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Abstract

Biomedical question answering (QA) represents a growing concern among industry and

academia due to the crucial impact of biomedical information. When mapping and ranking

candidate snippet answers within relevant literature, current QA systems typically refer to

information retrieval (IR) techniques: specifically, query processing approaches and ranking

models. However, these IR-based approaches are insufficient to consider both syntactic

and semantic relatedness and thus cannot formulate accurate natural language answers.

Recently, deep learning approaches have become well-known for learning optimal semantic

feature representations in natural language processing tasks. In this paper, we present a

deep ranking recursive autoencoders (rankingRAE) architecture for ranking question-candi-

date snippet answer pairs (Q-S) to obtain the most relevant candidate answers for biomedi-

cal questions extracted from the potentially relevant documents. In particular, we convert

the task of ranking candidate answers to several simultaneous binary classification tasks for

determining whether a question and a candidate answer are relevant. The compositional

words and their random initialized vectors of concatenated Q-S pairs are fed into recursive

autoencoders to learn the optimal semantic representations in an unsupervised way, and

their semantic relatedness is classified through supervised learning. Unlike several existing

methods to directly choose the top-K candidates with highest probabilities, we take the influ-

ence of different ranking results into consideration. Consequently, we define a listwise “rank-

ing error” for loss function computation to penalize inappropriate answer ranking for each

question and to eliminate their influence. The proposed architecture is evaluated with

respect to the BioASQ 2013-2018 Six-year Biomedical Question Answering benchmarks.

Compared with classical IR models, other deep representation models, as well as some

state-of-the-art systems for these tasks, the experimental results demonstrate the robust-

ness and effectiveness of rankingRAE.
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Introduction

Due to the continuous growth of information produced in the biomedical domain, there is a

substantially growing demand for biomedical QA from the general public, medical students,

health care professionals and biomedical researchers [1]. Public demand for biomedical

knowledge or access to natural knowledge is on the rise, especially regarding prevention meth-

ods and disease symptoms: medical students find relevant knowledge in papers or from work,

while researchers follow the research results from previous studies. Moreover, biomedical QA

is the most significant component of several real-world medical applications [2].

In recent years, various methods have been proposed in the field of biomedical QA [3]. It is

known from experience that the current typical QA models or systems consist of three main

parts: question processing, document processing, and answer processing phases [4, 5]. The

question processing phase is usually responsible for converting questions in natural language

expressions into queries which are suitable for a document search engine. Afterwards, the doc-

ument processing phase controls retrieval of the most relevant documents with the generated

queries and extracts candidate answer passages. Finally, in the answer processing phase, the

candidate answers are matched against the expected answer type and are ranked according to

the matching scores [6–8].

There have been several investigations concerning improvements of the query processing

phase. For example, Cao et al. [9], Wasim et al. [10] and Abacha et al. [11] have employed

question classifying approaches, with semantic information obtained from the UMLS

resources. However, some researchers have noted that these medical QA approaches have limi-

tations in terms of the types and formats of questions that they can process [12]. In contrast to

the above studies focusing on query processing, several systems have been developed [13–15]

with different document processing approaches. Standard IR [16] engines, e.g., Google, bio-

medical query systems, e.g., PubMed, or their combination have been proposed to return rele-

vant documents in response to a query. In addition, some researchers have managed to utilize

semantic knowledge in document retrieval [17, 18]. However, the statistics indicate that pas-

sage extraction can benefit more from incorporation of semantics as compared to document

retrieval.

As a consequence, besides appropriate question analysis and document retrieval process,

effectively extracting and selecting relevant answers represents the bottleneck in the entire pro-

cess. From our own perspective, investigating how to select relevant snippets (explained in

detail in Remark 1) directly from retrieved documents is significant in overcoming the limita-

tions of question type and improving the performances to a large extent.

There is not much research on returning relevant snippets for biomedical questions. A pre-

vious study utilizing NCBI [19] suggested that the cosine similarities between questions and

sentences in relevant documents represent the question-answer relationships. The study

argued that the higher similarities represent higher relevances. There are two studies that

ignore the differences between QA and IR. One is a study of BioASQ participants that builds a

model with a granularity of several random words and calculates a ranking of the subdocu-

ment level through a document retrieval model [20]. Another one is a study of BioNLP partici-

pants utilizing encoder technology to measure the relationship between questions and answers

[21]. Despite the improvements of performance, the above extracting strategies may break

the completeness of semantics, whether with respect to the use of “sentence” or the definition

of “granularity”. Actually, in most cases, it is possible for a relevant snippet to be a single sen-

tence or multiple sequential sentences, or even half a sentence, and the study of NCBI and

BioNLP participants both exhibit inadequacy in that regard. According to our experiences, the

snippets with the most similar keywords or term distributions are probably not the requested
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answers. For instance, if the relevant documents happen to contain the exact statement of the

question, then the expected answer is obviously the following sentences, rather than the similar

sentence.

In this paper, we suppose that there are some latent semantic relations between a biomedi-

cal question and its relevant snippet answers, namely, a Q-A relation. Thus, the problem of

selecting relevant snippet answers can be converted into several classification tasks to decide

whether a question and the candidate answers have the Q-A relation. First, all possible candi-

date snippets are extracted from the documents, and each candidate snippet is combined with

the question to form a question-snippet (Q-S) pair. Then, an appropriate vector representation

model is utilized to represent the semantics of the Q-S pairs. Convolutional Neural Networks

and Recurrent Neural Networks are both common vector representation models used to rep-

resent the global semantics, while the local semantics and the syntactic information may be

ignored for comprehension. In contrast, Recursive Neural Networks (RNNs) maintain the

local semantics to the utmost and take both syntactic and semantic information into account.

As a result, RNNs are chosen to learn the semantic representations. Unlike the conventional

classification, a specific prediction of Q-A relations may have various ranking results. Taking

that fact into account, we modified RNNs by defining the “ranking error” and integrated it

into loss function computation to correct the errors caused by ranking. With the semantic vec-

tors of Q-S pairs and supervised learning, the probabilities of Q-A relations are computed and

ranked to select relevant snippet answers.

We performed the experimental evaluations on the BioASQ 2013-2018 benchmarks with

the Medline corpus. The results show that our proposed approach outperforms several com-

petitive baselines, including the classical IR models and the proposed model with replaced vec-

tor representations, e.g., CNNs, LSTM and state-of-the-art BioASQ participants.

In summary, the main contributions are: 1) proposing a novel approach to solve the snippet

retrieval problem in biomedical QA with a classification model; 2) redesigning the loss func-

tion of RNNs to orient ranking; and 3) providing a better solution for BioASQ.

Remark 1 “Snippet” is not an unambiguous concept like “sentence” or “paragraph”. The exact
definition is “a small and sequential piece of articles which represents an independent and com-
plete semantic”. The separators might be commas, dots, semicolons, or even the word “and”. For
instance, it could be a single sentence or a half sentence like “Most cases of CMT are caused by
mutations in PMP22,” or multiple sequential sentences like “PMP22 is the common gene found
mutated through a duplication in CMT1A. Other genes are MPZ and SH3TC2.”. So the extrac-
tion of snippets is a great challenge of snippets retrieval.

Related work

In a review several years ago, a few studies were highlighted that were dedicated to studying

the biomedical question answering (QA) system [17, 22]. According to our research, Cairns

et al. represented the first group to emphasize the importance of establishing a biomedical

domain-specific question answering system. Then, TREC, one of the authoritative forums in

the field of information retrieval based on large test collections related to QA systems, started a

genomics track. Further, EQueR-EVALDA [23], a French evaluation campaign for question

answering (QA) systems, provided two tasks: one of which is a biomedical domain-specific

task to solve medical questions. Recently, there has been a huge range of success. In the sixth

edition of the BioASQ challenge, 26 teams with more than 90 systems participated in this chal-

lenge in total, and the best ones were able to outperform the strong baselines [24]. Similarly to

participants of the BioASQ challenge, participants of the BioNLP challenge also demonstrate

very good performance [25]. However, there are still some limitations of biomedical QA, such
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as lack of annotated data, ambiguity in clinical text and lack of comprehension of question/

answer text by models [1, 26].

Apart from the tracks, organizations such as Google, MedQA [27], Onelook, and PubMed

are also trying to construct question answering applications. With regard to the aspects of the

quality of answers and ease of use, Google performs very well and better than the other three

organizations [28]. All of them can return an acceptable response to the greater part of defini-

tional questions posed by physicians. Due to some restrictions, however, only definitional

questions can be solved. Another research project focused on retrieval of answers from bio-

medical literature through narrowing down the candidate answer space by question classifica-

tion and distributing a higher rank to the correct answers [10]. This research still suffered

from some troublesome problems [7, 29], such as the need for a clear factoid and list type.

In 2013, the first BioASQ challenge was held. Organizers of this challenge provided a large-

scale question answering competition, in which the systems are required to cope with all stages

of a question answering task, including the retrieval of relevant articles and snippets as well as

the provision of natural language answers [30, 31]. The two teams, Choi S et al. [32] and Papa-

nikolaou Y et al. [33], in this challenge proposed a model with a reference value. The third edi-

tion of the BioASQ challenge was hold in 2015. Sarrouti and El Alaoui [34] proposed using

stemmed words and UMLS concepts as features for the BM25 model, which achieved good

performances. The reason why they achieves good performances mainly because that they

made full advantage of UMLS concepts and sentence components in both the document

retrieval phase and the snippet retrieval phase. Their paper also proves that using the language

resources of the sentence itself was equally important as using the model. A recent article also

illustrates this fact [35]. The sixth edition of the BioASQ challenge was held in 2018 [24]. A

team in this challenge took advantage of the theory of attention [36]. They used point multipli-

cation of the query terms matrix and document terms matrix, like attention via dot-product,

for encoding. They use pretrained embeddings with one dense layer and residual to generate

context sensitive term encoding. Intuitively and rigorously, the context sensitive term encod-

ing achieved the same effect with context encoding via the bidirectional RNN [37], and the

former was faster. As a result, the system scored at the top or near the top for all tasks of this

challenge [8]. The above models or systems have some defects: only some matching of relevant

documents achieved successful results, according to the evaluation. When searching for rele-

vant snippets, the results became terrible because the systems could not find the accurate

positions of the relevant snippets [17]. However, as mentioned in the introduction, relevant

documents cannot meet the requirements because the accurate statements are difficult to

locate manually when given the candidate literature. Instead, relevant snippets can solve this

issue. According to the overview of BioASQ competitions, most participants working on snip-

pet retrieval adopted similar proposals to the methods while searching articles. The main dif-

ferences were the methods used to split the documents. NCBI suggested the use of sentences

directly in relevant documents [19]. Another study of BioASQ participants aimed to define a

granularity of several words to split the documents [20]. There were also several researchers

who regarded all possible snippets as different “short documents.” The indices of these candi-

dates were then built for preprocessing, and the same retrieval models were utilized to rank

them. Apart from the retrieval approaches, the framework proposed by NCBI [38] directly

computes the cosine similarities between the questions and the candidate sentences to measure

their relatedness. Finally, the best scoring sentences from the title or the abstract were chosen

as relevant snippets for a question.

From our perspective, these approaches excessively rely on the information retrieval tech-

niques in which the ranking is based on the distributions of query terms in documents and

the whole collection. There is severe weakness existing in these approaches due to lack of
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consideration of the semantics. The cosine similarity represents the degree of resemblance

rather than the Q-A relations. In a similar way, the output scores from any classical IR models

also represent the similarities of term distributions in the questions/queries, in the documents,

or in the whole collection. The semantic meanings are not taken into account when deciding

whether they have Q-A relations, while the semantics are usually the definitive factors. For

instance, for a biomedical question such as “How to treat infectious mononucleosis,” a state-

ment inside a candidate document is “What is the treatment for infectious mononucleosis?

Chloroquine and steroids are worth attempting.” Obviously, the expected relevant snippet is

the latter sentence, “Chloroquine and steroids are worth attempting,” rather than the former

“What is the treatment for infectious mononucleosis?” Consequently, including semantics is

of great importance to locate the relevant snippets for biomedical questions.

Ranking with modified RNNs

As described above, the modified RNNs is used to generate a variable-size vector representing

the Q-S pair to discover the semantic relations between the question and the candidate snippet.

In this section, we respectively introduce the preprocessing work, the unsupervised RNNs,

which recursively combine word vectors, and the modified semi-supervised RNNs, which

both learn the semantic representations and solve the ranking problem. The architecture of

modified RNNs, which learn the semantic vector representations of Q-S pairs and classify

whether the Q-S pairs have Q-A relations, is shown in Fig 1.

Preprocessing and pretraining

We first perform query formulation on the input questions and feed the generated queries into

a search engine to retrieve relevant documents. Specially, in that step of query formulation, we

use NLTK to create a parse tree of parts of speech on every input question and remove all non-

noun phrase (NNP) parts, for, it is not enough to remove stop words. A typical problem is that

Fig 1. Illustration of the modified RNNs architecture to learn semantic vector representations for a Q-S pair. Words are

pretrained first into continuous vectors. Then, they are recursively combined into a fixed length vector through the same

autoencoders. The vectors at each node are used as features to predict the local semantic relations.

https://doi.org/10.1371/journal.pone.0242061.g001
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we cannot retrieve the documents that we need if we remove stop words from questions only.

Through word frequency analysis, we find that most documents containing answers contain

nouns or other forms of nouns in the question but other parts of speech do not appear regu-

larly. So if we don’t delete those words, we may not be able to retrieve all the documents we

need since search engines tend to retrieve documents with more input. Experiments have

found that leaving noun phrases works better than leaving nouns only. Then, all possible can-

didate snippets are extracted from top-N documents to guarantee the recall of ideal snippet

answers. Each snippet and question are combined together into a Q-S pair.

Moreover, the semantic vectors of words are required. Random continuous vectors are usu-

ally used, but here, a coarse learning process is applied to pretrain the word vectors with the

word2vec tool on the Medline article collection. With pretraining, the recursive iterations and

the corpus impact can be effectively decreased.

Recursive autoencoders and variants

The goal of autoencoders is to combine a sequence of word vectors into a single vector of fixed

dimensions and size. At each step, it encodes two adjacent vectors that meet certain standard

as a vector. For example we have a sequence x = (x1, x2, x3, x4, x5) and (x2, x3) that meets the

standard. It will be required to encode (x2, x3) as a vector y1. Then, a new sequence will be gen-

erated x = (x1, y1, x4, x5) and it becomes shorter. We call y1 the father node of (x2, x3). After a

few steps, the sequence will be encoded as a single vector and the track of encoder is a tree

structure. Fig 2 shows an instance of recursive autoencoders (RAE) with a list of word vectors

x = (x1, . . ., xm) and a binary tree structure. We chose a binary tree instead of a parse tree. This

is because that the parse tree is built according to certain standards, and it can only encode vec-

tors according to a fixed pattern. For binary tree, the pattern is selected by the neural network

itself. It can constantly encode moreproperly and enable vectors to encode together. The tree

structure can also be described with several triplets p! c1 c2 where p is the parent node and c1,

c2 are the children, such as(y1! x3 x4, y2! x2 y1, y3! x1 y2). With the same neural networks,

the parent representations p can be computed from the children c1, c2 with:

p ¼ f ðWð1Þ½c1 : c2� þ bð1ÞÞ ð1Þ

Fig 2. Illustration of an application of a recursive autoencoder to a binary tree. The white nodes are utilized to

calculate the reconstruction errors.

https://doi.org/10.1371/journal.pone.0242061.g002
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where the concatenation of the two children is multiplied by a matrix of parameters

Wð1Þ 2 Rn�2n. After adding a bias term b, the tanh is applied as activation function. A recon-

struction layer is usually designed to validate the combination process by reconstructing the

children with:

½c0
1

: c0
2
� ¼Wð2Þpþ bð2Þ ð2Þ

Then, through comparisons between the reconstructed and the original children vectors, the

reconstruction errors can be computed by their Euclidean distance, as shown in:

Erecð½c1; c2�Þ ¼
1

2
k½c1; c2� � ½c

0

1
; c0

2
�k

2 ð3Þ

Now that the vector representation for a parent node p of two children (c1, c2) can be com-

puted and the dimensions are the same, the full tree is constructed with the triplets and recur-

sive combinations; as such, the reconstruction error at each nonterminal node is available.

However, during the recursive process, the child node could represent a different number of

words and, thus, different importance for the overall meaning reconstruction. We therefore

adopt the strategy [39] to redefine reconstruction error as:

Erecð½c1; c2�; yÞ ¼
n1kc1 � c01k

2
þ n2kc2 � c02k

2

n1 þ n2

ð4Þ

where the n1 and n2 represent the number of words in (c1, c2) and θ stands for the parameters.

To minimize the reconstruction errors of all vector pairs of children in a tree, the tree struc-

ture can be computed through:

RAEyðxÞ ¼ arg min
y2AðxÞ

X

y

Erecð½c1; c2�; yÞ ð5Þ

where A(x) stands for the set of all possible trees that can be built from an input Q-S pair x.
According to [39], a greedy approximation can simplify the tree construction. For each time,

the “potential” parent node and reconstruction error of each pair of neighboring vectors are

calculated, and the pair with the lowest reconstruction error is replaced by a parent node. This

process is repeated until the sequence is encoded as a single vector, and a encoding tree is also

constructed completely. This approximation captures single-word information to a large

extent and does not necessarily follow syntactic constraints; it even breaks the boundaries

between questions and snippet, which may help to decide whether a question and a snippet are

naturally connected and also solve the problem that the length of the sentence is not equal or

too long.

Semi-supervised modified RNNs for ranking

With unsupervised RAE, the semantic vectors of Q-S pairs are generated. We extend the

approach into a semi-supervised RNNs to predict the semantic relations and rank the poten-

tially relevant snippets for a question. The distributed vector representation of each parent

node in the tree built by RAE could also be regarded as features of the Q-S pairs, so we leverage

the vector representations by adding a simple softmax layer on top of each parent node to pre-

dict class distributions. This is a multi-task learning structure, with encoder as the main task

and classification as the branch task. The classification layer will affect the encoding results,

making the encoder to generate vectors that are more friendly and suitable for classification,
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and therefore achieve the purpose of improving accuracy:

dðp; yÞ ¼ softmaxðWlabelpÞ ð6Þ

Fig 3 shows a unit in the modified RNNs at a parent node. Let d = (d1, d2), d1 + d2 = 1 repre-

sent the distribution with and without Q-A relations, and t1, t2 be the target label distribution

for one entry. Since the outputs of the softmax layer are conditional probabilities dk = p(k|[c1;

c2]), the cross-entropy error can be computed with:

EcEðp; t; yÞ ¼ �
X2

k¼1

tk logdkðp; yÞ ð7Þ

So the training error for each entry can thus be computed through the sum over the error at

the nodes of the tree T:

Eðx; t; yÞ ¼
X

s2T

Eð½c1; c2�s; ps; t; yÞ ð8Þ

where the error at each nonterminal node is the weighted sum of reconstruction and cross-

entropy errors:

aErecð½c1; c2�s; yÞ þ ð1 � aÞEcEðps; t; yÞ ð9Þ

As mentioned, the modified RNNs are in charge of not only classifying the Q-S pairs but

also ranking the candidate snippet answers according to the value of relevance. However, we

have found that the same classification result may lead to different ranking results due to the

influence among samples, which cannot be measured with cross-entropy error. For example, a

question q has a relevant answer s1 and an irrelevant answer s2. The target label distributions of

qs1, qs2 are thus (1, 0), (0, 1) respectively. Assume that there are two classifiers with predictions

(0.51, 0.49), (0.52, 0.48) and (1, 0), (0.99, 0). With classification, the two classifiers have the

same results, where candidate snippets s1, s2 are both relevant. The cross-entropy errors of the

latter classifier are much larger than those of the former one. However, if the top-1 answer is

requested, the latter would make the correct selection. In fact, the ranking accuracy is much

more significant than classification accuracy in this case.

Fig 3. Illustration of a unit in modified RNNs at a nonterminal node. The red nodes shows the ranking error.

https://doi.org/10.1371/journal.pone.0242061.g003
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The above instance indicates that the training error of each entry is influenced by estimated

probabilities of the other entries, which corresponds to the same question. Hence, we define

the “ranking error” to represent the training error associated with the ranking process.

Assume that there is a set of top N candidate snippets C = {x(1), x(2), . . ., x(N)} for a biomedi-

cal question and a set of representation vectors for Q-S pairs P = {p(1), p(2), . . ., p(N)}. Let D =

{d(1), d(2), . . ., d(N)} be the set of output distributions, where dðiÞ ¼ ðdðiÞ1 ; d
ðiÞ
2 Þ. To avoid confu-

sion, we assume that x(1), x(2), . . ., x(m) are relevant and the rest are irrelevant. The set of target

label distributions is therefore L = {t(1), t(2), . . ., t(N)}, t(i) = (1, 0), i�m and t(i) = (0, 1), i>m.

According to the values of dðiÞ1 , the rank r of the candidate snippets C can be computed through

r = rank(D) = rank(d(P;θ)). In addition,m equals the number of t(i) = (1, 0), that ism = count
(L).

Mean Average Precision (MAP) is a global evaluation metric to measure the ranking

results, so the ranking error is defined as the negative of the logarithm of the MAP score:

ErðP; L; yÞ ¼ � log
Xm

i¼1

dðiÞ1

i

 !

¼ � log
XcountðLÞ

i¼1

dðP; yÞðiÞ
1

i

 !

ð10Þ

As a result, the loss function which corresponds to a question E0(C, L;θ) can be computed

by following Eq (11), while the final objective and its gradient are respectively shown in Eqs

(12) and (13).

bErðP; L; yÞ þ ð1 � bÞ
X

t2Lx2C

E0ðx; t; yÞ ð11Þ

J ¼
1

N

X

ðx;tÞ

E0ðC; L; yÞ þ
l

2
kyk

2

ð12Þ

@J
@y
¼

1

N

X

ðC;LÞ

@E0ðC; L; yÞ
@y

þ ly ð13Þ

With proper learning through the modified RNNs, the probability of Q-A relations within

a Q-S pair can be estimated by the output distributions. The candidate snippet answers are

then ranked according to the estimated probabilities of the corresponding Q-S pairs, and the

top ranked snippets are predicted to be relevant.

Experiments

Experimental evaluation

We evaluate the performance of our method on the biomedical literature collection from

PubMed/MedLine [40] and the benchmark datasets of questions from the three-year BioASQ

challenges [20, 24]. The literature collection contains a total of over 20 million records which

contain the article title and abstract. The benchmark datasets contain several questions that are

requested to reflect real-life information needs encountered during the work, research or diag-

nosis of several biomedical professionals. Moreover, each question should be independent, i.e.,

it should not contain any pronouns referring to entities mentioned in other questions. The

ground truth of each question and the supportive information are also provided by these

experts. The questions are categorized into four classes [41, 42]: (1) yes/no questions, (2) fac-

toid questions, (3) listed questions, which respectively require a “yes”/“no” answer, a particular

entity (e.g., a disease, drug, or gene), or a list of entities as an answer, and (4) Summary
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questions that can only be answered by producing short text summarizing the most prominent

relevant information; e.g., “What is the treatment for infectious mononucleosis?”.

There are respectively 3, 5, and 5 batches in the three-year BioASQ challenge, each batch

containing 100 questions. For snippet retrieval, participants are asked to submit at most 10 rel-

evant snippets extracted from the literature.

Algorithm comparison. We compare the performance of the proposed method with sev-

eral strong baselines. Specifically, in order to validate the effectiveness of components, we

implement some baselines by replacing the vector representation in our model with several

sentence models, including Convolutional Neural Networks (CNN) [43, 44], Recurrent Neural
Networks (RNN) [45, 46], Long Short TermMemory (LSTM) [47], and the original RAE, to vali-

date the necessity of the ranking error definition. Some classical IR models provided by an

open-source search engine are also chosen as baselines to verify the use of classification,

including Query Likelihood (QL), Sequential Dependence Model (SDM) and BM25 [48]. More-

over, the participating systems developed by the challenge winners of the six-year BioASQ are

also baselines.

For all experiments, the sets of candidate documents are retrieved based on a unified index

construction and IR model provided by an open-source search engine, Galago http://www.

lemurproject.org/galago.php, with default settings.

Results

Comparisons with variants of our approach

We present the performances of our proposed approach https://github.com/lixuf/RAE-

Recursive-AutoEncoder-for-bioasq-taskB-phaseA-snippets-retrieve- and the variants that

replace the vector representation model with self-implemented Convolutional Neural Net-

works (CNN), Recurrent Neural Networks (RNNs), Long Short-term Memory (LSTM), and

the RAE without the use of ranking error (RAE). Evaluated with the BioASQ official metric of

Mean Average Precision (MAP), the comparison results with these variants are reported in

Table 1. The results show that our approach performs better than all of the variants across all

datasets. Specifically, if we use the names of representation models to stand for the baselines,

then in terms of BioASQ 2013, our method outperforms CNN, RNN, LSTM, and RAE by

36.2%, 30.0%, 26.8% and 18.6% over the 3 batches; with respect to BioASQ 2014, the CNN,

Table 1. The MAP performances of our approach compared with the variants and classical IR models on BioASQ.

Dataset Batch Our CNN RNN LSTM RAE QL SDM BM25

BioASQ 2013 Batch 1 0.0822 0.0642 0.0675 0.0694 0.0736 0.0564 0.0583 0.0546

Batch 2 0.0631 0.0450 0.0486 0.0497 0.0523 0.0354 0.0372 0.036

Batch 3 0.0795 0.0559 0.0568 0.0582 0.0637 0.0536 0.0548 0.0527

BioASQ 2014 Batch 1 0.0892 0.0524 0.0568 0.0571 0.0783 0.0586 0.0650 0.0524

Batch 2 0.0656 0.0478 0.0493 0.0506 0.0612 0.0465 0.0478 0.045

Batch 3 0.0795 0.0465 0.0483 0.0498 0.0624 0.0542 0.0563 0.0517

Batch 4 0.0743 0.0482 0.0490 0.0503 0.0617 0.0510 0.0536 0.0493

Batch 5 0.0668 0.0482 0.0476 0.0485 0.0523 0.0518 0.0523 0.0529

BioASQ 2015 Batch 1 0.0724 0.0374 0.0397 0.0416 0.0539 0.0386 0.0429 0.0378

Batch 2 0.0931 0.0589 0.0603 0.0641 0.0685 0.0594 0.0648 0.0592

Batch 3 0.1048 0.0762 0.0824 0.0863 0.0932 0.0856 0.0895 0.0873

Batch 4 0.1056 0.0945 0.0938 0.0976 0.0960 0.0895 0.0928 0.0864

Batch 5 0.1412 0.1190 0.1052 0.1131 0.1203 0.1178 0.1201 0.1165

https://doi.org/10.1371/journal.pone.0242061.t001
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RNN, LSTM, and RAE are improved by 59.4%, 49.6%, 46.5% and 18.9% on average; and in

terms of BioASQ 2015, the average improvements of performance are 34.0%, 35.6%, 28.4%

and 19.7%, respectively. The loss function of RAE is the Euclidean distance between the input

vectors and the decoded vectors, is shown in Fig 4. Therefore, the goal of each iteration of RAE

is to obtain the decoded vectors with the highest similarity to the input vectors, so as to obtain

the hidden layer state (encoded vector) that can be put into the decoder and get the vectors

with a high degree of similarity to the input vectors. We can visually think of the encoder as a

compression tool, which compresses the input vectors into a vector. It is worth noting that the

structure of the encoder and the decoder must be consistent while the data flow should be

opposite. This is why we can use the similarity between the decoded vectors and the input vec-

tors as a criterion. It was found that the input vectors x1, x2 encoder to vector y after a series of

compute and the vector y decoder to the vectors that are highly similar to the input vectors x1,

x2 again after a series of compute. The reason why the vector y can be returned to the input

vectors is that the vector y has most of the features of the input vectors similar to word embed-

ding. So RAE can retain as much of the local semantics as possible, which is its goal also.

Obviously, from the statistics and the analysis above, the vector representation model in

our proposed approach is more suitable than other vector representation models to a large

extent on this task. Among these variants, RAE is substantially better than others. Moreover,

LSTM is slightly better than CNN or RNN, except for some individual batches. From our per-

spective, the CNN aims to discover the full depth of the input sentences with a global pooling

operation, which is appropriate for learning the global semantics, while the RNN or LSTM

generate the semantic vectors with the sequential models, which are usually utilized to predict

the next words in a sequence. However, for the Q-S pairs, we are more concerned about the

relations rather than the precise semantics, which is supported by the statistics of CNN. Addi-

tionally, from the comparisons of CNN and RNN/LSTM, we have found that the sequentiality

is beneficial to the judgments of the Q-A relations to a certain degree but still does not repre-

sent the decisive factor. Moreover, the results of RAE prove the significance of maintaining

the local semantics for accurate judgments. In addition, the comparisons with RAE manifest

Fig 4. The input vectors x1, x2 are the children mentioned in recursive autoencoders and variants section, and the

encoded vector y is the parent mentioned in recursive autoencoders and variants section.

https://doi.org/10.1371/journal.pone.0242061.g004
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our novel design that takes the “ranking error” into consideration during the loss function

computation.

Comparisons with classical IR models

As mentioned above, the entire process of answer matching and ranking can be regarded as

snippet retrieval, so we also compare our approach with classical IR models, including the

query likelihood model (QL), BM25 and sequential dependence model (SDM). The exact

MAP scores on BioASQ 2013-2015 are also shown in Tables 1 and 2–7 show the MAP scores

Table 2. Comparisons with BioASQ 2013 participants.

System Batch 1 Batch 2 Batch 3

our 0.0822 0.0631 0.0795

Wishart - 0.0360 -

BAS 100 0.0578 0.0337 0.0537

BAS 50 0.0512 0.0272 0.0527

https://doi.org/10.1371/journal.pone.0242061.t002

Table 3. Comparisons with BioASQ 2014 participants.

System Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

our 0.0892 0.0656 0.0795 0.0743 0.0668

Wishart 0.0364 0.0379 0.0574 0.0503 0.0476

main system 0.0095 0.0062 - - -

Biomedical Text Ming 0.0296 - 0.0215 0.0240 0.0195

BAS 100 0.0608 0.0319 0.0486 0.0549 0.0544

BAS 50 0.0601 0.0313 0.0480 0.0539 0.0539

HPI-S1 - 0.0482 0.0517 0.0300 -

https://doi.org/10.1371/journal.pone.0242061.t003

Table 4. Comparisons with BioASQ 2015 participants.

System Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

our 0.0724 0.0931 0.1048 0.1056 0.1412

ustb_prir 0.0797 0.0776 0.1840 0.2005 0.2410

qaiiit 0.0789 0.1159 - 0.1415 -

HPI 0.0971 0.0719 0.1269 0.1627 0.1341

testtext 0.0752 0.0817 0.1128 0.2070 -

oaqa - - 0.1969 0.2092 0.2196

fdu - - 0.1166 0.2480 0.2424

https://doi.org/10.1371/journal.pone.0242061.t004

Table 5. Comparisons with BioASQ 2016 participants.

System Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

our 0.1247 0.1392 0.1701 0.2300 0.2401

KNU-SG Team_Korea 0.1365 0.1590 0.1693 0.2305 0.2386

ustb_prir 0.0700 0.0884 0.1127 0.2298 0.2250

testtext 0.0641 0.0774 0.1069 0.1834 0.1694

fdu - 0.1870 0.2214 0.2365 0.2882

HPI 0.1601 - 0.1696 - 0.2049

https://doi.org/10.1371/journal.pone.0242061.t005
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on BioASQ 2013-2018. The statistics in the table indicate that our approach extensively outper-

forms the QL, SDM and BM25 for all batches of three-year datasets. Compared to QL, the

average improvements on BioASQ 13-15 are respectively 54.6%, 43.2% and 32.3%; our

approach exhibits a great advantage over SDM by the average improvements of 49.6%, 36.5%

and 26.1%; the average improvements are even larger with respect to BM25, which are respec-

tively 56.9%, 49.4% and 33.5%.

Among these IR models, SDM performs better than QL and BM25. This improvement is

mainly because SDM focuses on the sentence structure of queries and documents. The possible

phrases in sentences are considered through the exact phrase feature and unordered window

feature during retrieval, which is similar to the remaining local semantics in our approach. QL

and BM25 are mainly based on the term distributions in queries and documents, which lack

the consideration of semantics. Therefore, our proposed approach is more suitable than these

IR models to retrieve the relevant snippets for biomedical questions.

Unlike the preceding year, quite a few teams participated in BioASQ 2014 [20], and most of

the submitted results were well-performed. The performances of our approach and challenge

winners are shown in Table 3. TheWishart team utilized a similar strategy in BioASQ 2013.

The NCBI team’s framework used the cosine similarity between question and sentence to com-

pute their similarity. TheHPI team relied on the Hana Database and BioPortal to retrieve bio-

medical concepts and merged the concepts to retrieve the snippets.

In BioASQ 2015, semantic vectors were first applied among the participants (ustb_prir
team) [49] to look up the synonyms of the keywords in queries to select effective terms for

query expansion. The oaqa team [50] proposed a collective reranking model with supervised

learning. The qaiiit team [51] applied snippet extraction based on the similarity of the top 10

sentences of the retrieved documents and the queries. The evaluation results are demonstrated

in Table 4.

In BioASQ 2016,HPI-S1 [52] was based on the existing NLP functions from a in-memory

database (IMDB) and it was extended with a new process specifically to QA. KNU-SG [53] pro-

posed a system using a cluster–based language model.WS4A [54] proposed a novel approach

consists on the maximum exploitation of existing web services. The evaluation results are

shown in Table 5.

Table 6. Comparisons with BioASQ 2017 participants.

System Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

our 0.1402 0.1598 0.1524 0.1726 0.1847

KNU-SG Team_Korea 0.1393 0.1734 0.1411 0.1385 -

ustb_prir 0.1747 0.2598 0.2727 0.2423 0.2090

testtext 0.1585 0.2523 0.3500 0.2465 0.1843

fdu - 0.1711 0.3183 0.1436 0.1170

https://doi.org/10.1371/journal.pone.0242061.t006

Table 7. Comparisons with BioASQ 2018 participants.

System Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

our 0.1189 0.1628 0.1950 0.1102 0.0895

MindLab 0.0004 0.2736 0.2217 0.1413 0.1006

ustb_prir 0.1209 0.1731 0.2021 0.1216 0.0967

testtext 0.1151 0.1463 0.2021 0.1213 0.0861

aueb 0.1684 0.3187 0.3320 0.2138 0.1147

https://doi.org/10.1371/journal.pone.0242061.t007
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In BioASQ 2017, Brokos etc. [55] proposed a retrieval method that represents documents

and questions as weighted centroids of word embeddings and reranks the retrieved documents

with a relaxation of Word Mover’s Distance. USTB_PRIR [56] introduced different multi-

modal query processing strategies to enrich query terms and assign different weights to them.

The evaluation results are shown in Table 6.

In BioASQ 2018,MindLab [26] proposed a model making use of semantic similarity pat-

terns that were evaluated and measured by a convolutional neural network architecture. AUEB
[8] used novel extensions to deep learning architectures. The evaluation results are shown in

Table 7.

From the statistics in the tables, we can see that our approach improves the best participat-

ing systems in BioASQ 2013-2015 by 52.4%, 36.1% and 18.0%, respectively. In BioASQ 2016-

2018, our model performed close to the best competitors and even prevailed in some batches.

The decreases of improvements do not indicate the decline of robustness. The ultimate causes

are the introduction of extra resources, for example, introducing a pre-trained document

retrieval model at the stage of retrieving documents can not only retrieve more comprehen-

sively, but also reduce the probability of retrieving useless documents greatly. Using the more

primitive search tool provided by pubmed, the top 100 relevant documents contain an average

of 4.3 target documents, which can barely be called a comprehensive search. However, intro-

ducing too many useless documents brings a large error to the classification model. If extra

resources of a pre-trained document retrieval model are introduced, the compression ratio

of useful documents to useless documents can be reduced to 1:2 or even lower during the

retrieval phase. Especially after BioASQ 2015, most of the systems based on extra resources

contain a large amount of domain knowledge in biomedicine. In addition, extra resources of

language system, like UMLS, can help the model to better calculate the relationship between

the problem and the paragraph through the connection between medical concepts or vocabu-

lary. [34] The word frequency is used to represent the degree of professionalism of the vocabu-

lary, q-s pairs containing vocabulary with a word frequency less than 15 can be selected and

retrieved in UMLS, and then be put the selected q-s pairs encoded with our model into the

classification model containing Attention and output the results of the Attention. After stan-

dardizing the result of Attention, each word’s the degree of influence in the q-s pairs of the

final classification result can be obtained, which is a decimal between 0 to 1. A larger value

indicates that the word has a greater influence on the final result. It is found that more than

half of these highly specialized vocabularies have a low impact on the final result. But these spe-

cialized vocabulary and many professional concepts associated with the vocabulary are the key

to a correct answer. In summary, the proposed modified RNNs represent a practical approach

to retrieve relevant snippets for biomedical questions compared with the state-of-the-art [57]

BioASQ participants.

Significance testing and experimental analysis

To report effect sizes and confidence intervals more informatively, we performed several two-

sided paired t-test experiments between our approach and each self-implementing approach

on all 13 batches, including the variants and the IR models, according to Tetsuya Sakai’s signif-

icance testing [58]. According to the two-sided paired t-test experiments for the difference in

means �d ¼ 0:0249 (with the unbiased estimate of the population variance V = 0.0008), our

approach statistically significantly outperforms CNN (t(13) = 3.1946, p < 0.0077, ESpairedt =
0.8860, 95% CI [0.0079,0.0418]). The exact results of the other comparisons are shown in

Table 8. Obviously, we can observe that all p-values are less than 0.01.
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Through the above comparisons and the statistical significance testing, we can conclude

that our approach outperforms other vector representation models, IR models and state-of-

the-art BioASQ participants. There are several reasons leading to the improvements. First, our

approach aims to discover the semantic relations by classifying the Q-S pairs, while the pur-

poses of classical IR models and some BioASQ participants are to measure the similarities of

term distributions or semantics between the question and the candidate answers. Second, dur-

ing the vector representation process, our approach retains as much of the local semantics as

possible, which may benefit the classification of Q-S pairs. There is a typical model that get

results by measuring the similarities of term distributions [53]. It is difficult to consider com-

prehensively, although this paper proposed six aspects to measure the similarity between ques-

tions and answers. The model proposed by this paper also requires a lot of expertise and

experimentation to determine which aspects to be used. Our proposed model encodes Q-S

pair automatically instead of the similarities of term distributions. Our approach not only

needs less expertise and experiments but also automatically selects the required information by

neural network and has better result than that model. Another paper [26] also uses the similar-

ities of term distributions, but they propose a similarity matrix generated by part-of-speech

and similarity. The form of matrix can increase their computing speed because they have a

document retrieval model that can provide more accurate related documents than search

engines, which is one of our weaknesses. Another disadvantage of our model is that we don’t

take full advantage of part of speech, position and similarity, but they do. Two methods pro-

vided us with improved ideas above. Combining our method with their method may achieve

better results but requires more computing power and manpower.

Conclusion

This paper studies the problem of answer matching and ranking issues for biomedical question

answering with respect to a modified RNNs model. Our approach features the following novel-

ties. (1) The proposed model successfully converts a snippet retrieval problem for biomedical

questions into several classification tasks judging the semantic relations between biomedical

questions and the candidate snippets. (2) The modified RNNs proposed a brand new defini-

tion—“ranking error”—in the loss function computation, which makes the conventional

recursive neural networks more suitable for a ranking problem. (3) The proposed approach

provides a simple but effective snippet retrieval proposal for the development of a biomedical

question answering system. As relevant issues for future work, there are two directions. One

direction is to extend our model to the semantic search of short text within the open domain.

The other is to popularize the “ranking error” to make other classification models suitable for

ranking.

Table 8. Two sided paired t-test results on our approach with the baselines.

�d t0 p(<) ES 95% CI

CNN 0.0249 3.1946 0.0077 0.8860 [0.0079, 0.0418]

RNN 0.0240 3.1779 0.0080 0.8814 [0.0075, 0.0405]

LSTM 0.0216 3.1602 0.0082 0.8765 [0.0067, 0.0365]

RAE 0.0138 3.1337 0.0086 0.8691 [0.0042, 0.0235]

QL 0.0245 3.2535 0.0069 0.9024 [0.0081, 0.0410]

SDM 0.0217 3.2567 0.0069 0.9033 [0.0072, 0.0362]

BM25 0.0258 3.2427 0.0071 0.8994 [0.0085, 0.0431]

https://doi.org/10.1371/journal.pone.0242061.t008
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