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Abstract
In this paper, we focus on providing a discrete formulation for a reduced aggregation population balance equation. The 
new formulation is simpler, easier to code, and adaptable to any type of grid. The presented method is extended to address 
a mixed-suspension mixed-product removal (MSMPR) system where aggregation and nucleation are the primary mecha-
nisms that affect particle characteristics (or distributions). The performance of the proposed formulation is checked and 
verified against the cell average technique using both gelling and non gelling kernels. The testing is carried out on two 
benchmarking applications, namely batch and MSMPR systems. The new technique is shown to be computationally less 
expensive (approximately 40%) and predict numerical results with higher precision even on a coarser grid. Even with a 
revised grid, the new approach tends to outperform the cell average technique while requiring less computational effort. 
Thus the new approach can be easily adapted to model the crystallization process arising in pharmaceutical sciences and 
chemical engineering.

Keywords Aggregation · Integro-partial differential equation · Finite volume scheme · Cell average technique · Reduced 
model

Introduction

In the experimental and quantitative analysis of disperse 
phase population dynamics, population balance equations 
(PBEs) have become an effective and efficient method for 
tracking the tracer mass. Various researchers have used tracer 
experiments to derive agglomeration kinetics parameters 
and breakage rate, as well as the age of the granules [10, 
27]. Industrial applications such as sprayed fluidized bed 
granulator [9, 15] and twin-screw wet granulator [11, 12, 
17, 43] in which multiple particle properties (size, shape, 
porosity and tracer mass) are required to describe the quality 
of the granules [13, 14, 30]. Using the application of the 
high shear granulation, Pearson et al. [27] conducted a study 

to track the tracer mass corresponds to a breakage process. 
Later, Hounslow et al. [8] developed a modeling approach 
for tracking the tracer mass changed due to aggregation 
and breakage processes which takes place in the high shear 
granulation. Hounslow et al. [8] idea is based on tracking the 
two internal properties of the particles of the system. They 
addressed a simple mathematical reduction of the complete 
two dimensional PBE into two different one-dimensional 
PBE’s, one that accounts for the granule size distribution 
(GSD) and the other for a tracer mass distribution (TMD). 
They also developed a new numerical method to solve these 
PBE’s, however, is computationally expensive due to its 
complex formulation.

Population Balance Equation

A two-dimensional particle property distribution is 
defined as g(t,  v,  x) having properties v, x > 0 at time 
t ≥ 0 , that is, the number of particles in the infinitesimal 
range [v, v + dv] × [x, x + dx] at any time t is given by 
g(t, v, x) dv dx . A two dimensional aggregation PBE [19, 45] 
in a well mixed system can be written as
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supplemented with an initial condition

The first integral on the RHS of Eq. (1) describes the birth 
of particles with properties (v, x) due to the aggregation 
of particles having properties (v − �, x − �) and (�, �) . 
Similarly, the second integral provides the information of 
the omission of particles (v, x) that undergo coalescence 
with (�, �) . The aggregation kernel �(t, v, �, x, �) repre-
sents the kinetics of two particles with attributes (v, x) and 
(�, �) colliding successfully. It is a non-negative function 
( 𝛽(t, v, 𝜂, x, 𝜃) > 0 ) that is symmetric in terms of its prop-
erty arguments. The aggregation kernel can be written in 
the form � = �0(t)�

∗(v, �, x, �) . For the current study, time 
independent kernels are considered, however, the proposed 
approach can be implemented for any kind of kernel.

Reduced Model

Many authors have proposed various exact solutions [4, 5, 
16] and numerical techniques in order to solve the complete 
two dimensional original PBE (1). Those numerical meth-
ods involve cell average techniques [18, 33, 34, 39], fixed 
pivot techniques [48], stochastic methods [2, 25, 26] and 
finite volume schemes [6, 29, 32, 36, 38, 41, 44]. But due 
to non availability of the analytical technique to obtain the 
experimental data in complete two dimensions [30], vari-
ous researcher used the approach of reduced model to track 
two properties of the granules independently. Recently, the 
reduced breakage model has been solved using the notion of 
highly efficient and accurate finite volume scheme [46]. In 
order to track two properties independently corresponding to 
the aggregation process, the 2-D PBE can be converted into 
two 1-D PBEs corresponding to the conventional number 
density f(t, v) [7] and mass of tracer within granules m(t, v). 
The number density f(t, v) can be obtained from g(t, v, x) by 
integrating over all possible tracer mass

Similarly, the mathematical expression to track the one 
dimensional PBE for tracer mass distribution is provided 
as follows:

(1)

𝜕g(t, v, x)

𝜕t
=
1

2 ∫
v

0
∫

min(x,𝜂)

max(0,x−v+𝜂)

𝛽(t, v − 𝜂, 𝜂, x − 𝜃, 𝜃)

g(t, v − 𝜂, x − 𝜃)g(t, 𝜂, 𝜃)d𝜃d𝜂

− ∫
∞

0
∫

𝜂

0

𝛽(t, v, 𝜂, x, 𝜃)g(t, v, x)g(t, 𝜂, 𝜃)d𝜃d𝜂.

(2)g(0, v, x) = g0(v, x).

(3)

�f (t, v)

�t
=
1

2 ∫
v

0

�(t, v − �, �)f (t, v − �)f (t, �)d�

− f (t, v)∫
∞

0

�(t, v, �)f (t, �)d�.

Equations (3) and (4) are classified as integro-partial dif-
ferential equations which have to be solved numerically 
in order to track the granules size distribution and tracer 
mass distribution, respectively. The derivations of the above 
equations are provided in detail by Hounslow et al. [8] and 
Kumar et al. [19].

Literature and Motivation

In the available literature, there are many analytical tech-
niques available in the literature to track the experimental 
data for two properties of the granules independently (refer 
to [30] and references therein). In addition, many authors 
proposed different schemes to solve the aggregation PBE 
for granule size distribution including finite volume schemes 
[22, 31, 35, 37, 38, 40, 42], least square methods [3, 49], 
method of moments [1], stochastic methods [24], cell aver-
age techniques [21, 38] and fixed pivot techniques [20, 23, 
48].

Now the question arises how one can develop a 
numerical method to approximate the set of reduced 
PBEs at moderate computational cost. Due to the com-
plex nature of these equations, few numerical methods 
are available in the literature for solving a mass tracer 
aggregation PBE. The first numerical method to approx-
imate the tracer PBE was developed by Hounslow et al. 
[8]. Later, Peglow et al. [28] modified the numerical 
approximation of the Hounslow et al. [8] to improve the 
accuracy of the numerical results. The main drawbacks 
of both numerical approaches are that they can only be 
implemented using a specific type of grid and size-inde-
pendent kernel, which limits the applicability of both 
to granulation and crystallization processes. However, 
these real- life applications involve rigorous use of size 
dependent kernels specifically additive and multiplica-
tive kernels as different volume particles are formed at 
different aggregation rates [11]. In 2006, Kumar et al. 
[19] presented a numerical method well known as cell 
average technique which overcome all issues of the exist-
ing methods. The idea of cell average is based on finding 
the average of all new born particles within the cell and 
then redistribute them to the neighbouring nodes in such 
a way that pre-chosen properties are exactly preserved. 
The major disadvantage of the cell average technique is 
recalculation of the birth term after the redistribution 
of particles properties to the neighbouring nodes which 
makes this method computational expensive. Another 

(4)

�m(t, v)

�t
=
1

2 ∫
v

0

�(t, v − �, �)m(t, v − �)f (t, �)d�

− m(t, v)∫
∞

0

�(t, v, �)f (t, �)d�.
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significant problem with this approach is that it predicts 
negative values for primary particles corresponding to 
size dependent kernels such as additive and multipli-
cative kernels. This limited the use of this numerical 
approach for solving real-life applications concerning 
granulation processes.

In this work, our aim is to propose a new framework 
based on the finite volume scheme for a mass tracer 
aggregation PBE whose mathematical formulation is 
simpler than the cell average technique and predict the 
numerical results more accurately and efficiently than 
the existing method. Moreover, the developed scheme is 
extended to solve a problem related to mixed-suspension 
mixed-product removal system in which aggregation and 
nucleation mechanisms are responsible for changing the 
particles properties. The convergence of the numerical 
results is discussed by approximating a mass tracer PBE 
on refined grids.

The rest of the article is organized as follows: Sec-
tion 2 provides the detailed derivation of the finite vol-
ume scheme for solving a tracer mass distribution of 
aggregation PBE along with theoretical proof of volume 
conservation. Moreover, Section 3 is devoted to con-
duct the comparison of the numerical results for both 
batch and continuous system against exact solutions and 
the convergence is discussed for various grids. Further 
in Section 3.3 the discussion of the numerical results 
against exact solutions for continuous system using vari-
ous grids are conducted. Finally, Section 4 provide the 
conclusions of the study.

Numerical Method

In order to develop the numerical approximation for the tracer 
mass distribution (4), first it is important to fix the computa-
tional domain (upper limit ∞ ) to a finite number (say vmax < ∞ ) 
of the second integral in this equation. Thus the reduced model 
required to track the tracer mass distribution corresponding to 
the aggregation PBE can be reformulated as follows:

corresponding to a new initial condition

The numerical method is based on the assumption that 
particles within a grid cell are concentrated on its represent-
atives. For the numerical methods, a finite one dimensional 
computational domain with upper limit, vmax < ∞ , is divided 
into I number of smaller cells having vi as representative 
volume, for i ∈ 1, 2, ..., I (see Fig. 1). Now, define the grid 
points and the step size by

For the numerical approximation, let us first define the fol-
lowing set of indices

(5)

�m(t, v)

�t
=∫

v

0

�(t, v − �, �)m(t, v − �)f (t, �)d�

− m(t, v)∫
vmax

0

�(t, v, �)f (t, �)d�,

(6)m(0, v) = m0(v), v ∈ (0, vmax].

v1∕2 = 0, vi =
vi−1∕2 + vi+1∕2

2
, Δvi = vi+1∕2 − vi−1∕2, vI+1∕2 = vmax.

Fig. 1  One dimensional domain 
discretization.

Fig. 2  Representation of set Υi.
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Here vi−1∕2 and vi+1∕2 are the lower and upper ends of the 
ith cell, respectively. The set Υi denotes the sum of particles 
having properties vj and vk falls in a ith cell having properties 
vi (see Fig. 1). The graphical illustration of the Υi is shown 
in Fig. 2.

For i ∈ 1, 2, ..., I , assume that Ni and mi are the number 
of particles and total mass, respectively at time t in ith cell 
which can be computed using the following expressions:

and

The idea of the new approximation is to convert the origi-
nal Eq. (5) of continuous integrals into set of ordinary dif-
ferential equations by assuming that the point masses are 
concentrated on representatives, that is,

and

Integrating the original Eq. (5) over the boundaries of the ith 
cell leads to the following can be obtained:

where the birth and death terms are given by

and

Simplification of Birth Tracer Term

For the simplification of notations, we omit the parameter t 
in our derivation and further assume v1 = 0 , the expression 
(13) can be written as follows

(7)Υi =
{
(j, k) ∈ ℕ × ℕ ∶ vi−1∕2 < (vj + vk) ≤ vi+1∕2

}
.

(8)Ni = ∫
vi+1∕2

vi−1∕2

f (t, v)dv.

(9)mi = ∫
vi+1∕2

vi−1∕2

vf (t, v)dv.

(10)f (t, v) ≈

I∑
k=1

Nk�(v − vk),

(11)m(t, v) ≈

I∑
k=1

mk�(v − vk).

(12)
dmi(t)

dt
= Bi(t) − Di(t),

(13)Bi(t) = ∫
vi+1∕2

vi−1∕2
∫

v

0

�(t, v − �, �)m(t, v − �)f (t, �)d�dv,

(14)Di(t) = ∫
vi+1∕2

vi−1∕2

m(v)∫
∞

0

�(v, �)N(�)d�dv.

S u b s t i t u t i n g  f (t, v) =
∑I

k=1
Nk�(v − vk)  a n d 

m(v) =
∑I

k=1
mk�(v − vk) from Eqs. (10) and (11) in above 

Eq. (15), we get

Using the notion of Dirac-delta distribution in the first inte-
gral and changing the order of integration in the second inte-
gral lead to the following:

The above equation can be further simplified to

Reapplying the definition of the Dirac-delta distribution in 
both the integrals finally gives

One can observe that for each term mjNk in Eq. (19), there 
exist a term mkNj except for j = k , then the Eq. (19) can be 
rewritten as

Simplification of Death Tracer Term

Equation (14), discretized up to vI+1 , can be rewritten as 
follows

(15)
Bi(t) =∫

vi+1

vi

i−1∑
j=1

∫
vj+1

vj

�(v − �, �)m(v − �)f (�)d�dv

+ ∫
vi+1

vi
∫

v

vi

�(v − �, �)m(v − �)f (�)d�dv.

(16)

Bi(t) =∫
vi+1

vi

i−1∑
j=1

∫
vj+1

vj

�(v − �, �)

I∑
k=1

[mk�(v − � − vk)]

I∑
k=1

[Nk�(� − vk)]d�dv

+ ∫
vi+1

vi
∫

v

vi

�(v − �, �)

I∑
k=1

[mk�(v − � − vk)]

I∑
k=1

[Nk�(� − vk)]d�dv.

(17)

Bi(t) =∫
vi+1

vi

i−1∑
j=1

�(v − vj, vj)

I∑
k=1

[mk�(v − vj − vk)]Njdv

+ ∫
vi+1

vi
∫

vi+1

�

�(v − �, �)

I∑
k=1

[mk�(v − � − vk)]

I∑
k=1

[Nk�(� − vk)]dvd�.

(18)

Bi(t) =

i−1∑
j=1

Nj ∫
vi+1

vi

�(v − vj, vj)

I∑
k=1

[mk�(v − vj − vk)]dv

+ ∫
vi+1

vi

�(v − vi, vi)

I∑
k=1

[mk�(v − vi − vk)]Nidv.

(19)

Bi(t) =

i−1∑
j=1

Nj

∑
vi≤(vj+vk)<vi+1

𝛽(vk, vj)mk +
∑

(vi+vk)<vi+1

𝛽(vk, vi)mkNi.

(20)Bi(t) =
∑

(j,k)∈Υi

1

2
�(vj, vk)(mjNk + mkNj).
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Again using the application of Dirac-delta distribution, we 
get

Substituting the expressions (20) and (22) in equation (12), 
we define the finite volume scheme as:

Further, divide the time domain as tp+1 = tp + Δtp for p ∈ ℕ 
and integrating over the time domain gives

Here mp

i
 denotes the value of tracer mass at time tp in the 

ith cell. It can be observed that for the case of the cell aver-
age technique, the particle properties are distributed to the 
neighboring nodes, if the average of all particles proper-
ties after the aggregation do not fall on the representative 
in order to achieve the conservation of required moments. 
However, in case of the finite volume scheme, we need not 
any special treatment for conserving the mass conservation 
law (Theoretical proof is provided in Appendix A).

Simulation Results and Discussion

This section is devoted to check the accuracy and efficiency of 
the newly developed finite volume scheme against the exist-
ing cell average technique [19] for different computational 
domains. In order to conduct the comparison intensively, two 
cases, namely, batch system and mixed-suspension mixed-
product removal (MSMPR) system are considered. The mono-
disperse initial condition f0(v) = �(v − 1) and the computation 
domain considered is vi+1 = 21∕pvi for p = 1, 3 and 5 for the 
comparison. To compare the numerical results, it is necessary 
to define the degree of aggregation as follows:

(21)Di(t) = ∫
vi+1

vi

m(v)

I∑
j=1

∫
vj+1

vj

�(v, �)N(�)d�dv.

(22)

Di(t) =∫
vi+1

vi

I∑
k=0

[mk�(v − vk)]

I∑
j=1

∫
vj+1

vj

�(v, �)

I∑
k=0

[Nk�(� − vk)]d�dv

=∫
vi+1

vi

I∑
k=0

[mk�(v − vk)]

I∑
j=1

�(v, vj)Njdv

=

I∑
j=1

Nj ∫
vi+1

vi

I∑
k=0

[mk�(v − vk)]�(v, vj)dv

=

I∑
j=1

�(vi, vj)Njmi.

(23)

dmi(t)

dt
=

∑
(j,k)∈Υi

1

2
�(vj, vk)(mjNk + mkNj) −

I∑
j=1

�(vi, vj)Njmi.

(24)

m
p+1

i
= m

p

i
+ Δtp

( ∑
(j,k)∈Υi

1

2
�p(vj, vk)(m

p

j
N

p

k
+ m

p

k
N

p

j
) −

I∑
j=1

�p(vi, vj)N
p

j
m

p

i

)
.

Here �0(t) expresses the zeroth order moment (total number 
of particles ) at any time t and �in

0
(0) is the zeroth order 

moment of the feed. The testing will be conducted for both 
batch and MSMPR systems using sum and product kernels. 
Smit et al. [47] have shown that the sum kernel shows gel-
ling behavior for the continuous system and non gelling 
behavior for batch systems. However, the product kernels 
is classified as a gelling kernel for both batch and continu-
ous systems. For the gelling kernels simulations are run till 
their gelation point. Gelation is a phase transition that occurs 
during the aggregation process where mass is lost from par-
ticles of finite volume and appears in particles of infinite 
volume instead [47]. Therefore, predicting the numerical 
solutions for these kernels are highly challenging. The inte-
gration of discrete form of TMD (12) is solved using MAT-
LAB ODE15s solver. The numerical simulations are run on 
machine with specifications i5 7300U CPU with 2.70 
GHz and 16 GB RAM.

Simulations for Batch System Using Sum Kernel

The comparison is began by considering the additive ker-
nel, �(v, �) = �0(v + �) where �0 = 1 . We compare the total 
number of primary particles ( Nr,i ) which represents m(t, v) 
in continuous MSPMPR system and is given by

where i is identified as the number of primary particles in 
the size of a granule v. Moreover, the mean volume size of 
the primary particle distribution is also calculated for the 
comparison using the following relation:

For the additive kernel, the mean volume size of the pri-
mary particle distribution is given by �̄�r(t) = e2t . The degree 
of aggregation for this particular case is considered to be 
Iagg = 0.80 . The numerical results against exact results for 
this case are plotted in Fig. 3 for p = 1 . It can be seen that 
the primary particles number distribution predicted by the 
new scheme shows better results than the existing scheme 
as the existing scheme is not able to calculate the primary 
particles population for larger volumes. This is possibly due 
to the reason that for the case of the cell average technique, 
the particles take birth in the last cell leads to numerical 

(25)Iagg =

⎧
⎪⎨⎪⎩

1 −
�0(t)

�0(0)
, batch system ,

1 −
�0(t)

�in
0
(0)

, continuous system .

(26)Nr,i(t) = iNi(t),

(27)�̄�r(t) =

∑
i Nr,i(t)∑
i iNi(t)

∀ t.
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error because of the distribution of the particles properties 
to the neighboring nodes which ends up in losing the volume 
from the system, however, this is not possible in the new 
scheme as no particles properties to the neighboring nodes 
are required to be distributed. However, the new scheme 
predicts the larger volume population of primary particles 
with less precision (see Fig. 3(a)). Moreover, the final ratio 
of primary particles and progress of tracer-weighted mean 
particle volume plotted in Fig. 3(b) and (c) reveal that the 
new scheme is highly accurate than the existing scheme.

To see the convergence of the numerical results towards 
the exact results, we compare the numerical results obtained 
using refined grids corresponding to p = 3 and 5 in Figs. 4 
and 5, respectively. Figures conclude that the results for both 
schemes improve to larger extend, however, still the new 

scheme performs better than the existing scheme (refer to 
Figs. 4(a), (b), 5(a) and (b)). Additionally, it can also be 
observed that in the case of the cell average technique, 
the negative values for the final ratio of primary particles 
increase to large extent as more refined grids are considered 
for obtaining the results as demonstrated in Figs. 4(c) and 
5c. Whereas the new scheme establishes very stable results 
for even refined grids. In terms of computational CPU time, 
the new scheme is more efficient in obtaining the numerical 
results than the existing scheme (See Table I).

Simulation for Batch System Using Product Kernel

Next we compare the numerical results for the product 
kernel ( �(v, �) = �0(v�) ) using various size computational 
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Fig. 3  Numerical results using additive kernel with a geometric grid of 23 cells for a batch system.

2054 Pharmaceutical Research (2022) 39:2049–2063



1 3

domains. For this kernel, the analytical mean volume size 
of the primary particle distr ibution is given by 
�̄�r(t) =

1

1 − t
for 0 ≤ t < 1 . The simulations are run for the 

degree of aggregation Iagg = 0.50.
The numerical results for both numerical methods are 

plotted in Fig. 6 for p = 1 . Alike the previous case, the 
numerical results for a primary particles number distri-
bution computed by the new scheme shows much higher 
accuracy than the existing scheme (see Fig. 6(a)). Moreo-
ver, the final ratio of primary particles estimated by the 
new scheme overlap with the exact result whereas the 
existing scheme shows under prediction from the exact 
result for as concluded in Fig. 6(b). In addition, the new 
scheme predicted the tracer-weighted mean particle 

volume with higher precision than the existing scheme. 
Even for this case, the existing scheme gives negative val-
ues for this result as shown in Fig. 6(c).

To check the convergence of the results for the refined 
grids, the numerical results are plotted in Fig. 7 for compu-
tational grids corresponding to p = 3 , respectively. It can 
be observed that both schemes acquire same accuracy for 
both primary particles number distribution as well as final 
ratio of primary particles as demonstrated in Fig. 7(a) and 
(b). In addition, the tracer-weighted mean particle volume 
determined by the new scheme shows more accuracy than 
the existing scheme for computational domain obtained 
for p = 3 (see Fig. 7(c)). The efficiency of both numerical 
methods in terms of CPU time is compared and listed in 
Table II. One can observe that the new scheme obtained 
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Fig. 4  Numerical results using additive kernel with a geometric grid of 67 cells for a batch system.

2055Pharmaceutical Research (2022) 39:2049–2063



1 3

the numerical results by consuming 50% lesser time than 
the existing scheme for different grids.

Aggregation and Nucleation in Continuous MSMPR

In this section, we consider a problem formulated by [10] in 
order to test the applicability of the newly developed discrete 

formulation. In this particular problem, a monodisperse 
tracer was added to a well-mixed continuous particle pro-
cess that was initially assumed to be in steady state. In this 
case, two mechanisms namely aggregation and nucleation 
are effecting the properties of the particles. The population 
balance equation required to model this system are given 
as follows:

and
(28)

�f (t, v)

�t
=∫

v

0

�(t, v − �, �)f (t, v − �)f (t, �)d� − f (t, v)∫
v
max

0

�(t, v, �)f (t, �)d�

+ B0�(v) −
f (t, v)

�
, f (t, 0−) = 0,

�f (t, v)

�t

|||t=0 = 0,

Fig. 5  Numerical results using additive kernel with a geometric grid of 110 cells for a batch system.

Table I  Computational Time 
Using Additive Kernel for a 
Batch System

Cells CPU time CPU time
CAT FVS

23 0.69 0.48
67 2.46 1.89
110 4.89 3.39
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The exact results for decay of total tracer mass and tracer-
weighted mean particle volume corresponding to both addi-
tive and product kernels is provided by Ilievski and Houn-
slow [10]. The mean mass for this continuous system can 
be calculated using

(29)

�m(t, v)

�t
=∫

v

0

�(t, v − �, �)m(t, v − �)f (t, �)d� − m(t, v)∫
v
max

0

�(t, v, �)f (t, �)d�

+ B0�(v) −
m(t, v)

�
, m(t, 0−) = 0,

�m(t, v)

�t

|||t=0 = �(v − v0).

Here T = t∕� . For running the simulation similar grid is con-
sidered as previous cases and B0 = � = v0 given in Table IV 
denote the nucleation constant, dimensionless time and ini-
tial average volume, respectively. To enhance the compari-
son, the relative error in the mean volume is also calculated 
for different size grids using the relation:

(30)�̂�T (t) =
∫ ∞

0
vm(t, v)dv

∫ ∞

0
m(t, v)dv

.

Fig. 6  Numerical results using product kernel with a geometric grid of 21 cells for a batch system.
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Fig. 7  Numerical results using product kernel with a geometric grid of 61 cells for a batch system.

Table II  Computational Time 
Using Product Kernel for a 
Batch System

Cells CPU Time CPU Time
CAT FVS

21 1.42 0.80
61 5.19 3.67
101 14.66 7.26

Table III  Exact Solutions of Tracer-Weighted Mean Particle Volume

Cases �(v, �) �̂�T∕v0

1. �0(v + �) 1 − Iagg

3Iagg − 1
+

4Iagg − 2

(3Iagg − 1)
exp

(
t

�

2Iagg

(1 − Iagg)

)

2. �0(v × �)
exp

�
t

�

1 −
√
1 − 8Iagg

2

�
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where �ana
1

 and �num
1

 denote the analytical and numerical 
values of tracer mass in the system, respectively. The exact 
results tracer-weighted mean particle volume are listed in 
Table III.

Simulations for Continuous System Using Sum Kernel

To begin the comparison for continuous MSMPR system, 
we first consider the additive kernel. The simulations are 
run till degree of aggregation Iagg = 1∕6 . The decay of total 
volume of tracer for this case is mT = m0 exp(−T) where 
T = t∕� . Figure 8 shows the numerical results for a compu-
tational domain vi+1 = 21∕pvi for p = 1 . The decay of total 
tracer mass predicted more accurately by the new formu-
lation than the existing scheme. However, both numerical 
schemes predict the tracer-weighted mean particle volume 

(31)Relative Error =

||||||||||

||||||||||

�ana
1

∗ v

�ana
1

−
�num
1

∗ v

�num
1

�ana
1

∗ v

�ana
1

||||||||||

||||||||||

,

same accuracy and match well with the exact result. Moreo-
ver, the results obtained for decay of total volume of tracer 
using a computational domain vi+1 = 21∕pvi for p = 3 is 
demonstrated in Fig. 9. One can observed that the accu-
racy shown by both numerical schemes is equal on a refined 
grid and converge to the exact result (refer to Figs. 8(a), (b), 
9(a) and (b)).

The relative errors in decay of total tracer mass for dif-
ferent grids are provided in Table V. Table shows that the 
new scheme computed the numerical results with lesser 
errors whereas the existing scheme predicted these results 
with higher errors. Similarly, the CPU time taken by the 
new scheme and existing scheme is listed in Table VI and 
reveals that the new scheme obtained the numerical results 
by consuming nearly 50% lesser CPU time than the existing 
scheme.

Simulations for Continuous System Using Multiplicative 
Kernel

Next, the numerical comparison is conducted for a MSMPR 
System using multiplicative kernel �(v, �) = �0(v × �) . The 
decay of total volume of tracer for multiplicative kernel is 
mT = m0 exp(−T) where T = t∕� and thhe degree of aggre-
gation is considered to be Iagg = 1∕10 . The comparison 
of different results corresponding to the computational 
domain vi+1 = 21∕pvi for p = 1 is shown in Fig.  10. In 
addition, to check the convergence of numerical results, 
we plotted the different numerical results for a computa-
tional domain vi+1 = 21∕pvi for p = 3 in Fig. 11. The use of 
refined grid for obtaining the numerical results of tracer-
weighted mean particle volume and decay of total tracer 
mass lead to converge to exact results. One can see that 

Table IV  Parameter Values for Running the Numerical Simulations

Parameters Values

�0, B0, �, v0 1
vmax 500 (for sum kernel)
vmax 100 (for multiplicative kernel)
Number of grids (I) 23, 67 and 110 for p = 1, 3 and 5

m0(v) Initial mass density
f0(v) Initial number density

Fig. 8  Numerical results using additive kernel with a geometric grid of 23 cells for a continuous system.
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the tracer-weighted mean particle volume predicted by the 
new scheme is in better agreement with the exact result 
than the existing scheme, that is, the new scheme overlaps 
with the exact results whereas the existing scheme under 
predicted this result (refer to Figs. 10(a) and 11(a)). How-
ever, the numerical results for decay of total tracer mass 
is equally well obtained by both schemes as demonstrated 
in Figs. 10(b) and 11(b).

Moreover, the relative errors in decay of total tracer 
mass predicted by both numerical methods shows that 
the new scheme is 50% more accurate than the existing 
scheme for both grids (refer to Table VII). Similar to the 

Fig. 9  Numerical results using additive kernel with a geometric grid of 67 cells for a continuous system.

Table V  Relative Error in the 
Mean Volume for Additive 
Kernel for a Continuous System

Cells CAT FVS

23 0.1715 0.1243
67 0.0179 0.0128

Table VI  Computational Time 
for Additive Kernel for a 
Continuous System

Cells CPU Time CPU Time
CAT FVS

23 1.21 0.54
67 2.92 1.71

Fig. 10  Numerical results using multiplicative kernel with a geometric grid of 21 cells for a continuous system.
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previous cases, the new scheme takes lesser CPU time 
to compute the numerical results for this case as well as 
shown in Table VIII.

Conclusions

In this article, a discrete formulation based on finite vol-
ume scheme is developed for approximating the tracer 
mass distribution corresponding to pure aggregation and 
simultaneous aggregation-nucleation population balance 
equations. It is shown that the new formulation is very 
simple and can be implementing to any kind of aggrega-
tion kernel in contrast to the formulation developed by 
Hounslow et al. [8]. The accuracy and efficiency of the 
newly developed formulation is compared with the cell 
average technique for different aggregations kernel using 
different size grids. It is shown that the newly developed 
formulation shows better accuracy than the cell average 
technique for a coarser grid for several problems and leads 

to same accuracy for both schemes for a refined grid. In 
addition, it is also demonstrated that the newly developed 
discrete formulation is more efficient than the cell average 
technique, that is, the new scheme consumes lesser CPU 
time for obtaining the numerical results.

We finally conclude that the new scheme is more ben-
eficial for solving problems related to the crystallization, 
twin screw granulation and sprayed fluidized bed gran-
ulation due to its simple mathematical formulation and 
accuracy.

Appendix A: Mass Conservation Law

For any numerical method, the important criteria is that it 
satisfies the mass conservative law. Any numerical method 
follows the the mass conservative law if it satisfies the condi-
tion given below:

Proposition 1 The numerical formulation (24) does hold the 
mass conservation law, that is, the first order moment is 
conserved.

Proof By taking summation over all i of discrete formulation 
provided in Eq. (24), the right-hand side can be evaluated to

where

I∑
i=1

mi(t
p+1) =

I∑
i=1

mi(t
p).

mi(t
p+1) = mi(t

p) + ΔtpT ,

Fig. 11  Numerical results using multiplicative kernel with a geometric grid of 61 cells for a continuous system.

Table VII  Relative Error in the 
Mean Volume for Multiplicative 
Kernel for a Continuous System

Cells CAT FVS

21 0.0299 0.0142
61 0.0113 0.0068

Table VIII  Computational 
Time(s) for Multiplicative 
Kernel for a Continuous System

Cells CPU Time CPU Time
CAT FVS

21 1.00 0.51
61 2.72 1.26
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Using relation Ni = mi∕vi , the above equation can also be 
written as

On multiplying and dividing the second term of above equa-
tion by ui , it gives

Using the symmetry of the aggregation kernel will lead to 
the following simplification

This implies T = 0 . Hence the formulation (24) holds the 
mass conservation law.
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