West	Nile	virus GU246670.1 186 46.1	(23) 2.00E-	04 26/27	(96%) 57.81

5 Meaban-	like	virus KJ440090.1 124 48.1	(24) 6.00E-	05 24/24	(100%) 52.00

6 Dengue	2	virus FJ392598.1 144 48.1	(24) 2.00E-	05 24/24	(100%) 43.04

7 Iguape	virus EU074054.1 229 48.1	(24) 6.00E-	05 24/24	(100%) 52.17

8 Tyuleniy	virus EU074019.1 232 48.1	(24) 1.00E-	04 24/24	(100) 52.92

9 Usutu	virus KC754958.1 10,745 44.1	(22) 1.00E-	03 22/22	(100%) 43.93

10 Spondweni	virus EU074014.1 232 44.1	(22) 1.00E-	03 25/26	(96%) 55.10

West	Nile	virus GU246670.1 186 44.1	(22) 1.00E-	03 25/26	(96%) 50.00

11 Spondweni	virus EU074014.1 232 44.1	(22) 1.00E-	03 25/26	(96%) 53.12

West	Nile	virus GU246670.1 186 44.1	(22) 1.00E-	03 25/26	(96%) 53.12

St	Louis	encepha-
litis	virus

JQ957871.1 2,718 44.1	(22) 1.00E-	03 25/26	(96%) 45.56

Ilheus	virus EU073990.1 232 44.1	(22) 1.00E-	03 25/26	(96%) 46.94

12 Mosquito	
flavivirus

HQ676625.1 165 44.1	(22) 4.00E-	03 24/25	(96%) 44.87

Phlebotomus	
flavivirus

FJ817076.1 157 42.1	(21) 4.00E-	03 24/25	(96%) 48.15

13 Mosquito	
flavivirus

HQ676625.1 165 42.1	(21) 4.00E-	03 24/25	(96%) 96.97

Kamiti	River	virus DQ335465.1 124 63.9	(32) 1.00E+09 32/32	(100%) 80.95

Flavivirus	
CbaAr4001

DQ232622.1 87 63.9	(32) 1.00E-	09 32/32	(100%) 59.49

14 Mosquito	
flavivirus

HQ676625.1 165 42.(21) 4.00E-	03 24/25	(96%) 47.95

Phlebotomus	virus FJ817076.1 157 42.1	(21) 4.00E-	03 24/25	(96%) 49.37

15 Louping	ill-	like	
virus

NC_001809.1 10,871 40.1	(20) 2.80E-	02 20/20	(100%) 45.70

16 Japanese	
encephalitis	virus

HQ223287.1 10,296 38.2	(19) 5.10E-	02 25/27	(92%) 50.72

Edge	Hill	virus AF275877.1 986 38.2	(19) 5.10E-	02 25/27	(92%) 50.72

17 Marisma	virus JN603190.1 1,008 44.1	(22) 1.00E-	03 22/24	(100%) 50.00

18 Kokobera	virus NC_009029.2 10,874 42.1	(21) 5.00E-	03 21/21	(100%) 42.39

Tick-	borne	
encephalitis	virus

KT224352.1 10,619 42.1	(21) 5.00E-	03 21/21	(100%) 45.75

Dengue	2	virus FJ392595.1 144 42.1	(21) 5.00E-	03 21/21	(100%) 37.11

19 Murray	Valley	
encephalitis	virus

KF751870.1 11,012 32.2	(16) 3.60E+00 19/20	(95%) 57.79

St	Louis	encepha-
litis	virus

JQ957871 2,718 32.2	(16) 3.60E+00 19/20	(95%) 49.35

Dengue	2	virus FJ392598.1 144 32.2	(16) 3.60E+00 19/20	(95%) 42.86

(Continues)
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having	a	higher	load	(p	=	.017)	compared	to	wMel	mosquitoes,	the	
opposite	 effect	 was	 observed	 in	 the	 laboratory	 where	 the	wMel	
mosquitoes	had	a	significantly	higher	 load	 (p	<	.0001)	than	that	 in	
the	wild	type.	In	the	field,	OTU20	(p	=	.0009)	and	OTU21	(p	<	.0001)	
were	 significantly	 more	 abundant	 in	wMel	 mosquitoes	 compared	
to	the	wild	type	(Figure	4b,c).	This	effect	was	not	observed	 in	the	
laboratory	 lines	with	 no	 significant	 differences	 observed	 in	 loads	
of	OTU20	 (p	=	.17)	 and	OTU21	 (p	=	.91)	 between	wMel	 and	wild-	
type	mosquitoes	(Figure	4e,f).	There	were	no	significant	differences	
between	 loads	of	OTU1	 (p	=	.94)	 and	OTU3	 (p	=	.63)	 in	wMel	and	
wild-	type	mosquitoes	in	the	field.	In	the	laboratory	lines	however,	

wMel	 mosquitoes	 consistently	 had	 a	 higher	 abundance	 of	 OTU1	
(p	<	.0001)	and	OTU3	(p	<	.0001)	compared	to	the	wild	type.	In	both	
the	field	and	laboratory	mosquito	lines,	there	were	no	differences	
in	 the	 loads	of	OTU16	 (p	>	.05)	and	 the	OTU25	 (p	>	.05)	between	
Wolbachia-	infected	and	wild-	type	mosquitoes	 (Figure	S1).	 In	 sum-
mary,	regardless	of	the	mosquito	line,	ISF	loads	varied	considerably	
between	 field	 and	 laboratory	 environments	with	 the	 former	 con-
sistently	harboring	higher	ISF	density	than	the	latter.	This	suggests	
that	environmental	conditions	and	differences	in	host	genetic	back-
ground	may	influence	abundance	of	ISFs.	Our	findings	demonstrate	
that	 in	general,	Wolbachia	does	not	 inhibit	 ISF	 loads	 in	Ae. aegypti 
mosquitoes	and	in	some	cases	may	enhance	them.	It	also	suggests	
that	 the	effect	of	Wolbachia	on	 ISFs	 is	virus-	specific	and	environ-
mental	conditions	may	 influence	 this	effect,	 such	 that	 the	 labora-
tory	environment	may	not	be	predictive	of	the	field.

4  | DISCUSSION

Despite	 large-	scale	 field	 releases	 of	Wolbachia-infected	 Ae. ae-
gypti	 mosquitoes	 (Hoffmann	 et	al.,	 2011;	 McGraw	 &	 O’Neill,	
2013;	Ritchie,	2014),	the	antivirus	or	blocking	effect	of	the	sym-
biont	 on	 the	 naturally	 occurring	 ISFs	 in	 Ae. aegypti	 mosquitoes	
is	 currently	 not	 known.	 This	 work	 therefore	 examined	 whether	
wMel	Wolbachia-	infected	mosquitoes	sampled	 from	field	 release	
sites	in	Australia	and	in	laboratory	populations	exhibit	symbiont-	
associated	changes	 in	their	 ISFs.	Generally,	we	found	that	 in	 the	

OTU Best match name
Best match 
accession Length of match Bits score e- score Identity % Similarity

20 Ochlerotatus 
caspius 
flavivirus-	like	
virus

HF548540 9,839 34.2	(17) 8.80E-	01 17/17	(100%) 43.42

21 Hepatitis	C	virus JQ060123.1 336 32.2	(16) 3.30E+00 16/16	(100%) 41.67

Dengue	1	virus M87512.1 10,717 32.2	(16) 3.30E+00 16/16	(100%) 52.11

Usutu	virus NC_006551.1 11,066 32.2	(16) 3.30E+00 16/16	(100%) 45.33

West	Nile	virus KX547594.1 10,787 32.2	(16) 3.30E+00 16/16	(100%) 49.33

Japanese	
encephalitis	virus

KM658163.1 10,965 32.2	(16) 3.30E+00 16/16	(100%) 46.67

22 West	Nile	virus GU246670.1 186 44.1	(22) 1.00E-	03 25/26	(96%) 61.8

Ngoye	virus EU074038.1 232 44.1	(22) 1.00E-	03 25/26	(96%) 50.00

23 West	Nile	virus JX041630.1 10,810 40.1	(20) 1.40E-	02 23/24	(95%) 50.00

Meaban	virus KJ440090.1 124 40.1	(20) 1.40E-	02 23/24	(95%) 51.39

24 Meaban	virus KJ440090.1 124 40.1	(20) 1.50E-	02 20/20	(100) 53.33

Iguape	virus AY167441.1 2,669 40.1	(20) 1.50E-	02 20/20	(100) 51.35

25 Unidentified	
flavivirus	1

– – – – – –

26 Unidentified	
flavivirus	2

– – – – – –

TABLE  2  (Continued)

F IGURE  2  ISF	infection	rates	for	OTUs	not	fixed	in	both	WT	
and Wolbachia-	infected	mosquitoes	from	the	field	as	determined	
by	sequencing.	Across	these	5	OTUs,	wMel	mosquitoes	exhibited	
higher	infection	rates	(p	=	.019)
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field	wMel	 mosquitoes	 had	 both	 higher	 ISF	 infection	 rates	 and	
abundances	compared	to	wild-	type	mosquitoes.	We	should	point	
out	that	the	number	of	field	populations	tested	is	small	and	so	the	
findings	could	be	the	result	of	environmental	or	stochastic	factors.	
Mosquitoes	from	other	field	release	sites	around	the	globe	should	
be	profiled	 to	determine	whether	 these	 relationships	 are	 robust	
and	generalizable.	 In	the	 laboratory	where	Ae. aegypti are reared 
under	optimal	conditions,	there	was	no	difference	in	ISF	infection	
rates	 between	wild-	type	 and	wMel	mosquitoes.	However,	wMel	
mosquitoes	did	exhibit	higher	loads	of	ISFs	compared	to	the	wild	
type.	 These	 findings	were	 unexpected	 given	 that	Wolbachia	 has	
been	extensively	 shown	 to	 inhibit	 flaviviruses	of	medical	 impor-
tance	 in	Ae. aegypti	 (Bian	et	al.,	2010;	van	den	Hurk	et	al.,	2012;	
Moreira	et	al.,	2009;	Walker	et	al.,	2011).

A	total	of	26	OTUs	were	observed	in	the	sequenced	field	sam-
ples	with	all	mosquitoes	harboring	multiple,	concurrent	 infections.	
Some	of	these	OTUs	were	closely	related	to	each	other	 indicating	
they	are	likely	variants	of	the	same	virus.	Very	few	of	the	OTUs	clus-
tered	with	characterized	ISFs	present	in	the	databases.	This	confirms	
observations	in	invertebrates	(Shi	et	al.,	2016),	and	more	specifically	
in Drosophila	 (Webster	 et	al.,	 2015),	 that	 there	 are	 novel	 insect-	
specific	viruses	that	are	yet	to	be	classified.	Our	study	is	limited	by	

sequencing	a	short	fragment	(143	bp)	that	probably	affects	the	abil-
ity	to	have	unambiguous	matches	and	could	explain	why	some	OTUs	
matched	to	more	than	one	virus	in	the	database.

ISFs	 were	 found	 to	 be	 ubiquitous	 in	 both	 the	 laboratory	 and	
field	mosquito	populations	suggesting	that	these	flaviviruses	may	be	
transmitted	vertically.	Studies	by	Bolling	et	al.	(2012)	and	Lutomiah,	
Mwandawiro,	Magambo,	and	Sang	(2007)	demonstrated	that	Culex	
flavivirus	 and	 Kamiti	 river	 virus	 are	 maintained	 in	 Cx. pipiens and 
Ae. aegypti	mainly	through	vertical	transmission	with	venereal	trans-
mission	playing	a	minor	role.	Other	studies	carried	out	both	under	
laboratory	 and	 field	 conditions	 further	 demonstrated	 that	 flavivi-
ruses	of	medical	importance	including	WNV	(Baqar,	Hayes,	Murphy,	
&	 Watts,	 1993),	 DENV	 (Bosio,	 Thomas,	 Grimstad,	 &	 Rai,	 1992),	
and	YFV	(Beaty,	Tesh,	&	Aitken,	1980)	can	be	maintained	in	nature	
through	vertical	transmission.

We	observed	differences	between	 field	 and	 laboratory	 ISF	 in-
fection	rates	and	loads	with	the	field	mosquitoes	consistently	hav-
ing	 higher	 infection	 rate	 and	 abundance	 regardless	 of	 mosquito	
line.	These	differences	between	the	two	populations	may	be	partly	
attributed	to	selection	and	founder	effects	 (Lorenz,	Beaty,	Aitken,	
Wallis,	&	Tabachnick,	1980;	Munstermann,	1994)	as	is	common	with	
laboratory	colonies	(Lorenz	et	al.,	1980;	Munstermann,	1980,	1994).	
There	is	also	a	possibility	that	environmental	conditions	in	the	field	
(Huber	 et	al.,	 2002)	 predispose	Ae. aegypti	 to	 increased	 ISF	 infec-
tion	 as	 factors	 such	 as	 temperature	 influence	mosquito	 immunity	
and	therefore	mosquito–pathogen	interactions	(Huber	et	al.,	2002;	
Murdock,	 Moller-	Jacobs,	 &	 Thomas,	 2013;	 Murdock,	 Paaijmans,	
Cox-	Foster,	Read,	&	Thomas,	2012;	Murdock,	Paaijmans,	Bell,	et	al.,	
2012).	 High	 larval	 crowding	 (Alto,	 Lounibos,	 Mores,	 &	 Reiskind,	
2008;	Baqar,	Hayes,	&	Ahmed,	1980),	nutritional	 restrictions	 (Alto	
et	al.,	 2008;	 Baqar	 et	al.,	 1980;	 Grimstad	 &	 Haramis,	 1984;	 Kho,	
Hugo,	Lu,	Smith,	&	Kay,	2016),	 and	 low	 temperature	 (Chambers	&	
Klowden,	 1990)	 have	 independently	 been	 shown	 to	 cause	 small	
body	 size	with	 an	 accompanying	 increased	 susceptibility	 to	 arbo-
viruses	such	as	WNV	(Baqar	et	al.,	1980),	DENV	(Alto	et	al.,	2008;	
Kho	et	al.,	2016),	and	La	Crosse	virus	 (Grimstad	&	Haramis,	1984).	
Environmental	variables	therefore	need	to	be	tested	empirically	to	
establish	their	effects	on	ISF	infection	rates	and	load	in	Ae. aegypti 
mosquitoes.	It	is	also	possible	that	age	could	contribute	to	variation	
in	ISF	infection	(Bolling	et	al.,	2012),	but	the	sampling	of	adults	from	
wild	populations	did	not	allow	for	age	control.

It	was	unexpected	to	observe	a	higher	ISF	infection	rate	in	wMel	
mosquitoes	compared	 to	 the	wild	 type	 in	 field	Ae. aegypti	 popula-
tions.	This	 sharply	contrasts	previous	studies	where	Wolbachia in-
fection	significantly	reduced	the	proportion	of	 individuals	 infected	
with	 other	 flaviviruses	 such	 as	 DENV	 (Amuzu	 &	 McGraw,	 2016;	
Amuzu,	Simmons,	&	McGraw,	2015;	Bian	et	al.,	2013;	Frentiu	et	al.,	
2014;	Moreira	 et	al.,	 2009;	Walker	 et	al.,	 2011),	 Zika	 (Aliota	 et	al.,	
2016;	Dutra	et	al.,	2016),	and	YFV	(van	den	Hurk	et	al.,	2012).	Our	
findings	are,	however,	supported	by	studies	performed	in	Cx. tarsalis 
and An. gambiae	where	the	presence	of	Wolbachia	increased	the	in-
fection	rate	of	WNV	and	P. berghei,	respectively	(Dodson	et	al.,	2014;	
Hughes	 et	al.,	 2012).	 In	 addition,	Wolbachia	 has	been	observed	 to	

F IGURE  3  ISF	infection	rates	in	mosquitoes	for	a	subset	of	
OTUs	as	determined	by	RT-	qPCR.	(a)	In	the	field,	three	of	the	
OTUs	were	more	common	in	wMel-	infected	mosquitoes	than	WT	
(*p	<	.0125).	(b)	In	the	laboratory,	there	were	no	differences	in	ISF	
infection	rates	between	wMel	and	wild-	type	mosquitoes	in	the	
laboratory	(p	=	.27)

(a)

(b)
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increase	susceptibility	of	the	DNA	virus	nucleopolyhedrovirus	in	the	
African	 armyworm,	S. exempta	 (Graham	et	al.,	 2012).	 In	 laboratory	
lines,	Wolbachia	 does	 not	 influence	 ISF	 infection	 rates	 suggesting	
that	population	genetic	variation	and	differences	 in	environmental	
conditions	 between	 the	 laboratory	 and	 field	 could	 be	 influencing	
Wolbachia	interaction	with	ISFs.	This	hypothesis	is	not	supported	by	
Kho	et	al.	(2016)	and	Caragata	et	al.	(2013)	who	demonstrated	that	
larval	nutrition	and	adult	carbohydrate	intake	did	not	affect	DENV	
infection	 rates	 in	wMel	mosquitoes.	Temperature,	 in	 contrast,	 has	
been	shown	to	determine	whether	the	wAlbB	Wolbachia	 strain	 in-
hibits,	enhances,	or	has	a	neutral	effect	on	oocyte	infection	rate	and	
intensity	 of	 Plasmodium yoelii in An. stephensi	 (Murdock,	 Blanford,	
Hughes,	Rasgon,	&	Thomas,	2014).	Based	on	these	studies	and	our	
findings,	 there	 is	 a	 need	 to	 further	 investigate	 the	 effect	 of	 envi-
ronmental	conditions	on	Wolbachia–ISF	interactions	in	order	to	es-
tablish	the	role	the	environment	may	be	playing	 in	modulating	 ISF	
infection.

Wolbachia	 suppressed	 the	 abundance	 of	 OTU2,	 that	 is	 most	
similar	to	cell	fusing	agent	virus,	 in	the	field	populations	and	this	
is	supported	by	other	studies	that	found	inhibition	of	this	ISF	by	
the	wMelPop	Wolbachia	strain	in	Ae. aegypti	cell	lines	(Schnettler,	
Sreenu,	Mottram,	 &	McFarlane,	 2016;	 Zhang,	 Etebari,	 &	 Asgari,	
2016).	 This	 suppressive	 effect,	 however,	was	 lost	 in	 the	 labora-
tory	 where	 Wolbachia	 significantly	 enhanced	 loads	 of	 OTU2.	
Generally,	we	observed	wMel	either	enhanced	loads	of	ISFs	or	had	

no	significant	effect,	signifying	that	Wolbachia	does	not	inhibit	the	
success	of	these	flaviviruses.	The	load	of	the	insect-	specific	virus	
Phasi	Charoen-	like	bunyavirus	present	in	Ae. aegypti	cells	infected	
with	the	wMelPop	Wolbachia	was	not	shown	to	differ	from	those	
without	the	symbiont	(Schnettler	et	al.,	2016)	thus	supporting	our	
observation	that	Wolbachia	does	not	have	an	effect	on	ISF	loads. 
Still,	 other	 studies	 have	 demonstrated	 pathogen	 enhancement	
by	Wolbachia	where	 the	number	of	Plasmodium relictum	 oocytes	
that	 develop	 in	 the	 midgut	 of	Cx. pipiens	 increased	 in	 the	 pres-
ence	of	the	symbiont	 (Zele	et	al.,	2014).	This	effect	was	also	ob-
served	in	An. gambiae	where	wAlbB	Wolbachia	strain	significantly	
increased	 oocytes	 levels	 of	 P. berghei	 (Hughes	 et	al.,	 2012).	 The	
fact	 that	Wolbachia	 did	not	have	a	 significant	 effect	on	 loads	of	
OTU16	and	OTU25	suggests	that	the	effect	of	Wolbachia	on	ISF	
are	virus-	specific.	This	supports	other	studies	in	which	contrasting	
results	were	observed	for	closely	related	species	where	the	wAlbB	
Wolbachia	strain	enhanced	P. berghei	(Hughes	et	al.,	2012)	but	in-
hibits	P. falciparum	(Hughes,	Koga,	Xue,	Fukatsu,	&	Rasgon,	2011)	
in An. gambiae.

The	effect	of	the	Wolbachia–ISF	relationship	on	viruses	of	med-
ical	 importance	has	not	been	examined	 in	mosquitoes.	 It	 is	possi-
ble	that	ISF	enhancement	by	Wolbachia	may	not	have	an	effect	on	
arboviruses	(Crockett	et	al.,	2012;	Kent	et	al.,	2010).	Alternatively,	
it	 could	 lead	 to	 inhibition	 of	 arboviruses	 as	 was	 observed	 in	 the	
case	of	WNV	and	Murray	Valley	encephalitis	 (Bolling	et	al.,	2012;	

F IGURE  4 Relative	abundance	of	identified	ISF	OTUs.	(a)	OTU2	decreased	in	abundance	in	wMel	mosquitoes	in	the	field	but	increased	
in wMel	in	the	laboratory	lines	(b)	OTU20	and	(c)	OTU21	were	more	abundant	in	wMel	mosquitoes	in	the	field	but	were	not	different	in	the	
laboratory.	(d)	OTU1	and	(e)	OTU3	increased	in	abundance	in	wMel	laboratory	mosquitoes	only.	*p	<	05;	***p	<	.001;	****p	<	.0001
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Hobson-	Peters	 et	al.,	 2013),	 further	 strengthening	 the	 pathogen	
blocking	effect	of	Wolbachia.	Given	that	ISF	is	common	and	widely	
distributed	 in	Ae. aegypti	mosquitoes,	 this	 could	be	advantageous	
to	the	current	Wolbachia-	dengue	control	strategy.	More	concerning	
is	the	possibility	of	ISF	enhancement	resulting	in	increased	suscep-
tibility	of	mosquitoes	 for	 arboviruses	as	was	 reported	 in	a	differ-
ent	study	for	WNV	(Newman	et	al.,	2011).	This	would	have	serious	
consequences	for	the	current	Wolbachia–DENV	control	strategy	as	
Wolbachia-	infected	 mosquitoes	 will	 facilitate	 arbovirus	 prolifera-
tion	instead	of	limiting	them.	Finally,	our	findings	point	to	the	need	
to	 carefully	 examine	 environmental	 conditions	 before	 embarking	
on Wolbachia–Ae. aegypti	field	releases	as	the	Wolbachia-	pathogen	
effects	observed	in	the	laboratory	may	not	be	representative	of	the	
field.
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